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A comparison of soil texture 
measurements using mid‑infrared 
spectroscopy (MIRS) and laser 
diffraction analysis (LDA) in diverse 
soils
Cathy L. Thomas*, Javier Hernandez‑Allica, Sarah J. Dunham, Steve P. McGrath & 
Stephan M. Haefele

Spectroscopic methods for the determination of soil texture are faster and cheaper than the standard 
methods, but how do the results compare? To address this question, laser diffraction analysis (LDA) 
and mid‑infrared spectroscopy (MIRS) analysis have been compared to conventional sieve‑pipette 
measurements of texture in diverse European and Kenyan soils. To our knowledge this comparison 
between LDA and MIRS has not been made previously. It has used soils with a broad range of organic 
carbon (OC) contents to investigate whether, as in other techniques, clay‑OC aggregation affects 
the estimation of clay with MIRS. The MIRS predictions of clay content were much better than the 
LDA measurements, but both techniques gave good measurements of sand content. The MIRS over‑
estimated clay at low clay content and under‑estimated at high clay content (calibration set  R2 = 0.83). 
The LDA over‑estimated clay by ~ 60% (calibration set  R2 = 0.36), indicating that the widely used clay 
threshold of < 8 µm was too high, and < 4 µm was found to be more accurate. In samples with < 5% OC 
content, both the LDA and MIRS gave very good clay predictions  (R2 = 0.88 and 0.81, respectively). 
But in predictions of clay content in samples with > 5% OC the LDA under‑estimated  (R2 =  < 0.1) and 
MIRS over‑estimated  (R2 = 0.34) clay content. In soils with OC removed, the MIRS prediction of clay 
content improved, indicating interference between over‑lapping spectral regions for organic and 
mineral constituents. Unlike granulometric measurements of texture such as the LDA, MIRS analysis 
is not subject to the limitations imposed by the shape and density of particles. It was concluded that 
in typical agricultural soils with < 5% OC and < 60% clay content, both techniques could be used for 
cheap, fast and reliable estimates of soil texture.

Abbreviations
MIRS  Mid-infrared spectroscopy
LDA  Laser diffraction analysis
OC  Organic carbon

Soil texture, describing the relative proportion of sand, silt and clay in the mineral phase of soils is a major 
determinant of its water storage capacity and permeability, aeration, bulk density, aggregate stability and carbon 
storage capacity. Clay particles have high cation exchange capacity which affects nutrient availability to crops. 
Thus, knowing the texture of a soil is essential to understanding how well it functions for crop production and 
other soil functions.

Conventional measurements of soil texture use the sieve-pipette and  hydrometer1 techniques, which are 
gravitational-sedimentation methods and make granulometric measurements of grain size. In the sieve-pipette 
method, the clay fractions (< 2 µm) are measured by sampling from a soil in solution using a pipette and calculat-
ing the dry weight, this is done after the sand fraction (63–2000 µm) has been collected with sieving. The hydrom-
eter method measures the clay fraction from the density of the soil in water using the principle of buoyancy, and 
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the sand fraction is often also collected with sieving. Both are based on the assumptions of Stokes’ law; particles 
have a constant bulk density and all particles of a particular density will settle at a certain rate. This law also 
assumes a homogeneous particle shape i.e. a spherical particle shape, which is more applicable to sand than to 
clay particles. Non-spherical particles have higher resistance than a sphere and thus a reduced settling velocity, 
leading to an under-estimate of the size of non-spherical clay particles and an over-estimation of the smallest 
clay  proportion2. Similarly, sieving can allow non-spherical silt/sand particles to pass through the sieve on the 
smaller edge and thus over-estimate the proportion of the clay  fraction3. Thus, shape effects are accentuated for 
non-spherical particles most often found with the clay fraction. For example, it has been found that compared to 
absolute particle size measurements made using an electron microscope, the sieve-pipette method significantly 
over-estimated clay content by including particles up to 5 µm  diameter4.

Laser diffraction analysis (LDA) is a high-throughput spectroscopic method for texture analysis, which uses 
forward scattering of monochromatic coherent light; the angle of diffraction of light off a particle is inversely 
related to the size of the particle. Like the standard techniques, laser diffraction analysis is also a granulomet-
ric approach, which whilst not making assumptions about settling velocity, it does also assume sphericity of 
particles; that the cross-sectional area of one surface applies to all surfaces, and this assumption leads to clay 
under-estimation, because the large platy surface area is interpreted as sphere shape and hence a larger particle 
 size3–7. This particle shape effect was demonstrated when the size of pure quartz samples milled to < 2 µm were 
measured very accurately by LDA, whereas the size of true clay samples < 2 µm were significantly over-estimated8. 
Therefore, the conventional technique described above tends to over-estimate the clay fraction, whereas the LDA 
tends to under-estimate it.

Furthermore, the basis of granulometric measurements is the dispersion of soil aggregates into individual 
particles by chemical, mechanical or ultrasonic means. However, often the soil aggregates are not easily dis-
persed, and pre-treatment to remove soil organic matter (SOM), Fe oxides and carbonates which bind particles 
are  required2,9. It has been found that in soils with > 2% SOM, clay will be under-estimated using the sieve-
pipette method because of  aggregation5 or the hydrometer  method10. This has also been observed with the LDA 
 technique7,11.

Another disadvantage of gravitational-sedimentation techniques is that they are extremely time-consum-
ing. Other more high-throughput spectroscopic methods, in addition to LDA, include; X-ray  attenuation12, 
Coulter/electrical sensing zone method, and infrared spectroscopy with visible (vis), near-infrared (NIR) and 
mid-infrared (MIRS) radiation. Unlike the afore mentioned techniques, infrared analyses the chemistry of soil 
constituents. Mid-infrared spectroscopy is sensitive to both organic and inorganic phases, so is ideal for soils. 
Fundamental molecular frequencies occur in the MIRS region between 600–4000 cm−1, such as C-H and C-N 
bonds in organic materials and Si–O bonds in minerals. Overtones and combinations of these fundamental 
frequencies occur in the NIR region, making quantification in the NIR region more  difficult13. Mid-infrared 
spectroscopy has proved successful at determining multiple soil properties, including  texture13–18. These high-
throughput spectroscopic techniques are also more economical and have the potential to give estimations of 
multiple soil properties, therefore allowing a higher density of soil sampling in large field surveys, or within 
fields, and facilitating a precision agriculture approach.

The objective of this study was to assess how texture measurements made by the LDA and MIRS compare 
to the reference sieve-pipette method. Diverse soil sets with a broad range of texture and OC content were 
studied to allow comparison of how the methods perform for different soil types. The study also used soils with 
OC destroyed to investigate whether clay-OC aggregation affects the estimation of clay with MIRS, as it has 
previously been shown to do with other techniques. It was hypothesised that MIRS analysis would give better 
predictions than the LDA of clay, because is it not subject to the limitations imposed by the shape and density of 
non-spherical clay particles. However, it was uncertain as to whether the MIRS technique was also affected by 
high OC content causing the aggregation and occlusion of clay particles and preventing detection.

Materials and methods
Soil sample sets. European soils were selected from the Rothamsted Research soil archive based on known 
soil texture and organic carbon contents to cover a very diverse range of soil types (n = 75). The soils were from 
11 countries, with the majority being from England (n = 55). The clay content was 1.5–57%, sand content was 
8–95% and OC content was < 1–33%. The European set was further split into sets with < 5% OC (organic car-
bon, the majority with < 3% OC) and > 5% OC, to investigate the effect of OC on texture measurements. The 
independent validation sets are from arable fields across the UK and were also selected from the archive, to test 
whether the narrower range of texture could be better predicted in these sets. The first independent validation 
set were soils from plots of the Broadbalk field trial (Rothamsted Research, UK), which is a long-running field 
experiment receiving different rates of fertiliser and manure (n = 46); clay content was 20–39%, sand + silt con-
tent was 61–80% and OC content was 0.8–3.5%. A second independent validation set contained diverse soils 
from arable fields across the UK (n = 25); clay content was 4–59%, sand content was 5–92% and OC content was 
1.1–14% (Table 1; raw Supplementary Information, Appendix A).

For the Kenyan soil texture calibration, the ICRAF (World Agroforestry Centre) in-house standards (n = 16) 
were used, which are a diverse set of Kenyan soils which had been selected for diversity from the ICRAF soil 
archive based on MIRS spectra using the Kennard-Stone algorithm. The clay content was 3–59%, sand content 
was 6–96% and OC content was < 1–5.7%. The independent validation set soils were from small-holder farms 
in Bungoma county, western Kenya (n = 30), which had been selected for diversity from a wider sample set of 
small-holder farm soils based on MIRS spectra using the Kennard-Stone algorithm; clay content was 9–48%, 
sand content was 36–77% and OC content was < 1–2% (Table 1; raw Supplementary Information, Appendix A).
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All soils were air-dried and sieved to < 2 mm. A sub-sample of the soil was ground to powder (< 50 µm) 
for 5 min at 700 RPM in a Retsch PM400 all-agate planetary ball mill (Retsch GmbH, Germany) for the MIRS 
analysis. The OC of all samples was also analysed: total carbon was analysed with a LECO TruMac Combustion 
Analyser (LECO, Michigan, USA), and inorganic carbon was analysed using combustion with a Skalar Primacs 
(Skalar Analytical BV, Breda, Netherlands), and organic carbon was calculated from total carbon minus inor-
ganic carbon.

Texture analysis using sieve‑pipette (reference method). Of each of the soil samples, one replicate 
of 100 g of < 2 mm soil was analysed using the pipette- sedimentation with sand fractionation method (ISO 
11277:2009) by NRM Laboratories (Bracknell, UK). First the soils were tested for  CaCO3 (which can cause an 
over-estimation of clay content) by adding a few droplets of 10% HCl, and  CaCO3 was found in some of the 
European soils but none above 10% (where otherwise the texture results would be viewed with caution). Soils 
were also pre-treated to remove organic carbon (OC) from all samples: 30 ml of 30% volume hydrogen peroxide 
 (H2O2) solution was added to soil and heated on a hotplate to 80 °C, this was repeated until fizzing had abated. 
Soils were then rinsed with deionised water and centrifuged to remove the clear supernatant, then re-dried and 
sieved to < 2 mm. Texture was classed as: clay < 2 µm, silt 2–63 µm, sand > 63–2000 µm. Note that in the Broad-
balk independent validation set, sand was calculated as silt + sand, because traditionally a different sieve-pipette 
classification had been  used19.

Texture analysis using laser diffraction (LDA). Of each of the soil samples, two replicate samples of 
approximately 1–3 g of < 2 mm soil (increasing with the transparency of the sample i.e. the quantity of sand), 
not pre-treated for OC removal, were analysed with LDA. Reference samples of an in-house standard soil were 
included in each run for quality control. A Partica LA-960 (Horiba Ltd, Kyoto, Japan) was used. This measures 
particles from 0.01–3000 µm with 93 particle size bins, using a diode laser of 650 nm wavelength and a blue LED 
light source of 405 nm wavelength. In the wet mode, the water fill level was 300 ml. A de-gassing procedure of 
the water bath is first conducted followed by a blank solution test to check for 100% light transmittance before 
soil is added. To aid with soil dis-aggregation, a 2 ml 4% Calgon (sodium hexametaphosphate) solution was 
added to the water bath immediately prior to adding the soil (ISO 11277:2009). Soil was then added to the water 
bath ensuring that the light transmittance/obscuration stayed between the thresholds 90–80% for red light and 
90–70% for blue light. A re-circulation system with an ultra-sonic probe, flow cell and a centrifugal circulation 
pump stirs, disperses and pumps the water bath at 10 revolutions/s. The auto-mode refractive index was used 
(1.6 for standard polystyrene latex spheres). Ultra-sonification was applied with a power of 7 and ran at the 
start of each loop for 1 min. The suspension was then pumped through a sample cell placed in the convergent 
laser beam. There were 4 loops per sample, each loop ran for ~ 3 min, adding to a total of 12 min per sample. 

Table 1.  Mean, minimum and maximum of soil clay and sand measured using the sieve-pipette method, and 
organic carbon (OC, %), in all European and Kenyan soil sets. Fold difference = maximum/minimum value. 
Cal. = calibration, val. = validation.

Min (%) Mean (%) Max (%) Fold-difference

European sets

European whole cal. set (n = 75)

 Clay (< 2 µm) 1.5 27 58 39

 Sand (> 63 µm) 4 39 95 24

 OC (%) 0.3 4.3 33 110

Broadbalk field val. set (n = 46)

 Clay (< 2 µm) 20 27 39 2

 Silt + Sand (> 2 µm) 61 74 80 1

 OC (%) 0.8 1.4 3.5 4

UK val. set (n = 23)

 Clay (< 2 µm) 4 25 59 15

 Sand (> 63 µm) 5 46 92 18

 OC (%) 1.1 3.4 14 13

Kenyan sets

Kenya cal. set (n = 16)

 Clay (< 2 µm) 3 34 59 20

 Sand (> 63 µm) 6 45 96 16

 OC (%)  < 0.1 1.9 5.7 57

Kenya farms val. set (n = 30)

 Clay (< 2 µm) 9 28 48 5

 Sand (> 63 µm) 36 56 77 2

 OC (%) 0.6 1.4 2 3
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Particle size was calculated on a volume basis using the Mie theory with the proprietary software (Mie theory 
takes into account light transmission through the particle and yields a better prediction of high-angle scattering 
by small particles). A mean of the 4 loops of each replicate, and then of the 2 replicates was calculated. Texture 
was classed as: clay < 8 µm, silt 8–63 µm, sand > 63–2000 µm. This higher clay threshold compared to that of the 
sieve-pipette technique was used because it has been reported previously to give an improved estimate of clay 
with the  LDA5,11. Note that two samples, one with high clay (58%) and one with high OC (33%) could not be 
analysed with the LDA because they had obscuration outside of the set threshold when added to the water bath.

Texture analysis using mid‑infrared (MIRS). Of each of the soil samples, two replicate samples of 
approximately 0.5 g each of ground soil, which were both pre-treated and not pre-treated for OC removal, were 
scanned. Reference samples of an in-house standard soil, and blanks, were measured in each run for quality 
control. Analysis was conducted with a TENSOR II benchtop FT-IR (Fourier-Transform Infrared) spectrom-
eter (Bruker, Berlin, Germany). This has a spectral range of 8000–340 cm−1, a KBr broadband beam-splitter 
and window, and an MCT (mercury cadmium telluride) mid-band detector cooled by liquid nitrogen. Diffuse 
Reflectance Infrared Fourier Transform (DRIFT) spectra were collected with a diffuse reflectance accessory. A 
background spectrum was taken with a gold-plated reference cap. The high throughput screening accessory 
(HTS-XT), which scans 95 samples in one plate, was used. The spectral resolution was 4 cm−1 and scan time was 
32 s per sample. Absorbance data in the spectral range 4000–600 cm−1 were obtained.

Corrections of the raw data were made using the first derivative, with 8 smoothing points using the Savit-
sky–Golay algorithm. The scattering component resembles a very broad absorbance band, and first derivative 
correction suppresses broad bands relative to sharp bands, as well as eliminating baseline shifts. However, because 
a decrease in signal-to-noise ratio can result from first derivative correction, smoothing with the Savitzky–Golay 
polynomial technique is used to counteract this. Data was also corrected using the z-score: z = (x − μ)/σ. A com-
parison of the data correction methods showed that the first derivative as compared to the z-score gave slightly 
better performance, so first derivate corrected data was used throughout.  CO2 peaks at 2361 and 2339 cm−1 were 
removed from the data. An average of every 10 wavenumbers was calculated from the data, which reduces the 
effects of high collinearity in multi-variate analysis, resulting in 236 wavenumbers (latent factors) in the model.

Mid-infrared calibration models were built from the sieve-pipette data for clay and sand using PLS (partial 
least-squares) modelling, with up to 20-fold LOO (leave-one-out) cross-validation (CV). The optimal number 
of components for the calibration models were selected based on the LOO CV which gave the lowest RMSE, this 
reduces the potential for over-fitting. Assessments of model predictive performance were made with validation 
set calculations of the Pearson’s correlation coefficient  (R2, a measure of relative precision and closeness to the 
line of best fit) and intercept, RMSE (a measure of absolute accuracy and closeness to the one to one line), and 
the RPD (SD of observed values/RMSE of predicted values, which allows comparison of model performance 
across different data sets). The predictive performance was classified as: good if  R2 > 0.75 (RPD > 2), average if  R2 
0.75–0.5 (RPD 1.4-2), and poor if  R2 < 0.5 (RPD < 1.4)20. The wavenumbers with the highest coefficient explain-
ing the most variation in texture were identified. Statistical analyses and modelling with the pls  package21 were 
performed in the R environment (R Core Team, 2016).

Results
Comparison of LDA and MIRS texture measurements. Originally there were 78 soils in the European 
calibration set and 21 in the Kenyan set, but 3 and 5 high clay outliers (clay > 60%) respectively, were removed 
from the data because of adverse effects on the clay calibration (discussed further below). Furthermore, in order 
to examine the effects of OC on texture measurements, the European set was split into sub-sets with < 5% OC 
(the majority with < 3% OC, n = 57) and > 5% OC (n = 13), and the soil set with < 5% OC was further randomly 
split into a calibration set (65%, n = 36) and a validation set (35%, n = 21), and the calibration sub-set was then 
used to predict clay in the < 5% OC and > 5% OC validation sets separately. The European whole calibration set 
(n = 75) was used to predict the European independent validation sets.

The correlations between the LDA predicted values and the sieve-pipette measurements, and the MIRS pre-
dicted and the sieve-pipette measurements of clay in the European sets were, respectively;  R2 = 0.36 and 0.83 in 
the whole calibration set;  R2 = 0.65 and 0.67 in the calibration sub-set (3 components, data not shown, available 
in raw Supplementary Information, Appendix A);  R2 = 0.88 and 0.81, in the validation sub-set with < 5% OC; 
 R2 =  < 0.10 and 0.34 in the validation sub-set with > 5% OC;  R2 = 0.71 and 0.80 in the Broadbalk set, and  R2 = 0.67 
and 0.83 in the UK set. For sand, the correlations were, respectively;  R2 = 0.62 and 0.86 in the whole calibration 
set;  R2 = 0.72 and 0.67 in the calibration sub-set (3 components, data not shown, available in raw Supplementary 
Information, Appendix A);  R2 = 0.85 and 0.68 in the validation sub-set with < 5% OC;  R2 = 0.46 and 0.39 in the 
validation sub-set with > 5% OC;  R2 = 0.70 and 0.80 in the Broadbalk set, and  R2 = 0.81 and 0.90 in the UK set. 
The RPD of the LDA predictions of clay were poor ranging from 0.4–1.3, and with the MIRS were poor to good 
ranging from 0.7–2.3. The RPD of the LDA predictions of sand were poor to average ranging from 0.1–1.6, and 
with the MIRS were poor–good ranging from 0.7–2.5 (Fig. 1a).

In the Kenyan sets, the correlation between the sieve-pipette measurements and the LDA predictions, and the 
sieve-pipette measurements and MIRS predictions of clay were, respectively;  R2 = 0.74 and 0.95 in the calibra-
tion set, and  R2 = 0.70 and 0.88 in the Kenya farm validation set. For sand, the correlations were, respectively; 
 R2 = 0.84 and 0.99 in the calibration set, and  R2 = 0.92 and 0.90 in the Kenya farm validation set. The RPD of the 
LDA predictions of clay in the Kenyan sets were poor–good from 0.9 to 2.0, and with MIRS were good from 2.6 
to 4.3. The RPD of the LDA predictions of sand were average from 1.6 to 1.7, and with the MIRS were good in 
the calibration set at 11 but very poor in the validation set at < 1 (Fig. 1b).
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Figure 1.  Measured (sieve-pipette) and MIRS and LDA predicted clay and sand in (a) the European whole 
calibration set (n = 75), European validation sub-set with < 5% OC (n = 21), European validation sub-set 
with > 5% OC (n = 13), Broadbalk independent validation set (n = 46, note sand & silt) and the UK independent 
validation set (n = 25) and (b) the Kenyan calibration set (n = 16) and the Kenya farm independent validation 
set (n = 30). Showing the  R2, intercept, RMSE, RPD (standard deviation of observed values/RMSE of predicted 
values), and number of MIRS model components. Dashed line is the 1:1 line. Cal. = calibration, val. = validation. 
Note, LDA clay threshold < 8 µm.
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Therefore, in both the European and Kenyan sets, clay predictions with MIRS were mostly better than the 
values given by the LDA. However, the LDA gave good measurements of sand in general, and gave a better pre-
diction than the MIRS of sand in the Kenyan validation set. The LDA also gave better predictions than MIRS of 
both clay and sand in the European validation sub-set with < 5% OC. Furthermore, both methods gave very poor 
predictions of the high OC (> 5% OC) sub-set, and they both generally better predicted the Kenyan compared 
to the European soils.

The absolute accuracy of LDA (triangles) and MIRS (stars) values of clay compared to the sieve-pipette 
measurements (circles) were compared in all European sets. The LDA generally over-estimated all clay contents 
by on average ~ 60%, but under-estimated high clay contents by ~ 60% (with a particle size threshold of < 8 µm). 
The MIRS predictions of clay were generally very close to the sieve-pipette measurements, but with on average 
a ~ 60% over-estimate at very low clay contents and ~ 10% under-estimate at high clay content. However, both 
techniques had a much bigger under-estimate of clay of > 300% in the high clay outlier samples (those with > 60% 
clay content) (Fig. 2).

The effect of OC on clay detection in the European sets was also analysed in samples with < 3% OC (black), 
3–10% OC (blue), and > 10% OC (orange). In samples with < 3% OC content the LDA over-estimated clay content 
by on average ~ 30% and the MIRS gave very accurate predictions. In samples with 3–10% OC content the LDA 
and MIRS predictions of clay were variable- sometimes over and other times under-estimating clay content. In 
samples with > 10% OC content the LDA under estimated clay content by on average ~ 80%, whereas often the 
MIRS over estimated clay content by on average ~ 15%. Interestingly, it can also be seen that often the soils with 
higher clay content also had high OC content, and both the LDA and the MIRS gave significant under-estimations 
of clay in these soils (indicated by dashed circle) (Fig. 2).

The LDA threshold of clay particle size was < 8 µm, and not < 2 µm as in the sieve-pipette measurements, and 
with this, clay was over-estimated by ~ 60%. Therefore, LDA clay thresholds of < 2, < 3, < 4, < 5 and < 8 µm were 
compared to find the most reliable threshold in the < 3% OC set (which the LDA had predicted with the best pre-
cision). At < 2 µm the clay content was under-estimated by on average 90%  (R2 = 0.68); at < 3 µm clay content was 
under-estimated by on average 30%  (R2 = 0.74); at < 4 µm clay content was under-estimated by on average < 1% 
 (R2 = 0.76); at < 5 µm clay content was over-estimated by on average 6%  (R2 = 0.77), and at < 8 µm clay content 
was over-estimated by on average 70%  (R2 = 0.78). Therefore, the absolute accuracy of the clay prediction was 
best at the < 4 µm particle size threshold (Fig. 3).

MIRS texture analysis. As mentioned, samples with very high clay content (> 60%) were first removed 
from the European (n = 3) and Kenyan (n = 5) MIRS calibration sets, because clay content in these samples was 
significantly under-estimated by MIRS (Fig. 2), and when included they generally had an adverse effect on the 
clay prediction causing it to be over-estimated. For example, in the European calibration sub-set, the predic-
tion of clay with high clay samples included versus removed gave an RMSE of 13 and 11 respectively, and in the 
validation set with < 5% OC  R2 = 0.27 and  R2 = 0.80, respectively. In the Kenyan calibration set, predicting clay 
with high clay samples included versus removed gave an RMSE of 11 and 6 respectively, and an  R2 of 0.82 and 
0.95, respectively (data not shown, available in raw Supplementary Information, Appendix A). Corroborating 

Figure 1.  (continued)
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this finding that extremes of texture were not detected well by MIRS, it can also be seen in both the European 
and Kenyan soil sets that the regression line tilts to a flatter slope than the one to one line in both the clay and 
sand predictions; therefore small clay/sand contents are generally over-estimated and high clay/sand contents 
are generally under-estimated (Fig. 1).

MIRS texture analysis in soils with and without OC. In the European set, MIRS predictions of clay 
were only average and tended to be over-estimated in soils with higher OC (> 5% OC), and under-estimated in 
high clay soils (> 60% clay) with very high OC (> 10% OC) (Fig. 2). It was therefore of interest to remove OC 
from the soils to see if the predictions improved. In the validation sub-set with > 5% OC there was a reduction 
in the over-estimation of lower clay contents and a reduction in the under-estimation of high clay contents; the 
intercept decreased from 16 to 8, the RMSE decreased from 15 to 13, and the precision increased from  R2 = 0.34 
to  R2 = 0.58 (Fig. 4).
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Figure 2.  Clay content (%) in all samples of the European sets (including the calibration sub-set, validation 
sub-sets < and > 5% OC, independent validation sets, and high clay outliers > 60% clay, n = 144), measured by 
sieve-pipette (filled circle), MIRS (crossed) and LDA (Filled triangle, at < 8 µm particle size threshold). The sets 
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the LDA and MIRS predictions of samples with high clay and > 10% OC grouping below the sieve-pipette values.
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Figure 5a shows the raw MIRS spectra of the European whole calibration set in soils with and without 
OC. A qualitative analysis of the spectra in the soils with OC removed shows that there are no broad peaks 
at ~ 2900–2800 cm−1, and there is a reduction in peak intensity at 1115 cm−1. Figure 5b shows the coefficients 
explaining clay content in the soils with and without OC, these still correspond closely at 3697/3650/3623 < 2512 
and 1654 cm−1, except for a distinct reduction in the peak intensity at 1115 cm−1.

European and Kenyan texture spectral coefficients. In the European calibration set, the coefficients 
explaining the most variation in clay content were at spectral regions: 1113 < 605 < 3623 < 783 < 2982 < 1654 < 251
4 cm−1 (Fig. 6a), and 1349 < 1899 < 2000 < 2239 cm−1 for sand content (Fig. 6b). In the Kenyan calibration set, the 
coefficients explaining the most variation in clay were at spectral regions: 3696 < 1112 < 711 < 3145 < 3441 cm−1 
(Fig. 6a), and in sand were 1339 < 1871 cm−1 (Fig. 6b). Thus, there were overlaps but also differences between the 
European and Kenyan sets in the spectral regions explaining the most variation in clay; particularly in the peak 

Figure 4.  Clay content measured (sieve-pipette) and predicted by the MIRS calibration models with OC and 
with OC removed from the soils in the European validation subset with > 5% OC (n = 13). Showing the  R2, 
intercept, RMSE and RPD (standard deviation of observed values/RMSE of predicted values). Dashed line is the 
1:1 line.

Figure 5.  MIRS analysis of clay content in the European calibration set: (a) raw spectra and (b) raw spectral 
coefficients of component 1, in soils with OC removed (black line) and with OC (grey line).



9

Vol.:(0123456789)

Scientific Reports |           (2021) 11:16  | https://doi.org/10.1038/s41598-020-79618-y

www.nature.com/scientificreports/

intensity at 1113 cm−1, and a slight peak shift from 3623 cm−1 in the European set to 3696 cm−1 in the Kenyan set, 
and in the Kenyan set there were no peaks at 2982, 1654 and 2982 cm−1 as there were in the European spectra. 
The spectral regions predicting sand were the inverse to those of clay.

Discussion
Compared with the sieve-pipette method, the precision in detection of the clay fraction with the LDA was 
poor—average in most soil sets, but very good in the European set soils with < 5% OC (Fig. 1). Similarly poor 
correlations between LDA and conventional measurements due to clay under-estimation have been observed 
previously;  R2 of 0.742,  R2 = 0.703 and  R2 = 0.164. In terms of the absolute accuracy of LDA measurements, clay 
was over-estimated by ~ 60% in most soils and under-estimated by ~ 60% in very high clay soils, with a < 8 µm 
threshold (Fig. 2), but it was under-estimated by ~ 90% with a < 2 µm threshold (Fig. 3). However, in the present 
study when the clay threshold was set at < 4 µm in the soils with < 3% OC there was very good precision and 
accuracy (Fig. 3). This confirms previous studies which found that LDA gave an under-estimate of clay with a 
clay threshold < 2 µm 4,5,7,22,23, but disputes the proposed clay threshold of < 8 µm with LDA  analyses5,11. Taubner 
et al.6 also found an ~ 20% clay over-estimate using the < 8 µm threshold. A part of this discrepancy could be due 
to the fact that the corrective threshold is dependent on the particle size distribution just above 2 µm. If there are 
many particles in that range, the correct threshold value will be close to 2 µm, if there are few particles in that 
range the correct threshold will be higher.

An additional explanation for this discrepancy in findings on the ideal clay threshold could be related to 
the pre-treatment of samples to remove OC in the afore-mentioned LDA  studies4,5,7,22. In the present study, the 
absolute accuracy of the clay estimate with the LDA was very good for soils with < 3% OC and a < 4 µm threshold, 
even without OC removal (Fig. 3). It may be that using oxidising agents to remove OC disintegrated/destroyed 
expandable clay  minerals24, thereby actually reducing the clay content. Hydrogen peroxide is a weak acid, and 
when exposed to acids the structure of many clays is destroyed, and they are dissolved to finely dispersed amor-
phous silica or silica  oxides25. Silica is more transparent than clay, and as well as the small size this may make them 
more difficult to detect with the LDA. Conversely, the clay particles may have increased to a size above the < 2 µm 
threshold, as clay minerals are expandable, and  H2O2 and high temperature have been shown to increase the 
size of clay particles by 80–120-fold26. Both processes would necessitate a higher clay threshold to increase the 
detection of the clay proportion. Mikutta et al.27 suggest that pre-treatment with  H2O2 should be avoided for 
the determination of mineral phases. It should also be kept in mind that the sieve-pipette technique can over-
estimate the clay  proportion3,4. Likewise, Fisher et al.22 found no significant effects of OC removal on clay detec-
tion in soils which generally had < 5% OC, and the only effects were seen in podsol soils from pasture systems 
with large contents of particulate labile carbon. Beuselinck et al.8 found no significant effect of OC removal on 
clay detection. Di Stefano et al.7 found only a very minimal effect of  H2O2 treatment in soils with < 3% OC. Yang 
et al.4 even reported a significant under-estimate of clay even with OC removal. However, Vdovic et al.2 found a 
significant increase in clay detection in soils with OC removed in soils with > 5% OC content. Thus perhaps it is 

Figure 6.  MIRS calibration model component 1 raw spectral coefficients predicting (a) clay and (b) sand 
content in the European (grey line, n = 75) and Kenyan (AF, black line, n = 16) calibration soil sets.
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particulate carbon in soils with particularly high OC content which shifts the estimate with LDA to larger particle 
fractions, and only such soils require OC removal for accurate clay measurement. In summary, the results show 
that for good estimates of clay with the LDA in typical soils with < 3% OC, pre-treatment was not necessary, and 
the clay threshold needed to be increased only slightly to < 4 µm.

The LDA sand estimation was better than the clay estimate (Fig. 1), as previously  observed2–4,6,8. These studies 
indicated that the clay under-estimate was compensated in the silt proportion rather than in the sand proportion, 
and therefore the sand estimate was un-affected3,4,6,8. This is also in agreement with previous findings that the 
assumptions of sphericity made by the sieve-pipette and LDA methods are more applicable to sand  particles6–8.

With both the LDA and MIRS, the clay predictions were better for the Kenyan compared to the European 
soils (Fig. 1). This could be due to lower OC in the Kenyan sets (max 6% in all soils, Table 1), as discussed above. 
Additionally, there was a greater diversity of soil types and range in the soil properties in the European calibra-
tion set, which came from 11 different countries (Table 1). It has been observed with the LDA that separating 
by soil type e.g. in soils rich in oxides or organic matter, improves estimates, because different soil types may 
require different technical settings and data transformations such as in the refractive  index3,6,7. Likewise with 
MIRS, greater sample diversity generally leads to higher prediction errors, and restricting the calibration set to 
samples similar to the set to be predicted improves  predictions17. Predictions of soil texture with MIRS in samples 
restricted to a very small geographical range give very good  predictions13,15,18.

Mid-infrared spectroscopy is known to give texture predictions consistent with the sieve-pipette 
 technique13–18. A clear advantage of the MIRS technique is that it analyses the chemistry of soil constituents 
and is not affected by particle shape effects. The results show that MIRS predictions of clay and sand content 
were very close to the sieve-pipette measurements in this very wide range of soils and textures. But although 
the precision of texture predictions was very good, small clay/sand contents were generally over-estimated and 
high clay/sand contents were generally under-estimated compared with the sieve-pipette method (Figs. 1 and 
2), suggesting that extremes of texture content were not adequately detected by MIRS. The same trend of sand 
and clay over-estimation at low contents, and under-estimation at high contents, was observed  previously28. 
Probably as a consequence of this trend, the MIRS predictions were significantly improved with very high clay 
samples (> 60%) removed from the calibration set. These errors might also have been caused by our relatively 
small calibration set with a limited number of samples in the extremes of clay content.

There were overlaps but also differences between the European and Kenyan sets in the spectral coefficients 
explaining the variation in clay; particularly in much greater peak intensity at 1112/1113 cm−1 in the European 
soils (Fig. 6). This peak has previously been found to relate to Si–O stretching in  clays29 and the sorption of 
organic matter to the  surfaces30, discussed further below. There was also a slight peak shift from 3623 cm−1 relat-
ing to smectite and  illite18,28,31 in the European set, to 3696 cm−1 relating to kaolinite clay and Fe  oxides15,28,29 
in the Kenyan set. In the European set there were peaks at 2982–2870, 2512 and 1654 cm−1 which were not 
observed in the Kenyan set. These relate to  OM16,31,32,  carbonates16, and H–O–H bonds of water in the clay 
 lattice33, respectively. Many types of clay have strong absorbance bands in the same region as organic matter, 
and this prevents the accurate detection of these over-lapping  properties32. It is likely therefore that the peaks 
for OC and carbonates observed in the coefficients predicting clay in the European soils over-lapped with clay 
peaks, and this interfered with an accurate detection of clay. Whereas, only peaks relating to clay were observed 
in the Kenyan soils, explaining the more accurate detection of clay in these soils.

The MIRS prediction of clay in soils with OC removed improved in accuracy and precision in the soils 
with > 5% OC (Fig. 4). The coefficients explaining clay content in the soils with and without OC removed cor-
responded closely, except for a distinct reduction in peak intensity at 1113/1115 cm−1, and a much smaller reduc-
tion in peak intensity at ~ 2900–2800 cm−1 (Fig. 5). The broad peaks at ~ 2900–2800 cm−1 were identifying C–H 
bands in aliphatic compounds/OC16,31. Reeves et al.32 observed that with ashing of soils to remove OC, the region 
3000–2800 cm−1 did not alter the spectra of clay, indicating that no spectral over-lap with OC and clay occurred 
in this region, as observed here. The peak at 1113/1115 cm−1 has previously been identified as relating to Si–O 
stretching in kaolinite and montmorillonite and amorphous  silica29,30,34, and more specifically the sorption of 
organic  matter30,  humic35–37 and  fulvic38 acids on to the surfaces of these clays. This suggests that the intensity 
of the peak at 1115 cm−1 in the clay model coefficients in the soils with OC was enhanced by the OC associated 
with the clay, and with this peak no longer so predominant in the coefficients in soils with OC removed, the 
prediction improved. Interestingly, as mentioned above, this peak at 1113 cm−1 was also much less pronounced 
in the coefficients explaining clay in the Kenyan compared to the European set.

Conclusion
Clay measurements were generally much better with MIRS than the LDA, in both precision and accuracy. 
Although, the LDA estimate of sand was good. Unlike the LDA, MIRS analysis is not subject to the limitations 
imposed by the shape and density of particles, which most likely explains the improved predictions. However, the 
LDA would be a good technique in soils with typical levels of OC found in agricultural soils, as observed here 
in the sample sub-set with < 5% OC content. Accuracy in prediction of clay with the LDA was best with a clay 
threshold of < 4 rather than < 8 µm. The predictions of clay with both the LDA and MIRS were poor in soils 
with higher OC, in the case of the MIRS this was caused by interference between overlapping peaks for OC and 
mineral constituents. With both the LDA and MIRS, separating soils into sets with very different OC and clay 
contents would improve predictions; enabling different refractive index settings to be used with the LDA, and 
separate calibrations to be made with the MIRS. It is concluded that both techniques could be used for cheap, 
fast and reliable estimates of soil texture in typical agricultural soils with < 5% OC and < 60% clay content.
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