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Lack of the plant signalling component SGT1b enhances 
disease resistance to Fusarium culmorum in Arabidopsis 
buds and flowers
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Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, AL5 
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Summary

• Fusarium culmorum causes ear blight disease on cereal crops resulting in consid-
erable losses to grain yield, quality and safety. This fungus can also infect Arabidopsis
floral tissues. In this study, the Arabidopsis floral infection model was used to assess
the impact of five defence mutants on disease.
• Fusarium culmorum was spray inoculated onto the floral tissues of the mutants
eds1, lms1, rar1, sgt1a and sgt1b involved in basal and resistance gene-mediated
defence to pathogens. Floral disease development was assessed quantitatively.
• Only the sgt1b mutant exhibited a significantly different interaction phenotype
compared with wild-type plants. The buds and flowers were more resistant to infection
and developed milder symptoms, but had wild-type levels of deoxynivalenol (DON)
mycotoxin. Microscopic studies indicated that to cause disease, F. culmorum
requires plant cells in the invaded tissues to be competent to activate both a cell
death response and a sustained oxidative burst. The sgt1a mutant exhibited a weak
trend towards greater disease resistance in the new silique tissues.
• This study highlights that the SGT1-mediated signalling cascade(s), which had
previously only been demonstrated to be required for Arabidopsis resistance
against biotrophic pathogens, is causally involved in F. culmorum disease symptom
development.
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Introduction

The ascomycete fungi Fusarium culmorum and Fusarium
graminearum (teleomorph Gibberella zeae) cause ear blight
disease, which is a global problem on wheat, maize, barley and
rye, reducing grain yield, quality and safety. This disease is also
referred to as head blight or head scab (Parry et al., 1995;
Goswami & Kistler, 2004). Fusarium species synthesize various
mycotoxins in planta, including the B-type sesquiterpenoid
epoxide trichothecenes, deoxynivalenol (DON), 3-acetyl DON,
15-acetyl DON and nivalenol, which are of particular concern
to human and animal health (Hohn et al., 1998). In wheat,
resistance to Fusarium is species nonspecific and no race
structure within a single Fusarium species has been shown to
exist (Bai & Shaner, 2004). Several types of host resistance
have been defined, the main ones experimentally verified are
Type I to primary infection and Type II to subsequent
colonization after infection (Mesterházy, 1995). Currently,

the most useable forms of resistance are polygenically inherited
and several major quantitative trait loci (QTL) have been
defined. The 3BS QTL contributes to the Type II resistance
and detoxification of the DON mycotoxin (Waldron et al.,
1999; Lemmens et al., 2005). This QTL has recently been
Mendelized and is now referred to as the Fhb1 resistance locus
(Cuthbert et al., 2006). Although the genetic basis of resistance
has been established, the molecular basis of resistance to
Fusarium ear blight in cereals remains poorly understood.

In plant defence, many functional plant resistance (R)-genes
have been identified and cloned as well as components of the
downstream defence signalling network underlying R-protein,
basal and nonhost resistance and those of importance to the
induction of systemic responses (Hammond-Kosack & Parker,
2003; Jones & Dangl, 2006; Hammond-Kosack & Kanyuka,
2007). Key defence signalling components include RAR1
(required for Mla12 resistance) and SGT1 (suppressor of G2
allele of skp1). These proteins are involved in triggering various
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responses including production of reactive oxygen species
(ROS), localized programmed plant cell death (the hypersen-
sitive response (HR)) and the accumulation of salicylic acid
(SA) and antimicrobial pathogenesis-related (PR) proteins
(Hammond-Kosack & Parker, 2003). RAR1 and SGT1 are
required for the function of many R-proteins in both mono-
cotyledonous and dicotyledonous plants (Azevedo et al., 2002;
Liu et al., 2002; Muskett et al., 2002; Tor et al., 2002; Tornero
et al., 2002; Shirasu & Schulze-Lefert, 2003). They have also
been implicated in basal and nonhost resistance (Peart et al.,
2002; Ham et al., 2007; Noel et al., 2007). In Arabidopsis
there are two SGT1 gene homologues, coding for the SGT1a
and SGT1b proteins which exhibit 87% homology (Austin
et al., 2002). SGT1b has been shown to have a role in defence
(Azevedo et al., 2006). Heat shock protein 90 (HSP90) is able
to interact with SGT1 and RAR1 in barley and tobacco as
well as SGT1a, SGT1b and RAR1 in Arabidopsis to regulate
R-protein stability (Hubert et al., 2003; Takahashi et al.,
2003; Liu et al., 2004). Upstream of the SGT1/RAR1/
HSP90 complex is the EDS1 (enhanced disease susceptibility 1)
protein which has some homology to lipases. In Arabidopsis,
EDS1 is required for the function of several R-proteins (Aarts
et al., 1998), basal resistance to virulent isolates of several
pathogens (Parker et al., 1996; Aarts et al., 1998; Xiao et al.,
2005) and nonhost resistance to two biotrophic pathogens of
Brassica oleracea (Parker et al., 1996).

Plant pathogens are generally classified as biotrophs, which
derive nutrients from living host tissues, necrotrophs, which
derive nutrients from dead or dying cells, and hemibiotrophs,
which are initially in a biotrophic interaction that subsequently
becomes partially or completely necrotrophic (Agrios, 1997).
Host defence against biotrophic pathogens generally requires
R-proteins which rapidly trigger programmed cell death (PCD)
and activate the defence responses associated with the SA and
the NPR1 (nonexpresser of pathogenesis protein 1) signalling
pathway. Activation of the latter leads to the expression of
numerous defence-related genes, for example PR-1. By
contrast, necrotrophic pathogens benefit from host cell death,
and so are not limited by cell death and SA-dependent
defences. For effective defence against necrotrophs, functional
jasmonic acid ( JA) and ethylene (ET) signalling pathways are
required and result in the expression of a different suite of
defence genes, for example PDF1.2 (Thomma et al., 1998;
Hammond-Kosack & Parker, 2003; Glazebrook, 2005).

The floral tissues of Arabidopsis are susceptible to infection
by F. culmorum and F. graminearum (Urban et al., 2002;
Cuzick et al., 2008a,b). Following spore germination, a mass
of superficially colonizing hyphae develop, and then the
mycelium engulfs the entire floral tissue. Subsequently, tissue
penetration and colonization occurs which causes the formation
of a grey/brown necrotic area initially on petals and sepals and
eventually constriction of pedicel and upper stem tissues.
Deoxynivalenol mycotoxin production occurs in the infected
floral tissues. Parallel microscopic studies revealed that the

Fusarium hyphae initially advance through living host tissue
and cell death was only evident well behind the hyphal front.
Floral spray inoculation of 236 Arabidopsis ecotypes failed to
identify single genotypes exhibiting either enhanced resistance
or susceptibility to either Fusarium species (Urban et al., 2002).
More recent studies have revealed that full disease can occur
in the absence of fungal DON mycotoxin production (Cuzick
et al., 2008b). Using the floral inoculation protocol devised
by Urban et al., (2002), it was revealed that floral tissues
of the esa1 mutant were significantly more susceptible to
F. culmorum than the corresponding wild-type ecotype Col-0
(Van Hemelrijck et al., 2006). Previously, the esa1 mutant was
demonstrated to exhibit enhanced susceptibility to Alternaria
brassicicola and other necrotrophic fungal pathogens (Tierens
et al., 2002). The ESA1 gene has not yet been isolated. By
contrast, over-expression of the Arabidopsis NPR1 gene in
wheat led to a reduction of F. graminearum disease levels in the
floral spikelets (Makandar et al., 2006). In a recent study
exploring mutations in the SA, JA and ET defence signalling
pathways, we reported that the npr1 mutant but not the sid2
mutant led to an increase in F. culmorum floral disease com-
pared with the Col-0 wild-type plants (Cuzick et al., 2008a).
This increased disease susceptibility also resulted in higher
levels of DON production. However, the effects of mutations
in the other two defence signalling pathways were found to be
either absent ( JA/ET combined), absent/minimal (ET) or
inconclusive (JA). In the Arabidopsis root–Fusarium oxysporum
pathosystem, SA has been shown to be required to activate
both systemic acquired resistance as well as local root resistance
to this fungus. Also the SA, ET and JA signalling pathways
have been demonstrated to interact in a positive way to activate
resistance to this necrotrophic vascular invading pathogen.
While abscisic acid (ABA) signalling is thought to function in
plant resistance to F. oxysporum, its precise role is currently
unclear (for review see Berrocal-Lobo & Molina, 2008).

To further understand the defence signalling pathways
involved in Fusarium floral disease of Arabidopsis, single gene
mutants of key defence signalling genes typically required for
R-protein and basal resistance to biotrophs were assessed for
their effect on the interaction outcome because the advancing
F. culmorum hyphae grow through living plant tissue. Also,
little is known about the role of defence signalling proteins in
floral tissues, because they have generally been identified within
pathosystems involving leaves, roots or the stem base. In this
study, Arabidopsis defence mutants in the Landsberg erecta
(Ler-0) and Wassilewskija (Ws-2) genetic backgrounds were
investigated. The gene mutants investigated were eds1, rar1,
sgt1a and sgt1b, which are known to be critical for defence
against biotrophic pathogens. The infection biology of
F. culmorum in floral tissue is similar to the initial leaf infection
phase by the hemibiotrophic fungus Leptosphaeria maculans
which infects Brassica crops (Hammond & Lewis, 1986).
Therefore, the floral defence of the Arabidopsis lms1 mutant,
which causes enhanced L. maculans susceptibility in leaves,
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was also assessed (Bohman et al., 2004). This study has revealed
that the removal of the function of the plant defence-signalling
component SGT1b, results in enhanced floral disease resistance
to F. culmorum, although DON mycotoxin levels remain similar
to wild-type. The eds1, lms1 and rar1 mutants tested had no
discernable effect on the interaction outcome.

Materials and Methods

Arabidopsis germplasm, Fusarium culmorum, growth 
and maintenance

Arabidopsis seed stocks Ler-eds1-2, Ler-sgt1b-1 and Ler-rar1-10
were a gift from Jane Parker (Max Planck Institute for Plant
Breeding, Germany), Ws-sgt1a-1 seed was provided by Ken
Shirasu (Riken, Japan) and the Ler-lms1-1 seed was obtained
from Christina Dixelius (SLU, Sweden). Ws-2 and Ler-0 were
obtained from the Nottingham Arabidopsis Stock Centre, UK.
Plants were grown as described previously (Cuzick et al., 2008b).

The F. culmorum strain 98/11, was propagated and prepared for
plant inoculations as described previously (Cuzick et al., 2008a).

Fusarium–Arabidopsis floral inoculation and scoring

Floral spray inoculation of plants was done as described
previously (Cuzick et al., 2008a,b). Each plant was sprayed
with approx. 500 000 conidia (0.5 ml of a 1 × 106 conidia ml−1

suspension in water). The numerical Fusarium–Arabidopsis
disease individual floral component (FAD-I value) scoring
system was used to assess macroscopic disease symptoms at 8 d
post inoculation (dpi). Apically wounded silique inoculations
were done as described previously (Cuzick et al., 2008b), by
placing a 2 µl droplet of inoculum consisting of approx. 2000
conidia for strain 98/11 on the wounded tip of each green
silique (c. 10 mm length).

Trichothecene mycotoxin analysis

The commercially available Ridascreen Fast DON enzyme-
linked immunosorbent assay (ELISA) kit (R-Biopharm AG,
Darmstadt, Germany) was used to quantify DON mycotoxin
as described previously (Cuzick et al., 2008a). In each
experiment, floral tissue from six plants was pooled and each
experiment was done in triplicate.

Microscopy

Light, UV and scanning electron microscopy were done as
described previously (Cuzick et al., 2008a,b).

Histochemical stains

Floral tissues were stained with lactophenol–trypan blue to
identify regions of cell death (Koch & Slusarenko, 1990).

Samples were harvested into the stain and boiled for 1 min.
The chlorophyll was then cleared using 2.5 g ml−1 chloral
hydrate solution, and finally the tissues were mounted in 70%
(v : v) glycerol for light microscopy.

Staining for hydrogen peroxide was done by immersing tissue
in an aqueous solution of 3,3′-diaminobenzidine (DAB)
(1 mg ml−1 at pH 3.8) for 24 h (Thordal-Christensen et al.,
1997). Staining for superoxide was done by immersing tissue
in a nitroblue tetrazolium (NBT) solution (1 mg ml−1 dissolved
in 10 mm potassium phosphate buffer at pH 7.8 with 1 mm
sodium azide) for 1 h (Jabs et al., 1996). Stained tissues were
subsequently cleared of chlorophyll using 3 : 1 (v : v) ethanol–
dichloromethane, 0.15% (w : v) trichloroacetic acid and stored
in 70% (v : v) glycerol before examination by light micro-
scopy. Water-only sprayed or F. culmorum conidia inoculated
floral tissues were stained at 2, 4 and 7 dpi. Noninoculated
floral and leaf tissues were stained after 5 wk of plant growth.

Statistical analyses of Fusarium–Arabidopsis data

A total of 14 independent experiments, consisting of randomized
block designs, were done to compare F. culmorum disease
severities between each Arabidopsis mutant and the corre-
sponding wild-type genotype (either Ler-0 or Ws-2). Each
genotype was tested in at least three independent experiments.
Statistical analysis was done separately for each genetic
background (Ler-0 or Ws-2) using genstat 8.0 (Payne et al.,
2005) as described previously (Cuzick et al., 2008a).

Results

Relative transcript abundance in floral tissue for genes 
implicated in basal and R-protein mediated resistance

In most studies, Arabidopsis defence gene activation has been
studied in root, stem base or leaf tissue, as part of the local or
systemic response to pathogen attack. To determine whether
the same defence signalling genes were also expressed in floral
tissues the Gene Atlas tool from GENEVESTIGATOR
(Zimmermann et al., 2004) was queried for tissue specific
expression of EDS1, HSP90.1, HSP90.2, RAR1, SGT1a and
SGT1b (see the Supporting Information, Fig. S1 and Text S1).
The LMS1 gene has not yet been isolated. This
GENEVESTIGATOR analyses revealed that all the defence
signalling genes investigated within this study were expressed
in some Arabidopsis floral tissues.

Inoculation of five different defence mutants revealed 
that sgt1b buds and flowers were more resistant to 
F. culmorum infection

Arabidopsis defence signalling mutants previously implicated
in basal and R-protein mediated resistance were spray
inoculated with F. culmorum strain 98/11. Floral disease levels
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were assessed to determine whether disease levels were altered
between the single gene mutant eds1, lms1, rar1, sgt1b and
the wild-type Ler-0 or sgt1a and the wild-type Ws-2. The
assessments for disease phenotypes were divided into two
floral subcomponents: (1) unopened and opened flowers and
(2) new siliques that were fully open flowers at inoculation.
Although the entire plant received inoculum, all the genotypes
tested in the present study again only permitted disease
development in the floral tissue (Urban et al., 2002). No
obvious differences were seen in plant heights, general stature
or floral morphology between any of the mutants and their

corresponding wild-types before inoculation (data not shown).
The infection phenotypes of the four mutations in the Ler-0
background are reported first and the sgt1a mutation which is
in the Ws-2 background is reported last.

Both the flowers and the new siliques of the eds1, lms1 and
rar1 Ler-0 background mutants all had wild-type levels of
disease. However, the flowers from the sgt1b mutant plants
had significantly less disease than the Ler-0 wild-type flowers
whereas the sgt1b siliques had an equivalent level of disease
(Table 1, Fig. 1). In the infected floral tissues the DON levels
were indistinguishable between the Ler-0 and the sgt1b

Fig. 1 The sgt1b flowers exhibit less disease 
caused by Fusarium culmorum than wild-type 
Ler-0. (a,b) Wild-type (a) and sgt1b mutant 
(b) Arabidopsis floral tissues spray-inoculated 
with F. culmorum conidia and photographed 
at 7 d post inoculation (dpi). Wild-type floral 
tissues were covered with aerial mycelium; 
most buds were drying out and had failed to 
open. Lower levels of aerial mycelium were 
visible on sgt1b floral tissues; buds generally 
remained green (white arrow) and flowers 
continued to open (yellow arrows). Bar, 
1 mm. (c–f) Close-up of wild-type (c,e) and 
sgt1b mutant (d,f) flower buds viewed under 
light (c,d) or UV light (e,f) at 7 dpi. Under UV 
light the chlorophyll present in the healthy 
green tissues autofluoresced red, whereas 
blue-green autofluorescence was visible from 
the colonized tissues. More blue-green 
autofluorescent regions were present on the 
heavily diseased wild-type Ler-0 plants (e) 
than the sgt1b mutant plants (f). Bar, 0.5 mm. 
(g,h) Trypan blue stained representative buds 
taken from either (c) or (d). Patches of dead 
cells (black arrow) and fungal hyphae (yellow 
arrow) were visible on the heavily colonised 
wild-type buds (g). Bar, 0.2 mm.
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mutant genotypes (Table 2). In addition, using a previously
published root DON sensitivity bioassay (Masuda et al., 2007),
no differences were found between sgt1b and wild-type seedlings
(see Fig. S2, Text S1).

Aerial mycelium was frequently visible on the flowers of
both Ler-0 and sgt1b. With Ler-0 this was associated with the
drying of all the floral subcomponents, and by 8 dpi most of
the floral tissue appeared grey and sunken (Fig. 1a,c). Within
2–3 d constriction of the Ler-0 main stem was observed. By

contrast, the inoculated sgt1b floral tissue contained fully open
flowers, with healthy petals and anthers as well as numerous
unopened healthy green buds at different developmental stages.
Using the previously devised floral nomenclature (Smyth
et al., 1990) we considered younger buds to be at stage 9,
medium buds at stage 10 and older buds to be at stage 11–12.
Only towards the periphery of the sgt1b floral apex were a few
grey and dried-out flowers with light brown petals visible
(Fig. 1b,d). When viewed under UV light, healthy chlorophyll-
containing tissues autofluoresce red. In the diseased wild-type
buds this red autofluorescence was reduced and replaced
by blue-green autofluorescence (Fig. 1e). More blue-green
autofluorescence was present on the heavily diseased wild-type
Ler-0 plants than the sgt1b mutant plants (Fig. 1e,f ). Buds
were stained with trypan blue to visualize nonviable cells
(Koch & Slusarenko, 1990). The heavily diseased Ler-0 buds
stained an intense blue, with patches of cell death visible on
the sepals and an intensely stained region at the base of the
bud adjacent to the pedicel (Fig. 1g). The extensive surface
hyphae and the pollen within the anthers also stained blue. By
contrast the lightly diseased sgt1b mutant buds exhibited very
low levels of trypan blue staining except at the apical tip of the
sepals adjacent to the tip of the nonprotruding stigma
(Fig. 1h). This latter staining pattern was also found in the
wild-type (Fig. 1g).

Scanning electron microscopy imaging of wild-type Ler-0
and sgt1b mutant buds inoculated with only water revealed
that the outer surface of the sepals had long turgid epidermal
cells interspersed with smaller epidermal cells and stomata
(Fig. 2a,b). By contrast, analysis of the floral tissues at 7 dpi

Table 2 Deoxynivalenol (DON) mycotoxin analysis of wild-type 
Ler-0 (wt) or sgt1b mutant Arabidopsis floral tissue spray inoculated 
with either Fusarium culmorum strain 98/11 or water

Treatment

DON production (p.p.m.)a

wt sgt1b

F. culmorum inoculatedb 2.9 ± 1.9c 3.0 ± 1.6
Water only < 0.2d < 0.2

aDON levels quantified by competitive enzyme-linked 
immunosorbent assay (ELISA) and each p.p.m. value is based on plant 
dry weight.
bConidial spray inoculation, the associated disease scores are given in 
Table 1. Combined floral and upper stem tissues were harvested at 
8 d post-inoculation.
Six plants were pooled, freeze dried, ground and analysed for the 
presence of DON.
cMean DON value ± standard deviation obtained from three 
experiments.
dDON value below the detection limit of 0.2 p.p.m.

Table 1 Fusarium culmorum disease formation on the floral tissue of various defence signalling mutants and the corresponding wild-type (wt) 
ecotype

Arabidopsis genotype

Tissue type Experimental design

Flowers New siliques Replication

Meana SEMb P-valuec Meana SEM P-value Plantsd Experimentse

Ler-0 (wt)f 3.04 0.28 nag 1.70 0.12 na 135 11
eds1 3.55 0.34 nsh 1.84 0.23 ns 51 4
lms1 2.87 0.39 ns 1.30 0.27 ns 36 3
rar1 3.41 0.30 ns 1.41 0.17 ns 75 7
sgt1b 2.07 0.31 < 0.0001 1.28 0.17 ns 76 7
Ws-2 (wt)f 0.28 0.13 na 1.89 0.20 na 60 3
sgt1a 0.27 0.13 ns 1.30 0.21 0.05 59 3

aEstimated mean disease values determined using mixed model analysis for flowers and new siliques.
bThe standard error of the mean.
cRepresents the disease comparison between the Arabidopsis mutant genotype and the wild-type (wt). A P-value < 0.05 is considered to be 
statistically significant.
dTotal number of plants inoculated per Arabidopsis genotype.
eNumber of experiments in which the Arabidopsis mutant genotype was tested against the corresponding wild-type background.
fDegrees of freedom for Ler-0 are 116 and for Ws-2 are 34.
gNot applicable.
hNot significant.
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revealed that the older buds of the wild-type plants were
covered with F. culmorum mycelium and extensive cell collapse
was visible (Fig. 2c). The younger wild-type buds had less
mycelium and the long epidermal cells had collapsed. No

conidia formation was seen in the mycelium covering the
buds of either genotype (Fig. 2e and data not shown). The
older buds of the sgt1b mutant had less mycelium and most
cells remained turgid, with the occasional partially collapsing

Fig. 2 Scanning electron micrographs of mock and Fusarium culmorum spray-inoculated wild-type and sgt1b mutant Arabidopsis floral tissue. 
(a,b) Buds examined from mock-inoculated wild-type (a) and sgt1b mutant (b) Arabidopsis plants. The outer surface of the sepals of both 
genotypes contain long epidermal cells, stomata and a fringe of smaller cells. Bar, 200 µm. (c,d) Representative images of buds examined from 
wild-type (c) and sgt1b mutant (d) Arabidopsis plants 7 d after inoculation with F. culmorum conidia. The older wild-type buds were engulfed 
in mycelium and the epidermal cell layer on the sepals had collapsed. By contrast the epidermal cells on the abaxial and adaxial sepals of the 
sgt1b mutant buds were still turgid even while in contact with the relatively lower levels of mycelium. Bar, 200 µm. (e,f) Close-up images from 
(c and d, respectively). The sepals of the inoculated wild-type buds revealed extensive epidermal cell collapse, particularly the large epidermal 
cells. While in the sgt1b mutant, hyphae were present in contact with the surface of the large epidermal cells, but minimal or no host cell collapse 
was visible at this time. No conidia formation was visible on either genotype. Bar, 50 µm.
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long epidermal cell (Fig. 2d). The medium-aged and younger
buds had a small quantity of mycelium present compared
with the wild-type; however, the epidermal cells remained
turgid even when directly underneath the surface hyphae
(Fig. 2f ).

Host cell death occurred in regions of pathogen colonization
as seen in images in Figs 1 and 2. The SGT1 protein was
recently shown to be required for the activation of a PCD
mechanism in tobacco leaves by the necrotrophic pathogen
Botrytis cinerea. This resulted in the release of nutrients
required for in planta B. cinerea growth (El Oirdi & Bouarab,
2007). Also, direct injection of DON mycotoxin into the
apoplastic spaces of healthy wheat leaves has recently been
shown to induce cell death within 24 h accompanied by DNA
laddering, which is a hallmark of PCD (Desmond et al.,
2008). To determine whether a similar PCD mechanism was
responsible for the extensive cell death occurring in the Fusarium–
Arabidopsis floral pathosystem, detected by the heightened
trypan blue stain, DNA was extracted from a time-course of
F. culmorum-infected wild-type Ler-0 and sgt1b mutant plants.
However, over the selected time-course (days 0, 2, 5 and 8)
there was no evidence for the DNA laddering that is a hallmark
of PCD in other host–pathogen interactions (data not shown).
No cell death was seen in the floral tissues of healthy wild-type
or sgt1b mutant plants, when viewed under UV light. There-
fore, the sgt1b mutation alone does not result in spontaneous
cell death in floral tissue (Fig. S3).

To explore in greater detail the differential response of the
bud/flower and silique tissues of the sgt1b mutant to F. culmorum
infection, single wounded green siliques (c. 10 mm long) were
droplet-inoculated with conidia (Cuzick et al., 2008b). Fusarium
culmorum was able to colonize the entire silique resulting in
dark-brown shrivelled seed engulfed with mycelium by 6 dpi
and disease symptoms were indistinguishable from the wild-type
Ler-0 (data not shown). The silique surface became brown
and a blue-green autofluorescent compound was visible where
the infected tissue was necrotic. The colour of the autofluo-
rescence was similar to that previously detected on the spray
inoculated wild-type buds (Fig. S4). By 10 dpi mycelial colo-
nization from the pedicel base into the main stem tissue was
evident in both sgt1b and wild-type Ler-0 plants (Fig. 3). This

additional data indicates that the effect of the sgt1b mutation
on limiting F. culmorum disease development is restricted to
the buds and flowers. Biochemical experiments have indicated
that this autofluorescent compound is a novel phenolic which
appears to be of host origin (J. L. Ward et al., unpublished).

In the Ws-2 background, there were no significant differ-
ences in the disease levels occurring on sgt1a and the wild-type
flowers. A trend towards less disease was observed in the sgt1a
newly formed siliques, although this was not as obvious as the
effect of the sgt1b mutation in the Ler-0 flowers. Overall there
was less disease in the Ws-2 wild-type flowers than the Ler-0
wild-type flowers. This may be caused by differences in
inflorescence morphology; Ler-0 had shorter and more tightly
arranged inflorescences than Ws-2. Compact floral architecture
in Ler-0 was previously reported to enhance Fusarium disease
levels (Urban et al., 2002).

The sgt1b mutation does not affect F. culmorum-
induced accumulation of reactive oxygen species

The Arabidopsis sgt1b mutant has previously been shown to
have a compromised oxidative burst upon pathogen infection
of leaves (Austin et al., 2002; Tor et al., 2002). Therefore,
the tissue specific gene expression of genes involved in
ROS generation and scavenging was extracted from
GENEVESTIGATOR. This analysis confirmed that several
of the genes encoding ROS generating or scavenging capabilities
are highly expressed in floral tissue (Fig. S5, Text S1).

The floral tissue of the 5-wk-old Ler-0 and sgt1b Arabidopsis
plants just before inoculation was consistently found to contain
high levels of superoxide and hydrogen peroxide in specific
regions. The floral subcomponents, which had high ROS levels
included the stigma, sepals and the petals/sepals abscission
zone. By contrast, leaves taken from 5-wk-old noninoculated
Ler-0 and sgt1b plants that had grown in soil under nonsterile
conditions and were ready for floral spray inoculation had low
ROS levels except for occasional patches of staining for both
superoxide and hydrogen peroxide towards the leaf periphery
(Fig. S6). These patches of ROS indicate that at the time of
inoculation both genotypes had already responded similarly
to the standard growth room conditions.

Fig. 3 Disease progression into wild-type 
stem tissue 13 d post-inoculation of Fusarium 
culmorum conidia onto the cut surfaces of 
apically wounded Arabidopsis siliques. 
Viewed under light (a) or UV light (b). Similar 
results were evident with the sgt1b mutant 
(data not shown). The chemistry responsible 
for the blue-green autofluorescence (b) is not 
known. Bar, 0.2 mm.
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To determine whether an alteration in the reactive oxygen
species levels occurred post-F. culmorum inoculation, tissues
were stained at various time-points for ROS. Greater intensities
of ROS staining were observed in inoculated floral tissues
than in the water-only sprayed controls from 4 d onwards,
particularly in the green sepals, suggesting that a host oxidative
burst had occurred in response to the pathogen infection.
However, there were no obvious differences between the levels
of ROS staining in the wild-type Ler-0 and the sgt1b mutant
post-inoculation. When the initial inoculations were done
using a 100 times lower initial spore concentration, although
the overall intensity of ROS staining was considerably lower,
no differences in ROS staining between the two genotypes
were observed. It was intriguing to observe that although a
differential response was seen between levels of blue-green
autofluorescence in inoculated wild-type Ler-0 and sgt1b
mutant buds at 7 dpi (Fig. 1e,f ), this was not reflected with
either of the ROS stains.

Discussion

To gain further insights into the globally important Fusarium-
wheat interaction, the Fusarium–Arabidopsis floral pathosystem
(Urban et al., 2002) was used to assess a suite of Arabidopsis
defence signalling mutants involved in basal and R protein-
mediated defence. The defensive role of these important gene
mutations has not previously been explored in the floral tissue
of any species. This study has identified that the buds and
flowers of the sgt1b mutant were significantly more resistant
to infection and disease formation. This is the first time that a
sgt1b mutation has been reported to result in enhanced
pathogen resistance in Arabidopsis. The siliques of the sgt1a
mutant also revealed a trend towards increased disease
resistance. The infected sgt1b buds exhibited reduced epidermal
cell death, reduced blue-green autofluorescence and reduced
dehydration compared with the wild-type buds, but the
fusarium DON mycotoxin accumulated to similar concen-
trations in both infected sgt1b and wild-type Ler-0 floral
tissues. By comparison mutations in eds1, rar1 and lms1 did
not alter the interaction outcome.

In Arabidopsis, the SGT1a and SGT1b genes are function-
ally redundant in the early stages of plant development, but
the double mutant is lethal (Azevedo et al., 2006). Although
SGT1b has been documented to have a greater role in resistance
than SGT1a, both were induced upon pathogen inoculation
of leaves and were able to confer resistance once a certain protein
level was attained (Azevedo et al., 2006). Historically, SGT1b
has been reported to be required for R-protein mediated
defence in leaves of Arabidopsis to many pathogens including
the oomycete Hyaloperonospora parasitica (Tor et al., 2002)
and the powdery mildew fungus (Xiao et al., 2005). Recently
SGT1b has also been implicated in basal resistance to
H. parasitica in Arabidopsis (Noel et al., 2007). The Arabidopsis
SGT1a gene but not the SGT1b gene is required for club root

resistance in roots mediated by the RPB1 gene (resistance to
Plasmodiophora brassicae) (J. Siemens, pers. comm.). By
contrast, in this study, we report a role in disease susceptibility
for SGT1b in bud and flower tissues, but not siliques tissues,
and a trend for a similar role for SGT1a in silique tissues but
not bud or flower tissues. This may be another example of
tissue-specific roles of the two SGT1 proteins in Arabidopsis,
although caution must be taken in interpretation of these
results because the single gene mutations were only available
in different ecotypes.

The F. culmorum-infected sgt1b floral tissue, although
supporting less disease and less host cell death, had DON
levels equivalent to those present in the heavily diseased
Ler-0 wild-type floral tissue. This would suggest that per unit
biomass the fungus produced more DON in the sgt1b mutant
interaction. We also conclude that normal DON accumulation
can occur in the absence of widespread plant cell death and
that host cell death per se is not the trigger for sustained DON
mycotoxin accumulation. In contrast to this discovery, we
recently demonstrated that the npr1 and eds11 mutations in
the Col-0 background supported both greater levels of
F. culmorum disease and DON accumulation than the Col-0
wild-type floral tissue. Although the different ecotype back-
grounds may be responsible for these contrasting results, it is
more likely that these specific mutations have a direct or indirect
effect on altering host–pathogen signalling pathways involved
in inducing and/or suppressing DON production and/or
degradation. Interestingly, F. graminearum strains engineered
by deletion of the Tri5 gene to be non-DON producers retain
the ability to cause full disease symptoms on Arabidopsis floral
disease (Cuzick et al., 2008b). The DON requirement for
F. culmorum to cause disease on Arabidopsis is not known. In
this study, it is unclear whether DON is being made in the
surface aerial mycelium or in the penetrating hyphae in close
contact with the plant tissue. The use of a Fusarium reporter
strain harbouring the TRI5 promoter fused to a suitable
reporter protein to monitor the onset of mycotoxin production
(Jansen et al., 2005) may help to further explore these inter-
esting observations.

Transient reduction in expression of the EDS1 gene or the
single SGT1 gene in tobacco leaves by virus-induced gene
silencing (VIGS), resulted in reduced necrosis and enhanced
resistance to the necrotrophic pathogen B. cinerea (El Oirdi &
Bouarab, 2007). The authors concluded that activation of
these signalling genes triggered an HR-form of PCD that
enhanced B. cinerea colonization, whereas in the VIGS plants
the HR was not triggered and the plants exhibited significantly
reduced levels of disease. To further support their model, El
Oirdi & Bouarab (2007) generated stable transgenic tobacco
plants expressing the baculovirus anti-apoptotic protein p35 to
compromise the establishment of an HR. These transgenic
plants were also more resistant to B. cinerea than wild-type
plants. Although we report here that the sgt1b mutation
causes increased resistance to a floral invading pathogen, to
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date we have not found evidence for a PCD mechanism in the
Fusarium–Arabidopsis interaction. Unlike El Oirdi and
Bouarab’s study, lack of EDS1 function did not alter the
Fusarium disease outcome. Therefore, it may be informative
to test an Arabidopsis line expressing an anti-apoptotic protein
and evaluate the outcome on both Fusarium disease and
DON mycotoxin levels or evaluate specific cell types using a
more sensitive method to detect apoptosis such as TUNEL
(terminal deoxynucleotidyl transferase-mediated dUTP nick
end-labelling) (Gavrieli et al., 1992).

Although the plant defence signalling components RAR1
and SGT1b are able to interact and form a complex, the
requirements of each for gene-for-gene mediated resistance in
Arabidopsis to downy mildew conferred by RPP (resistance to
Peronospora parasitica) genes, has been uncoupled. Therefore,
the lack of differences in the floral disease outcome in the rar1
mutant is highly informative in dissecting the functional
requirements of the F. culmorum defence signalling pathway.

Figure 4 illustrates a comparison of the overall characteristics
of both Arabidopsis wild-type Ler-0 and sgt1b mutant floral
tissue before and post F. culmorum infection. The major
differences include minimal blue-green autofluorescence,
minimal cell death and no tissue dehydration, which collectively
contribute to reduced disease levels in the sgt1b mutant.
Curiously, no obvious differences were observed with the
ROS staining, possibly indicating that F. culmorum triggers
different signalling networks from those conferred by R protein-
mediated resistance. The latter often triggers both an oxidative

burst and cell death via SGT1. In plants two ROS-generating
mechanisms involving either plasma membrane NADPH
oxidases or cell wall peroxidases have now been well charac-
terized (Bolwell et al., 2002, Torres et al., 2002). Potentially
pertinent to this study, is the observation that Arabidopsis
leaves infiltrated with an elicitor from F. oxysporum produced
high levels of ROS following the rapid activation of an apoplastic
peroxidase (Bindschedler et al., 2006). It is plausible that in
the sgt1b mutant background, the host cells responding to the
presence of Fusarium hyphae were induced to generate ROS
by a different mechanism from that generating ROS in the
wild-type Ler-0 plants. Alternatively, the Fusarium infections
may have resulted in a reduction in the efficacy and/or the
levels of alternative oxidase enzyme in the mitochondria and
this led to elevated ROS levels arising from electron transport.
In cultured tobacco cells, this source of elevated ROS has been
demonstrated using an antisense approach (Maxwell et al.,
1999).

This report has not included gene expression studies of
F. culmorum infected or mock-control treated floral tissues in
wild-type or mutant plants because of the complexity of floral
tissues. Manual dissection of specific floral region of interest,
would have been extremely time-consuming, difficult and
resulted in severe wounding. As new techniques such as laser
capture microscopy (LCM) of plant tissues become available,
this approach may be more feasible for sampling a selection of
individual cells that can subsequently be used for gene expres-
sion studies (Ramsay et al., 2006).

Fig. 4 Summary of the characteristic features 
of healthy wild-type (WT) and sgt1b mutant 
Arabidopsis floral tissue and the responses 
induced in both genotypes following 
Fusarium culmorum infection. (a) Healthy 
water-only sprayed wild-type and sgt1b 
mutant plants both produce moderate basal 
levels of reactive oxygen species (ROS) in 
specific floral regions, but do not exhibit 
spontaneous cell death. (b) Fusarium 
culmorum infections trigger the wild-type 
flowers to undergo an oxidative burst, host 
cell death, tissue dehydration and to 
accumulate blue-green autofluorescence and 
the DON mycotoxin. Collectively, this leads to 
a high level of disease. By contrast, in the 
sgt1b mutant, infection induces the oxidative 
burst but only minimal accumulation of 
autofluorescent material, minimal cell death 
and no tissue dehydration. Collectively, this 
culminates in reduced disease levels, but DON 
mycotoxin levels remain wild-type.
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The Fusarium–Arabidopsis floral pathosystem has proved
an invaluable tool to assess the impact of single gene muta-
tions on this interaction. Similar assessments in the Fusarium–
wheat pathosystem would be far more challenging, because
the generation of stable transgenics in hexaploid wheat is still
a time-consuming process. However, identification of candi-
date genes required for defence or susceptibility in the Fusarium–
Arabidopsis floral pathosystem are ideal targets to disrupt in
wheat and assess for altered disease outcomes. The SGT1,
RAR1 and HSP90 genes have each been transiently silenced in
wheat using VIGS and resulted in reduced resistance to a
fungal rust (Scofield et al., 2005). In the future, we plan to use
VIGS to silence SGT1 in hexaploid wheat floral tissue, with
the predicted outcome of reduced levels of Fusarium ear blight
disease while retaining DON mycotoxin production. Previously,
transgenic wheat lines overexpressing the Arabidopsis NPR1
gene were found to exhibit increased type II ear resistance to
F. graminearum but DON levels were not reported (Makandar
et al., 2006). In the future a combination of VIGS and stable
transformants should yield useful functional information on
the signalling networks in wheat floral tissue and determine
whether there are further similarities and differences between
wheat and Arabidopsis.
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Additional supporting information may be found in the
online version of this article.

Fig. S1 Arabidopsis microarray analysis of the tissue-specific
expression profiles of the selected defence signalling genes
EDS1, HSP90.1, HSP90.2, RAR1, SGT1a and SGT1b.
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Fig. S2 Root inhibition of wild-type and sgt1b mutant
seedlings in the presence of DON mycotoxin.

Fig. S3 Healthy Arabidopsis wild-type Ler-0 and sgt1b
mutant floral tissues were found not to contain patches of
spontaneous cell death when viewed under UV light.

Fig. S4 Photographs of Arabidopsis wild-type Ler-0 and
sgt1b mutant buds dissected from the floral apex 7 d after
spray inoculation with water or Fusarium culmorum conidia.

Fig. S5 Arabidopsis microarray analysis of the tissue specific
expression profiles of ten respiratory burst oxidase homologue

(RBOH) genes, seven superoxide dismutases (SD), three
catalases (CAT) and nine peroxidases (PX).

Fig. S6 Healthy and Fusarium culmorum infected wild-type
Ler-0 and sgt1b mutant Arabidopsis tissues stained for different
reactive oxygen species.

Text S1 Relative transcript abundance of selected Arabidopsis
genes in floral tissue using GENEVESTIGATOR and the
DON sensitivity root bioassay.
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