Rothamsted Repository Download

A - Papers appearing in refereed journals

The publisher's version can be accessed at:

- https://dx.doi.org/10.1007/s11104-019-04144-4
- https://doi.org/10.1007/s11104-019-04144-4

The output can be accessed at: https://repository.rothamsted.ac.uk/item/84v68.

© 11 June 2019, Please contact library@rothamsted.ac.uk for copyright queries.
Plant and Soil

Phacelia (Phacelia tanacetifolia Benth.) affects soil structure differently depending on soil texture

--Manuscript Draft--

Abstract:

Aims: We studied the effects of Phacelia tanacetifolia, increasingly used as a cover-crop species in arable agricultural systems, upon soil structural properties in the context of two contrasting soil textures. We hypothesised there would be differential effects of the plants upon soil structure contingent on the texture.

Methods: A sandy-loam and a clay soil were destructured by passing through 2 mm sieves, and planted with Phacelia in a replicated pot experiment, with associated unplanted controls. X-ray Computed Tomography was used to visualise and quantify the soil pore networks in 3D.

Results: For the sandy-loam soil, there was no impact of plants upon aggregate size distribution porosity, pore connectivity, and pore surface density decreased in the presence of plants, whereas for the clay, there was a significant increase of aggregates <1,000 µm, the porosity was constant, the pore-connectivity decreased, and surface density increased in the presence of plants.

Conclusions: Plants can impact the structural genesis of soil depending on its inherent textural characteristics, leading to a differential development of pore architecture in different contexts. These results have implications both from an ecological perspective and in terms of the prescription of plants to remediate or condition soil structure in managed systems.
Your paper was sent for review, because there were inconsistencies in the manuscript, which I outline below. Unfortunately, none of the original reviewers were available. However, I ask that you take account of these additional comments during your revision. Some for the points of the reviewer reflect seem confusion over porosity. In my view, the fact that your porosity is for pores >40um still does not come across clearly.

There are inconsistencies in your paper about the effect on aggregation.

On Line 25 you say “The presence of plants did not affect the aggregate size distribution for both textures during the time frame of the experiment (6 weeks).”
> Apologies, a slip here and this sentence was incorrect, as for the clay soil, plants did impact the ASD. And this then leads to the subsequent confusion. We have amended texts appropriately. (Line 25-29)
“For the sandy-loam soil, there was no impact of plants upon aggregate size distribution porosity, pore connectivity, and pore surface density decreased in the presence of plants, whereas for the clay, there was a significant increase of aggregates <1,000 µm, the porosity was constant, the pore-connectivity decreased, and surface density increased in the presence of plants.”

But in the results section, you do report effects of plant growth on aggregate size distribution.

Line 229 “At Week 0, the aggregate size distribution of the sandy loam showed an increasing proportion of aggregates in size class 53-500 µm, followed by a reverse of this trend for aggregates >2,000 µm (Fig. 5a).” For other soils you also report effects on aggregate size distribution.
> This sentence was describing the aggregate size distribution pattern of the sandy soil, because at Week 0, there was no plant present. For Week 6, we state Line 240-241:
“At Week 6, this pattern was still manifest, and there was no significant effect of plants (P>0.05; Fig. 5b)”
Therefore, there is no effect of plant on the ASD for the sandy loam soil

AND
Line 239 – “planted soils had a significantly greater proportion of aggregates1-2 mm than unplanted soils, but this pattern was reversed for aggregates >2,000 µm (P<0.05; Fig. 5d).
> This observation was made for the clay soil (mention Line 245-247), and the abstract has been modified according to that.

BUT on

Line 312 you say “In the sandy loam soil, there was no significant impact of the plants upon soil aggregation whereas plants”
> This is true regarding the results statement.

AND
Line 315 “These observations show that the aggregate size distribution metrics concealed information regarding the in situ soil structure.”
> Yes because, even though plants did not impact the ASD for the sandy loam, plants had a significant impact on the pore network.

THIS NEEDS TO BE SORTED OUT. YOU CAN NOT CLAIM ONE RESULT AND THEN DISCUSS A COMPLETELY DIFFERENT RESULT! – Your comment on line 350 agrees with your results, but the discussion does not.

Other minor observations

L56 delete “Moreover”
> Done

Line 74 what does “need to grow” mean. Plants cannot decide to grow.
> We have modified the wording (Line 73) "root systems must grow deeper in order to access water"

Line 187 What does “vugh” mean?
> A vugh by definition is a ‘small cavity. In soil micromorphology terms it is classified as an ‘irregular shaped pores’ Bullock and Murphy (1983) Soil Micromorphology. This has been added to the text to make clearer (Line 193-194). "In micromorphology terms a vugh is classified as an “irregular shaped pores” (Bullock and Murphy 1983)."

Line 244 delete “As would be expected” and “profoundly”
> Done

Line 360 from “Sandy soils” onwards is not a conclusion of your study.
> We accept that this is not a firm conclusion of this study, but consider that this a valid discussion point, so have moved the text to the most suitable part of that section (Lines 348-353).

I have decided on minor revisions, but I do expect all of this points, including those of the reviewer to be dealt with and a full response submitted.

Reviewer #4:
This paper analyzed the effect of cover crop on soil structure using X-ray computed tomography. The result clarified that cover crop can impact soil structure depending on its inherent textural characteristics. The study is interesting and meaningful, and exactly falls into the scope of Plant and Soil. However, it is a pity for me that the authors did not taken root morphology into account as the authors mentioned that the CT can also be used to quantify plant roots. It will be more interesting to investigate spatial relations between roots and pore generation, such as rhizosphere and non-rhizosphere pores. In this way the authors could reveal how plants influence soil pore structure in depth. In addition, some explanations of results in the Discussion section was kind of speculative without supporting data.

Specific comments
> The reviewer is right, X-ray CT can be used to quantify plant roots and the spatial network around them. However, in this study, we were interested by the effect of the soil in the column, and how the bulk soil would be modified by the presence of the plants thus we did not believe this was core to our current focus. We will take that into account for the future study.

Line 47: no measurement? But you give an example of measurement of pore network in the following (Line49).
> Line 47, no measurement was referencing to the study of Scott et al. 2017. Bodner et al. 2014 showed that there was a difference in pore network via a destructive method, but there was no data on the network observation.

Line 81-82: The sentence was not closely related to topic of this study.
> Deleted

Line 112: The basic soil properties such as pH, SOC, and NPK content which could influence plant growth should be given in this manuscript. Furthermore, will the difference in soil properties except for soil texture between the two soils influence their response of pore structure to plant growth?
> Basic soil chemical properties added (Line 107-110), plus a sentence acknowledging that other edaphic factors can affect plant growth but that these were minor in these adjacent arable soils, the primary differences were textural (first part of Discussion – Line 250-252)

Line 119: In my experience, the air-dried soil passing through a 2-mm mesh sieve is difficult to repack soil columns with bulk density lower than 1.3 g cm-3 homogeneously. How did you pack the soil to a bulk density of 1.2 g cm-3? The soil in the columns with low bulk density was settled during the plant growing period, which exert strong impact on dynamic of pore structure. The contrasting effect of the two textural soils on dynamic of pore structure was probably dependent on the initial bulk density.
Columns were packed by pouring the dry soil in the column and tap them to pack the soil. When we had the amount of soil needed to achieve a bulk density of 1.2 g cm\(^{-3}\), ten taps were performed to pack the columns. All the columns were treated the same way. After being packed, the column was saturated and drained on a tension table and was settle for few days prior the sowing period.

Line 131: Why the pore characteristics at week 4 were not presented in this manuscript?
> This week was not presented for greater clarity of the manuscript since they do not add anything new to the interpretation.

Line 142: “set at 8”? It is better to include an explanation.
> Beam hardening relates to the speed at which the X-ray passes through a sample. So, around the edges of the column, the X-ray will pass faster than through the centre of the column. The detector will receive this signal much faster and brighter than for the centre of the sample. Beam hardening algorithms corrects for this error which causes bright edges on a sample and a dark centre by adjusting the reconstruction to account for this time delay. The one we used is a proprietary algorithm built into the reconstruction software which allows a selection on the intensity between 0 and 10. Here, we used 8, which in previous tests gave the best image quality. We add a sentence to explain that in the manuscript (Line 139):

> “Here, beam hardening was set at 8, due to previous tests which gave the best image quality.”

Line 145: Which part of the column (40×40×120 mm) was extracted?
> The center of the column was extracted, i.e. 3 cm at the top and 2 cm at the bottom were excluded from the analysis.

Line 151: Why two threshold values were selected? What were they used for, respectively?
> The threshold used here is a 3D threshold using an neighbor-algorithm, i.e. the software requires 2 threshold values (T1<T2) and compares every voxel greyscale value (Ti) to these two values. If Ti < T1, Ti is attributed to the pore phase, if Ti > T2, Ti is attributed to the solid phase and if T1 < Ti < T2, Ti is attributed to the fuzzy regions. When all the voxels are attributed to each of the three phase, then the software compares the voxel from the fuzzy regions to their neighbors: if one of Ti neighbor belongs to the pore space, then Ti is attributed to the pore phase otherwise Ti stays in the fuzzy region. This step is repeated until no changes can be made, all the voxel in the fuzzy region is attributed then to the solid phase.

This explanation has been added to the text (Line 153-160).

Line 155: The grayscale of soil pores was quite similar with that of plants. So how did you include the pore networks and left out the root materials at the same time?
> Here, we choose to do a very long scan time to have a better image quality which enabled us to have a clear difference between the greyscale of root and pore space.

Line 169: I agree with the previous reviewers that wet-sieving is more commonly used for characterizing aggregate size distribution.
> Yes, but dry-sieving was prescribed to enable analysis of the aggregate structure at a later date via X-ray CT. This would not be possible with wet-sieved systems.

Line 187: What was destructuring process?
> The process was sieving, as described in M&M. We favour the ‘destructuring’ term since it emphasizes that the structure of the soil was experimentally altered and detection of restructuring was then indicative of a genesis of new structure. We have added ‘sieving’ as well to clarify (Line 192).

Line 190: In my opinion, the cracks were resulted from the interaction between soil subsidence and root growth.
> Possibly, but we cannot establish which of these mechanisms were actually operating. Reworded to avoid speculation about causal mechanisms.

Line 262-263: Compared with week 0, the two soils used for measuring aggregate
distribution at week 6 experienced on cycle of wet and dry because the soils were maintained at -30 Kpa at tension table in plant growing period and air-dried before aggregate size distribution measurement at week 6.

> Yes, but this was the same for week 0, the column at week 0 were packed, saturated and drained on the tension table and settle prior sowing as well. There were destructively harvested at the same time as the other column were sown. And here, the wet and dry cycle was referring the wet and dry cycle during the experiment (while the plants were growing through the soil).

Line 264: Which biotic factors?
> Presence of micro-organisms such as bacteria for example. However, this is an assumption no data regarding bacterial community were analysed for this experiment. Sentence expanded (Line 272-273).
Thus, the aggregation in the unplanted treatment might be due to other biotic factors, such as microbial activity

Line 290: Why the porosity stayed constant over 6 weeks? Did that mean plant growth had little effect on pore structure for clay soil?
> Plants can have an effect on pore structure via modifying the pore size distribution or the connection of the pores but not modify the porosity. Here, the roots modified significantly the aggregate size distribution, which shows an impact of the root on the soil, but there was no effect on the porosity, meaning that plant might have only impacted on the re-organisation of the aggregation.

Line 291-292: How to know the pores < 40mm were increased for the sandy soil? It was a bit speculative.
> Yes, but as the editor pointed out in the first round of revision “It will not be possible for roots to elongate in soils with a porosity as low as 10% (see fig. 2); this would be a density in the region of 2.4 g/cm3!”, so it means that if there was a decrease of the porosity of the pores > 40 µm then it should be an increase of the pore < 40 µm because the bulk density was not modified during this experiment.

Line 302: Why? “Therefore, the indications are that a plant can modify soil structure differently depending on the soil texture.”
> We state this since it encapsulates the key finding of the study.

Fig.1 Some examples of 3D pore networks can be presented as well.
> We appreciate the referee’s point that such data as we have collected can be also presented as a 3D visualization. In this case however, because of the very high numbers of small pores, these images are not easily interpreted and as such do not add to the narrative. We believe the single 2D slices we show exhibit the treatment differences most clearly for the reader. In previous studies some authors have shown 3D pore networks but removed all of the small pores to make treatment differences clearer, however this would become an artefact in this case as our observations are focused at this fine scale.
Dear Richard Whalley,

Re: PLSO-D-18-01941

Thank you for your further correspondence in relation to our manuscript. We are pleased to submit a revised MS and narrative to the review comments for your further attention. We would like to thank the editor and reviewer who scrutinised the manuscript.

Thank you for your attention.

Yours faithfully,

Aurelie Bacq-Labreuil (on behalf of all authors).
Comments from the section editor

Your paper was sent for review, because there were inconsistencies in the manuscript, which I outline below. Unfortunately, none of the original reviewers were available. However, I ask that you take account of these additional comments during your revision. Some of the points of the reviewer reflect seem confusion over porosity. In my view, the fact that your porosity is for pores >40um still does not come across clearly.

There are inconsistencies in your paper about the effect on aggregation.

On Line 25 you say “The presence of plants did not affect the aggregate size distribution for both textures during the time frame of the experiment (6 weeks).”
> Apologies, a slip here and this sentence was incorrect, as for the clay soil, plants did impact the ASD. And this then leads to the subsequent confusion. We have amended texts appropriately. (Line 25-29)
“For the sandy-loam soil, there was no impact of plants upon aggregate size distribution porosity, pore connectivity, and pore surface density decreased in the presence of plants, whereas for the clay, there was a significant increase of aggregates <1,000 µm, the porosity was constant, the pore-connectivity decreased, and surface density increased in the presence of plants.”

But in the results section, you do report effects of plant growth on aggregate size distribution.

Line 229 “At Week 0, the aggregate size distribution of the sandy loam showed an increasing proportion of aggregates in size class 53-500 µm, followed by a reverse of this trend for aggregates >2,000 µm (Fig. 5a).” For other soils you also report effects on aggregate size distribution.
> This sentence was describing the aggregate size distribution pattern of the sandy soil, because at Week 0, there was no plant present. For Week 6, we state Line 240-241:
“At Week 6, this pattern was still manifest, and there was no significant effect of plants (P>0.05; Fig. 5b)”
Therefore, there is no effect of plant on the ASD for the sandy loam soil

AND
Line 239 – “planted soils had a significantly greater proportion of aggregates1-2 mm than unplanted soils, but this pattern was reversed for aggregates >2,000 µm (P<0.05; Fig. 5d).
> This observation was made for the clay soil (mention Line 245-247), and the abstract has been modified according to that.

BUT on

Line 312 you say “In the sandy loam soil, there was no significant impact of the plants upon soil aggregation whereas plants”
> This is true regarding the results statement.

AND
Line 315 “These observations show that the aggregate size distribution metrics concealed information regarding the in situ soil structure.”
> Yes because, even though plants did not impact the ASD for the sandy loam, plants had a significant impact on the pore network.
THIS NEEDS TO BE SORTED OUT. YOU CAN NOT CLAIM ONE RESULT AND THEN DISCUSS A COMPLETELY DIFFERENT RESULT! – Your comment on line 350 agrees with your results, but the discussion does not.

Other minor observations

L56 delete “Moreover”
> Done

Line 74 what does “need to grow” mean. Plants cannot decide to grow.
> We have modified the wording (Line 73)
“root systems must grow deeper in order to access water”

Line 187 What does “vugh” mean?
> A vugh by definition is a ‘small cavity. In soil micromorphology terms it is classified as an ‘irregular shaped pores’ Bullock and Murphy (1983) Soil Micromorphology. This has been added to the text to make clearer (Line 193-194).
“In micromorphology terms a vugh is classified as an “irregular shaped pores” (Bullock and Murphy 1983).”

Line 244 delete “As would be expected” and “profoundly”
> Done

Line 360 from “Sandy soils” onwards is not a conclusion of your study.
> We accept that this is not a firm conclusion of this study, but consider that this a valid discussion point, so have moved the text to the most suitable part of that section (Lines 348-353).

I have decided on minor revisions, but I do expect all of this points, including those of the reviewer to be dealt with and a full response submitted.

Reviewer #4:
This paper analyzed the effect of cover crop on soil structure using X-ray computed tomography. The result clarified that cover crop can impact soil structure depending on its inherent textural characteristics. The study is interesting and meaningful, and exactly falls into the scope of Plant and Soil. However, it is a pity for me that the authors did not taken root morphology into account as the authors mentioned that the CT can also be used to quantify plant roots. It will be more interesting to investigate spatial relations between roots and pore generation, such as rhizosphere and non-rhizosphere pores. In this way the authors could reveal how plants influence soil pore structure in depth. In addition, some explanations of results in the Discussion section was kind of speculative without supporting data.

Specific comments
> The reviewer is right, X-ray CT can be used to quantify plant roots and the spatial network around them. However, in this study, we were interested by the effect of the soil in the column, and how the bulk soil would be modified by the presence of the plants thus we did not believe this was core to our current focus. We will take that into account for the future study.
Line 47: no measurement? But you give an example of measurement of pore network in the following (Line49).
> Line 47, no measurement was referencing to the study of Scott et al. 2017. Bodner et al. 2014 showed that there was a difference in pore network via a destructive method, but there was no data on the network observation.

Line 81-82: The sentence was not closely related to topic of this study.
> Deleted

Line 112: The basic soil properties such as pH, SOC, and NPK content which could influence plant growth should be given in this manuscript. Furthermore, will the difference in soil properties except for soil texture between the two soils influence their response of pore structure to plant growth?
> Basic soil chemical properties added (Line 107-110), plus a sentence acknowledging that other edaphic factors can affect plant growth but that these were minor in these adjacent arable soils, the primary differences were textural (first part of Discussion – Line 250-252)

Line 119: In my experience, the air-dried soil passing through a 2-mm mesh sieve is difficult to repack soil columns with bulk density lower than 1.3 g cm$^{-3}$ homogeneously. How did you pack the soil to a bulk density of 1.2 g cm$^{-3}$? The soil in the columns with low bulk density was settled during the plant growing period, which exert strong impact on dynamic of pore structure. The contrasting effect of the two textural soils on dynamic of pore structure was probably dependent on the initial bulk density.
> Columns were packed by pouring the dry soil in the column and tap them to pack the soil. When we had the amount of soil needed to achieve a bulk density of 1.2 g cm$^{-3}$, ten taps were performed to pack the columns. All the columns were treated the same way. After being packed, the column was saturated and drained on a tension table and was settle for few days prior the sowing period.

Line 131: Why the pore characteristics at week 4 were not presented in this manuscript?
> This week was not presented for greater clarity of the manuscript since they do not add anything new to the interpretation.

Line 142: "set at 8"? It is better to include an explanation.
> Beam hardening relates to the speed at which the X-ray passes through a sample. So, around the edges of the column, the X-ray will pass faster than through the centre of the column. The detector will receive this signal much faster and brighter than for the centre of the sample. Beam hardening algorithms corrects for this error which causes bright edges on a sample and a dark centre by adjusting the reconstruction to account for this time delay. The one we used is a proprietary algorithm built into the reconstruction software which allows a selection on the intensity between 0 and 10. Here, we used 8, which in previous tests gave the best image quality. We add a sentence to explain that in the manuscript (Line 139):

"Here, beam hardening was set at 8, due to previous tests which gave the best image quality."

Line 145: Which part of the column (40×40×120 mm) was extracted?
> The center of the column was extracted, i.e. 3 cm at the top and 2 cm at the bottom were excluded from the analysis.

Line 151: Why two threshold values were selected? What were they used for, respectively?
The threshold used here is a 3D threshold using a neighbor-algorithm, i.e. the software requires 2 threshold values (T1 < T2) and compares every voxel greyscale value (Ti) to this two values. If Ti < T1, Ti is attributed to the pore phase, if Ti > T2, Ti is attributed to the solid phase and if T1 < Ti < T2, Ti is attributed to the fuzzy regions. When all the voxels are attributed to each of the three phase, then the software compares the voxel from the fuzzy regions to their neighbors: if one of Ti neighbor belongs to the pore space, then Ti is attributed to the pore phase otherwise Ti stays in the fuzzy region. This step is repeated until no changes can be made, all the voxel in the fuzzy region is attributed then to the solid phase. This explanation has been added to the text (Line 153-160).

Line 155: The grayscale of soil pores was quite similar with that of plants. So how did you include the pore networks and left out the root materials at the same time?

Line 169: I agree with the previous reviewers that wet-sieving is more commonly used for characterizing aggregate size distribution.

Line 187: What was destructuring process?

Line 262-263: Compared with week 0, the two soils used for measuring aggregate distribution at week 6 experienced on cycle of wet and dry because the soils were maintained at -30 Kpa at tension table in plant growing period and air-dried before aggregate size distribution measurement at week 6.

Line 264: Which biotic factors?

Thus, the aggregation in the unplanted treatment might be due to other biotic factors, such as microbial activity.
Line 290: Why the porosity stayed constant over 6 weeks? Did that mean plant growth had little effect on pore structure for clay soil?
> Plants can have an effect on pore structure via modifying the pore size distribution or the connection of the pores but not modify the porosity. Here, the roots modified significantly the aggregate size distribution, which shows an impact of the root on the soil, but there was no effect on the porosity, meaning that plant might have only impacted on the re-organisation of the aggregation.

Line 291-292: How to know the pores < 40mm were increased for the sandy soil? It was a bit speculative.
> Yes, but as the editor pointed out in the first round of revision “It will not be possible for roots to elongate in soils with a porosity as low as 10% (see fig. 2); this would be a density in the region of 2.4 g/cm3!”, so it means that if there was a decrease of the porosity of the pores > 40 µm then it should be an increase of the pore < 40 µm because the bulk density was not modified during this experiment.

Line 302: Why? “Therefore, the indications are that a plant can modify soil structure differently depending on the soil texture.”
> We state this since it encapsulates the key finding of the study.

Fig.1 Some examples of 3D pore networks can be presented as well.
> We appreciate the referee’s point that such data as we have collected can be also presented as a 3D visualization. In this case however, because of the very high numbers of small pores, these images are not easily interpreted and as such do not add to the narrative. We believe the single 2D slices we show exhibit the treatment differences most clearly for the reader. In previous studies some authors have shown 3D pore networks but removed all of the small pores to make treatment differences clearer, however this would become an artefact in this case as our observations are focused at this fine scale.
Revised version including track changes
Manuscript_v10 marked.pdf
Phacelias (*Phacelia tanacetifolia* Benth.) affects soil structure differently depending on soil texture.

NAME(S) OF AUTHOR(S): A. Bacq-Labreuil\(^a\), J. Crawford\(^b\), S. J. Mooney\(^a\), A.L. Neal\(^b\), K. Ritz\(^a\)

Affiliation:

\(^a\)Division of Agriculture & Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK

\(^b\)Department of Sustainable Agriculture Science, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK

Corresponding Author: aurelie.bacqlabreuil@gmail.com
Keywords: cover crop; Phacelia; soil pore connectivity; soil porosity; X-ray computed tomography; 3D image analysis

Abstract

Aims: We studied the effects of *Phacelia tanacetifolia*, increasingly used as a cover-crop species in arable agricultural systems, upon soil structural properties in the context of two contrasting soil textures. We hypothesised there would be differential effects of the plants upon soil structure contingent on the texture.

Methods: A sandy-loam and a clay soil were destructured by passing through 2 mm sieves, and planted with *Phacelia* in a replicated pot experiment, with associated unplanted controls. X-ray Computed Tomography was used to visualise and quantify the soil pore networks in 3D.

Results: For the sandy-loam soil, there was no impact of plants upon aggregate size distribution porosity, pore connectivity, and pore surface density decreased in the presence of plants, whereas for the clay, there was a significant increase of aggregates \(<1,000 \mu m\), the porosity was constant, the pore-connectivity decreased, and surface density increased in the presence of plants.

Conclusions: Plants can impact the structural genesis of soil depending on its inherent textural characteristics, leading to a differential development of pore architecture in different contexts. These results have implications both from an ecological perspective and in terms of the prescription of plants to remediate or condition soil structure in managed systems.
Introduction

In terrestrial systems, soil is the fundamental base which supports vegetation growth (van Breemen 1993), but plants also affect the nature of their belowground habitat both directly and indirectly. In agricultural systems, the use of cover crops is increasing (Storr et al. 2019) in order to increase the sequestration of carbon (Reicosky and Forcella 1998; Scott et al. 2017), soil macro-porosity (Abdollahi et al. 2014; Bodner et al. 2014; Burr-Hersey et al. 2017; Cercioglu et al. 2018) and decrease soil erosion (Reicosky and Forcella 1998; Storr et al. 2019). Furthermore, cover crops have an impact on the biota of the soil, increasing microbial diversity and richness (Patkowska and Konopiński 2013; Fernandez et al. 2016) and the abundance of saprophytic and mycorrhizal fungi (Six et al. 2006; Duchene et al. 2017; Finney et al. 2017). In a restored grassland, roots and fungi increased the proportion of carbon sequestered in aggregate (Scott et al. 2017), however, there was no measurement of the pore network, and the characterisation of the soil structure was via aggregate size. Bodner et al. (2014) showed that cover crops with different root architectures induced different porosity and pore size distributions determined via water infiltration (i.e. a destructive method). The physical structure of the soil was not visualised. X-ray Computed Tomography is a non-destructive method which image the soil structure as well as the roots (Zhou et al. 2016; Cercioglu et al. 2018; Rabot et al. 2018; Schlüter et al. 2018). A recent study revealed contrasting responses between species in their root morphology to changes in bulk density (Burr-Hersey et al. 2017), but presented little information on associated soil structure. Cover crops and biofuel crops can improve soil pore characteristics via increasing the macro-porosity and decreasing soil bulk density (Cercioglu et al. 2018).
Soil structure is classically defined as the arrangement of soil particles and organic materials (Tisdall and Oades 1982), typically creating a dynamic and heterogeneous pore network within the soil matrix (Dexter 1988). The nature of this pore network is to a large extent underpinned by soil texture, but it can also be affected by other factors such as the actions of living organisms, wet:dry and freeze:thaw cycles, etc. (Ritz & Young, 2011). A recent study revealed tomato root architecture was markedly different for plants after 8 days of growth dependant on soil texture: plants developed a thick tap root in sandy loam soil but grew thinner roots with more laterals in clay soil (Helliwell et al. 2017). Furthermore, the porosity of the rhizosphere of the sandy loam soil was decreased whereas for the clay loam soil it was increased. Thus, the root growth strategies of plants are influenced by the surrounded environment. In non-cohesive and coarser soil, root systems generally develop to greater depth and are thicker than roots growing in a cohesive, finer textured soil (Hacke et al. 2000; Jackson et al. 2000; Li et al. 2005). Non-cohesive and coarser soil dries at greater rates in the upper layer, therefore the root systems must grow deeper in order to access water (Jackson et al. 2000). The influence of plants on soil structural dynamics is also dependant on soil texture: in a silty-clay soil the presence of plant can increase the porosity and pore connectivity compared to a sandy soil where the presence of plants can decrease the porosity and pore-connectivity (Bacq-Labreuil et al. 2018). However, the effects of soil texture upon the impact of plants upon soil structural dynamics is not well understood. Hydraulic properties in finer textured soils are considerably different due to the enhanced water holding in finer pores (Saxton et al. 1986). Plant roots modify the aggregation of soil particles, generally acting to generate and stabilise aggregates (Tisdall and Oades 1982). This occurs by processes of enmeshment of soil particles and excretion of mucilage and other extra-cellular polymeric substances which adhere.
constituents together (Bronick and Lal 2005; Erktan et al. 2018; Gould et al. 2016).

Indirect mechanisms are mediated by interactions with soil biota also serve to drive aggregation processes such as excretion of extracellular substances (Haynes and Beare 1997; Rillig et al. 2002; Ritz and Young 2011). Root mucilage stabilises aggregates by increasing cohesion and decreasing wetting rates of aggregates (Czarnes et al. 2000).

The inherent diversity of plant species means that the soil is frequently exposed to an increase in the diversity of root architecture within the matrix (e.g. tap, fibrous, fine roots), an increase in the quality and quantity of carbon inputs, and considerable differentiation in the microbial communities associated with the root systems (Haynes and Beare 1997; Chan and Heenan 1999; Rillig et al. 2002; Gould et al. 2016).

The aim of this study was to establish the effect of soil texture and plant growth on early stage soil structural genesis. We grew Phacelia tanacetifolia, a herbaceous plant commonly used as a cover crop in arable rotations and apocryphonally thought to be particularly effective in conditioning soil structure, in a sandy loam and clay soil, along with unplanted control treatments. We hypothesised that (i) the plant roots have a contrasting effect on soil structure (via the modification of aggregate distribution and pore network) depending on the soil texture; and (ii) the presence of a plant increases the porosity, pore-connectivity, and diversity of pore sizes.

Materials and methods

Preparation of soil cores

Soil from the Newport series, a sandy loam (clay: 9.5%, silt: 26.1%, sand: 65.3%; organic matter 2.9%, pH 6.3; FAO Brown Soil) and soil from the Worcester series, a...
clay (clay: 43.3%, silt: 28.4%, sand: 28.3%; pH 6.5, organic matter 5.2%, pH 6.5; FAO Argillic Pelosol) were collected from the top 50 cm of arable fields situated in Bunny, Nottinghamshire, UK (52.52 °N, 1.07 °W). After collection, the soils were spread and left to air-dry over two days before being thoroughly mixed and broken down by passing through a 2-mm mesh sieve. Columns comprised of polypropylene tubes (170 mm height x 68 mm diameter) with a 0.1 mm mesh affixed to the base were packed with soil to a bulk density of 1.2 g cm\(^{-3}\). Columns were placed on a tension table for saturation for 24 h and then equilibration for 3 days at -3 kPa prior to seed sowing which is equivalent to a moisture of 30% (± 2%) for the clay and 20% (± 1%) for the sandy loam. Pre-germinated seeds of *Phacelia tanacetifolia* Benth. cv. “Angelia” were planted in the soil surface and adjusted to provide one emergent plant per column. Four planted and four unplanted replicates of each soil type were established and arranged in a randomised block design in a growth chamber providing 16:8 h light:dark cycle at 21°C:50% humidity, 15°C:75% humidity respectively and the moisture content was kept constant by maintaining the plants on a tension table at -3kPa. Plants were grown for 6 weeks since at this age they were fully pot-bound.

X-ray Computed Tomography (CT)

All columns were X-ray CT scanned prior to sowing seeds, and at 2, 4 and 6 weeks thereafter, using a Phoenix v|x|tome|x|M scanner (GE Measurement and Control solution, Wunstorf, Germany) set at a voxel resolution of 40 µm, the voltage of 180 kV with a current of 180 µA. A total of 2,160 projection images were collected for each scan at an exposure time of 250 ms period using an averaging of 3 images and skip of 1, resulting in a total scan time of 90 min. The scanning time was chosen to optimise the
image processing with greater quality of image. Scans occurred over 4 days with
treatments randomly allocated over this period but consistent between the three
occasions.
All scanned images were reconstructed using Phoenix datos x2 rec reconstruction
software. The scanned images were optimised to correct any sample movement during
the scan and reduce noise using the beam hardening correction algorithm, set at 8. Here,
beam hardening was set at 8, due to previous tests which gave the best image quality.
As a multi-scan routine was performed on the core samples, VG StudioMax® 2.2 was
used to merge the top, middle and bottom scans to obtain a single 3D volume for each
complete core. Image sequences of 40 x 40 x 120 mm were extracted for image
analysis.

Image analysis
Pre-processing of the image sequences was performed using Image J (Schneider et al.
2012). This step was used to crop the image sequence, apply a median filter (averaging
2 pixels), enhance brightness and contrast, and selected two threshold values manually.
The threshold and the 3D calculation was implemented in QuantIm (Vogel et al. 2010),
following a standard method detail in Bacq-Labreuil et al. (2018), described briefly
here. The segmentation of the pore networks was realised in 3D, and only included the
pores and left out the root materials. The threshold was facilitated by the long scanning
procedure which enhanced the image quality. The threshold used here is a 3D threshold
using an neighbour-algorithm, i.e. the software requires 2 threshold values (T₁<T₂) and
compares every voxel greyscale value (Tᵢ) to this two values. If Tᵢ<T₁, Tᵢ is attributed
to the pore phase, if Tᵢ>T₂, Tᵢ is attributed to the solid phase and if T₁<Tᵢ<T₂, Tᵢ is
attributed to the fuzzy regions. When all the voxels are attributed to each of the three
phases, then the software compares the voxel from the fuzzy regions to their neighbours: if one of T_i neighbour belongs to the pore space, then T_i is attributed to the pore phase otherwise T_i stays in the fuzzy region. This step is repeated until no changes can be made, all the voxel in the fuzzy region is attributed then to the solid phase. The quantification of the 3D pore network was performed by QuantIm (Vogel et al. 2010). In summary, the following Minkowski function which characterised 3D pore network, were collected using QuantIm: porosity of the selected volume was the percentage of the pores greater than 40 µm, here referred as the porosity; pore size distribution, expressed here as a cumulative value, was the proportion of each size class in the volume; pore connectivity expressed by the Euler number, with a negative Euler number is associated with greater pore connectivity; pore surface density which is the pore-solid interface, a greater surface density suggests a larger roughness of the pore edges (Vogel et al. 2010).

Sampling and measurements

After 6 weeks, the columns were destructively harvested, and the soil air-dried. Aggregate size distribution was determined by passing 250 g of air-dried soil through a sieve series of 2000, 1000, 710, 500, 425, 300, 212 and 53 µm, via horizontal shaking for 3 minutes at 300 rotations min$^{-1}$. The mass of aggregates retained on each sieve was determined and normalized to the total mass (Kézdi 1974).

Statistical analysis

All statistical analyses were conducted using Genstat version 17.1 (VSN International Ltd., 2014). For aggregate size distribution, at Week 0, a one-way analysis of variance (ANOVA) was performed to assess the difference in soil mass between size classes at
Week 6, and for porosity a two-factor repeated-measures RM-ANOVA was used to assess the effects of plant status and either size class or time. A three-way RM-ANOVA was performed on all primary variables using a split-plot design with soil type, plant status and size classes of pores as factors.

Results
Both soils showed contrasting pore architectures (Fig. 1a, c). For the sandy soil, the pores were primarily compound-packing pores that were typically a similar small and well distributed through the soil profile (Fig. 1a). However, for the clay soil, pores were larger as a result of the destructuring (sieving) process, typically vugh-shaped and more heterogeneously distributed than the sand soil (Fig. 1c). In micromorphology terms a vugh is classified as an “irregular shaped pores” (Bullock and Murphy 1983). The growth of Phacelia after 6 weeks induced cracks in the soil surrounding the primary root, but were more apparent in the clay soil (Fig. 1b, d, e). Cracks were apparent, principally associated with primary roots within the soil profile (Fig. 1b, d) or with lateral roots growing through aggregates in the clay soil (Fig. 1e).

Pore characteristics
In the sandy loam soil, porosity decreased between Week 0 and Week 2 but not thereafter for the unplanted soil, whilst in planted soils there was a consistent decrease in porosity across Weeks 0-6 (time x treatment interaction P<0.05; Fig. 2a). In the clay soil, porosity was less in planted treatments at Week 0, similar at Week 2 and greater in planted soils at Week 6 than unplanted treatments (time x treatment interaction P<0.001; Fig. 2b).
Minkowski functions only showed significant changes with respect to pore diameters of 0.3 mm for both sandy loam and clay soils (Figs. 3 & 4). For sandy loam there was a significant pore size diameter x treatment x time interaction term with respect to all pore size distribution, pore connectivity and pore surface density (P≤0.01). Whilst this effect was statistically significant with respect to pore size distribution, in numerical terms the effects were minor, and barely discernible when plotted (Fig. 3 a-c). Approximately 90% of the pore sizes in all cases were ≤0.16 mm (Fig. 3 a-c). The connectivity function of unplanted soils decreased significantly between Weeks 0 and 2, with only a modest increase by Week 6. However, on these occasions, plant effects on connectivity differed depending on pore size. At Week 2, pores <0.1 mm were more connected in planted soils but not above this size. By Week 6 this relationship changed such that pores <0.1 mm were less connected, and those in the range 0.1-0.25 mm were more connected in planted soils. Pore surface density decreased for both unplanted and planted soils between Week 0 and Week 2 but with a greater magnitude for unplanted soils, and with this decline continuing in planted soils to Week 6 (Fig. 3 j-l).

For the clay soil, there was no significant three-way interaction term with respect to pore size distribution (P>0.05; Fig. 4 a-c), but there was for pore connectivity and pore surface density (P<0.001; Fig. 4 d-l). Overall, approximately 80% of the pore sizes for both treatments were ≤0.25 mm (Fig. 3 a-c). At Week 0, the pore connectivity of the unplanted soils was substantially greater than the planted soils for pores in the 0.05-0.1 mm size range (Fig. 4d). Over the subsequent 6 weeks, pore connectivity in planted and unplanted soils converged to parity (approximately 0.23 mm⁻¹; Fig. 4 d-f), leading to a significant interaction. Pore surface density of unplanted soils was greater than planted soils by up to 0.3 mm at Week 0. By Week 2, pore surface density functions had
decreased and converged for both treatments, and by Week 6 was significantly smaller for pores <0.2 mm in unplanted soils (Fig. 4 j-l).

Aggregate size distribution

At Week 0, the aggregate size distribution of the sandy loam showed an increasing proportion of aggregates in size class 53-500 µm, followed by a reverse of this trend for aggregates >2,000 µm (Fig. 5a). This trend was interrupted at 425-500 µm, where this size class constituted a significantly smaller proportion than neighbouring classes (Fig. 5a). There was an extremely low proportion of aggregates > 2,000 µm (approximately 0.4%, Fig. 5a). At Week 6, this pattern was still manifest, and there was no significant effect of plants (P>0.05; Fig. 5b). For the clay soil, there was a general trend of an increase in proportion of aggregates with increasing size class, but a substantial increase for pores >1,000 µm, with the greatest proportion >2,000 µm (Fig. 5c). This pattern persisted at Week 6, where there was a significant effect of plants with respect to aggregates >1,000 µm; planted soils had a significantly greater proportion of aggregates 1-2 mm than unplanted soils, but this pattern was reversed for aggregates >2,000 µm (P<0.05; Fig. 5d).

Discussion

Whilst the organic matter content was lower in the sandy soil, this is essentially inevitable for similarly-managed and co-located clay versus sandy arable soils, and the primary difference between the soils used in this study was textural. The nature of the aggregate size distribution was different between the textures: approximately 80 % of all aggregates were >1,000 µm for the clay, whereas in sandy loam soil the aggregate sizes were more evenly distributed throughout the sizes <2,000 µm with 0.5 % of...
aggregate sizes $>2,000 \, \mu m$ (Fig. 5). For the clay soil, the larger proportion of aggregates
$>1,000 \, \mu m$ can be attributed to the greater proportion of clay particles due to their capacity to bound together (Tisdall and Oades 1982; Dexter 1988; Blake et al. 2003).
The presence of plants did not impact the aggregate size distribution in the sandy loam soil. This may be due to a lack of any substantial wet: dry cycles imparted, which is known to stabilise aggregate (Bronick and Lal 2005) as the samples were held at a fixed water potential in this experiment. During wetting, water can disperse or swell clay particles which leads to increased contact between clay and other particles, and therefore binding during the drying phase (Singer et al. 1992). Furthermore, sandy loam soil contained a low proportion of clay (9.5%), which is representative of a non-cohesive soil. Thus in non-cohesive soil, the binding due to the presence of clay is reduced leading to a reduction of the root action on the aggregation (Degens et al. 1994; Six et al. 2004). We wished to avoid such effects in this study in order to investigate the inherent effects of the plant on structural genesis. Hence in both soils, the water regime was constant during the experiment, thus the change in wet and dry cycles were not responsible for the greater proportion of aggregates $>2,000 \, \mu m$ observed in the unplanted treatment for the clay soil. Thus, the aggregation in the unplanted treatment might be due to other biotic factors, such as microbial activity. The planted soils showed a decrease in the percentage of aggregate sizes $>2,000 \, \mu m$ and an increase in the percentage of aggregate sizes $1,000-2,000 \, \mu m$ (Fig. 5). The greater proportion of aggregates sizes between $1,000-2,000 \, \mu m$ in the planted soil might have resulted from fragmentation of bigger aggregates by root penetration or development via root action, and localised wet-dry cycles induced by the presence of plants (Materechera et al. 1994; Chan and Heenan 1996; Jin et al. 2013). However, the moisture content of the column was kept constant during the experiment via the use of a tension table, and the
transpiration rates of plants was not measured. Such localised effects might have
induced a rearrangement of the clay particles around the roots and modified the
aggregate size distribution (Reid and Goss 1982; Six et al. 2004; Gregory et al. 2009).
Therefore, in the more cohesive soil, roots appear to generate fragmented aggregates,
which may facilitate water infiltration or drainage within the aggregates (Fig. 1e;
Materechera et al. 1994). This in turn would have arguably positive effects upon water
availability to the plants through the generation of a wider pore sizes from sizes
between 0.05 and 0.16 mm, which are associated to the transmission pores (Metzger
and Yaron 1987; Watts and Dexter 1997).
For both soil textures, a decrease in porosity was observed in unplanted soil at Week 2
(from 14.9 to 8.9% for the sandy loam soil and from 10.4 to 8.2% for the clay soil)
which maintained constant until Week 6 (Fig. 2) which is most likely a consequence of
settling of the soil due to gravity. Moreover, the presence of cracks observed in both
columns was attributed to the root action as the water content was controlled (Fig. 1).
This observation corroborates with a recent study that showed cracks associated with
root formation (Helliwell et al. 2019). However, soil texture profoundly influenced the
soil structural development of planted soil: in sandy loam soil, porosity decreased
constantly over the 6 weeks (from 15.4 to 7%) whereas, in clay soil, the porosity stayed
constant over the 6 weeks (approximately 7.8%). For the sandy soil, the decrease of the
porosity could have been induced by the rearrangement of soil particles which increased
pores <40 µm and these pores were not included in the measured porosity. Furthermore,
the results from the sandy loam soil was consistent with a previous study which
observed, a decrease of porosity in rhizosphere soil induced by root growth of tomato
plants for the same soil texture (Helliwell et al. 2017). However, the results for clay
soils are divergent from Helliwell et al. (2017) who detected an increase of rhizosphere
porosity in this case. The impact of plants on the bulk soil, here measured for pores >40
µm resolution, could be slower compared to the rhizosphere porosity, measured at >12
µm resolution (Helliwell et al. 2017). This observation was also observed at the field
level: the presence of plants decreased the porosity of a sandy soil compared to the
increase of the porosity for a clay soil (Bacq-Labreuil et al. 2018). Therefore, the
indications are that a plant can modify soil structure differently depending on the soil
texture. The results for the sandy loam soil was consistent with another study which
showed plants growing at a bulk density of 1.2 g cm$^{-3}$ decreased the soil porosity
(Martin et al. 2012). However, these results are divergent from Feeney et al. (2006) for
the soil of the same textural class, at a bulk density of 1.3 g cm$^{-3}$, where the presence of
plants and soil microbiota increased the porosity. Our results suggest that the initial
configuration of the pore network, defined by soil texture and bulk density, affects
subsequent root growth responses and the associated impacts of roots on soil structural
genesis.

The results obtained via X-ray CT imaging contrasted with those of the aggregate size
distributions. In the sandy loam soil, there was no significant impact of the plants upon
soil aggregation whereas plants significantly affected the pore network. In comparison,
for the clay soil, there was a significant increase of aggregates <1,000 µm, while the
plants induced a constant porosity. These observations show that the aggregate size
distribution metrics concealed information regarding the in situ soil structure.

Neither soil texture showed a significant plant effect on pore size distribution or pore
connectivity after 6 weeks growth. A longer experiment might have revealed a greater
influence of plants on soil structural genesis. In the sandy loam soil, the presence of
plants decreased the pore surface density, i.e. decreasing pore-solid interfaces (Fig. 3 g-
i). This meant the presence of plants reduced the irregular shaped-pores or elongated
pores within the pore network (Vogel et al. 2010; Bacq-Labreuil et al. 2018). In clay soil, the pore solid interface increased in the planted soils (Fig. 4 g-i), which suggests that elongated or irregular shaped-pores increased within the pore network. The formation of more irregular-shaped pores would likely influence the microbial community due to the creation of new habitats and a wider range of niches (Holden 2011). A more diverse pore structure and heterogeneity in pore morphology can also affect soil hydrology, via modifying water flow at a local scale and the nature of water film continua. Therefore, the same plant genotype had two distinctive effects upon the modification of pore morphology depending on the inherent soil texture. Therefore, the prescription of crops for specific characteristics such as root morphology, rhizodeposition, might be better informed by consideration of the soil texture in which they are grown. Especially that the same plant species is affected differently depending on soil textures. This characteristic might be important for breeders and farmers in order to prescribe plant species that are optimal for the needs of the farmers and depending on the soil texture.

Therefore, farmers, depending on their requirements (such as water management, compaction, etc) could prescribe different plant species depending on their characteristics, but taking in account the soil texture. Sandy soils are usually free draining, thus there may be an adaptive advantage where roots reduce the porosity in soils in which they are growing, which will likely increase the retention of water. Therefore, cover crops could potentially be used to prime soil structure before sowing the main crop, specifically in sandy soil to enhance the retention of water, and in clay soils to increase water transmission. Further studies are required to understand whether different plant species affect such soil structural dynamics in different ways (Ehrmann and Ritz 2013; Erktan et al. 2018). We postulate this is likely given the diversity of root
morphologies, rhizodeposition patterns and higher-order interactions between plants and
soil biota. These observations also have implications from an ecological perspective, for
example in the way vegetation may modulate soil structural dynamics during
successional processes, which appears to have been barely considered.

Conclusions
This study revealed a contrasting effect of soil textural characteristics on soil structural
genesis. The results confirmed our hypothesis that a plant can modify soil aggregate
size distribution and pore networks differently depending on the inherent soil texture,
manifest by different aggregate size distributions, and the contrasting effect of plants in
both textural classes. However, the second hypothesis was not fully supported for both
soils. For the sandy loam soil, the presence of roots decreased porosity, pore surface
density, but had no significant impact on pore size distribution and pore connectivity
after 6 weeks of growth. For the clay soil, the presence of roots maintained the porosity
constant over the 6 weeks, but had no effect on the pore connectivity, contradicting the
second hypothesis, but increased the pore surface density, which supported it. These
results showed that impact of plants on soil pore architecture depends on textural
characteristics.

Acknowledgements
We thank Pr. Hu Zhou for his assistance with the software QuantIm, and Paul Brown
for supplying seed of Phacelia. This work was performed at the University of
Nottingham Hounsfield facility. The University of Nottingham Hounsfield Facility
receives funding from BBSRC (Swindon, UK), and The Wolfson Foundation (London,
UK). This work is supported by the BBSRC-funded Soil to Nutrition strategic
programme (BBS/E/C/00010310) and jointly by the Natural Environment Research Council and BBSRC as part of the Achieving Sustainable Agricultural Systems research programme (BBS/E/C/00010130). We also thank the anonymous reviewers for their insight and suggestions for improvement.

References

in soil following cover crop and organic fertilizer incorporation. Appl Microbiol

Finney DM, Buyer JS, Kaye JP (2017) Living cover crops have immediate impacts on
doi: 10.2489/jswc.72.4.361

physical properties key to soil function in grasslands. Ecol Lett 19:1140–1149. doi:
10.1111/ele.12652

management on the physical and biological resilience of a range of arable and
10.1016/j.geoderma.2009.08.002

Haynes RJ, Beare MH (1997) Influence of six crop species on aggregate stability and
some labile organic matter fractions. Soil Biol Biochem 29:1647–1653. doi:
10.1016/S0038-0717(97)00078-3

the development of the porous architecture at the root-soil interface. Sci Rep
7:14875. doi: 10.1038/s41598-017-14904-w

condition in the physical development of the rhizosphere. Plant Cell Environ. doi:
10.1111/pce.13529

Holden PA (2011) How do the microhabitats framed by soil structure impact soil bacteria
and the processes that they regulate? Eds K Ritz I Young Archit Biol Soils Life Inn
Sp Chapter 7:118–148

Patkowska E, Konopiński M (2013) The role of oat, common vetch and tansy phacelia as cover plants in the formation of microorganisms communities in the soil under the cultivation of root chicory (cichorium intybus var. sativum bisch.) and salsify (tragopogon porrifolius var. sativus (Gat. Acta Sci Pol, Hortorum cultus 12:179–191

Reicosky DC, Forcella F (1998) Cover crop and soil quality interactions in
Ritz K, Young IM (2011) Architecture and Biology of Soils., CABI, Wall
Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and Fungal Contributions to Page 21

Figure captions

Fig. 1 2D X-ray attenuation images of soils (40 μm resolution; darker shades relate to lower attenuation; a sharpening algorithm has been passed over these images to increase contrast of features) from (a, c) unplanted at Week 0 and (b, d, e) soil planted with phacelia after 6. (a, b) sandy clay soils; (c, d) clay soils. (e) example of effect of lateral root (LR) growing from a primary root (R) through aggregate in the clay soil and resulting in crack (C), growing through the soil matrix (S). P represents isolated pores.

Fig. 2 Total soil porosity in unplanted and planted soils (spatial resolution 40 μm). (a) sandy loam soil; (b) clay soil. Bars denote means (n=4) expressed as the percentage of pores relative to the total volume, whiskers denote pooled standard errors.

Fig. 3 Minkowski functions of sandy loam soils for the unplanted and planted soils at Week 0 (a, d, g), Week 2 (b, e, h) and Week 6 (c, f, i): (a - c) cumulative pore distribution of cores; (d - f) connectivity; (g - i) surface density. Points denote means (n=4), whiskers denote pooled standard errors.

Fig. 4 Minkowski functions of clay soils for the unplanted and planted soils at Week 0 (a, d, g), Week 2 (b, e, h) and Week 6 (c, f, i): (a - c) cumulative pore distribution of cores; (d - f) connectivity; (g - i) surface density. Points denote means (n=4), whiskers denote pooled standard errors.

Fig. 5 Soil aggregate size distribution showing the starting condition at Week 0 (a, c) and the effect of plants at Week 6 (b, d) for the sandy loam soil (a – b) and the clay soil (c – d). Bars denote means (n=4) expressed as the percentage of aggregates relative to the total volume, whiskers denote pooled standard errors.
Figure 2

(a) Sandy loam

- Treatment x time: P < 0.05

- Bar graph showing porosity (%)
 - Week 0, Week 2, Week 6

(b) Clay

- Treatment x time: P < 0.001

- Bar graph showing porosity (%)
 - Control, Phacelia
 - Week 0, Week 2, Week 6
Figure 5

Week 0

Sandy loam

Size class: ***

% aggregates

Week 6

Control
Phacelia

Size class: ***
Size class x treatment: NS

% aggregates

Aggregate size classes (μm)

Clay

Size class: ***

% aggregates

Aggregate size classes (μm)

Size class x treatment: ***