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Crop yield is an essential measure for breeders, researchers, and farmers and is composed of 
and may be calculated by the number of ears per square meter, grains per ear, and thousand 
grain weight. Manual wheat ear counting, required in breeding programs to evaluate crop 
yield potential, is labor-intensive and expensive; thus, the development of a real-time wheat 
head counting system would be a significant advancement. In this paper, we propose a 
computationally efficient system called DeepCount to automatically identify and count the 
number of wheat spikes in digital images taken under natural field conditions. The proposed 
method tackles wheat spike quantification by segmenting an image into superpixels using 
simple linear iterative clustering (SLIC), deriving canopy relevant features, and then constructing 
a rational feature model fed into the deep convolutional neural network (CNN) classification for 
semantic segmentation of wheat spikes. As the method is based on a deep learning model, it 
replaces hand-engineered features required for traditional machine learning methods with more 
efficient algorithms. The method is tested on digital images taken directly in the field at different 
stages of ear emergence/maturity (using visually different wheat varieties), with different canopy 
complexities (achieved through varying nitrogen inputs) and different heights above the canopy 
under varying environmental conditions. In addition, the proposed technique is compared with 
a wheat ear counting method based on a previously developed edge detection technique and 
morphological analysis. The proposed approach is validated with image-based ear counting and 
ground-based measurements. The results demonstrate that the DeepCount technique has a 
high level of robustness regardless of variables, such as growth stage and weather conditions, 
hence demonstrating the feasibility of the approach in real scenarios. The system is a leap 
toward a portable and smartphone-assisted wheat ear counting systems, results in reducing 
the labor involved, and is suitable for high-throughput analysis. It may also be adapted to work 
on Red; Green; Blue (RGB) images acquired from unmanned aerial vehicle (UAVs).

Keywords: wheat ear counting, crop yield, deep learning in agriculture, semantic segmentation, superpixels, 
phenotyping, automated phenotyping system

Abbreviations: FS, Field Scanalyzer; CNN, convolutional neural network; DNN, deep neural network; NN, neural network; 
SLIC, simple linear iterative clustering; WGIN, wheat genetic improvement network.
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INTRODUCTION

Yield is composed of three components: number of ears per unit 
area, number of grains per ear, and grain weight, some which may 
be estimated during the growing season. The early estimation of 
preharvest yield allows breeders more rapid germplasm assessment 
and enables farmers to adjust cultivation practices to optimize 
production. Manual counting protocols have been the only way of 
calculating the number of ears per square meter (ears/m2). Breeders 
can identify and count wheat spikes visually; however manual 
counting of wheat spikes is labor-intensive and time-consuming. 
In addition, these tasks may need to be performed on many 
thousands of cultivars, which is likely to introduce human error into 
the obtained data. An ideal alternative would be the development 
of automated systems operating under field conditions. Recent 
advances in automated data acquisition systems (Busemeyer 
et al., 2013; Virlet et al., 2016; Kirchgessner et al., 2017) allow a 
high spatial sampling due to the rapidity of the image acquisition 
process, which enables all possible measurements of crop growing 
status. Even though the ability to acquire data is relatively fast and 
easy, challenges remain in terms of the data mining of images. 
Computer vision offers an effective choice for analyzing high-
throughput image-based phenotyping due to low-cost (relative to 
man-hours invested into manual observations) and the requirement 
for minimal human intervention. Although current computer vision 
systems are increasingly powerful and capable, they still need to 
overcome the difficulties associated with images acquired under 
field conditions. Environmental noise causes major challenges for 
computer vision-based techniques in identifying objects of interest, 
such as wheat spikes. Some challenges include the following: 
(i) plant movements and/or stability of handheld cameras may cause 
blurred images; (ii) dark shadows or sharp brightness may appear 
in images due to natural condition and light variations in the field 
even though a camera is set to auto exposure; (iii) overlaps between 
ears due to a floppy attitude of the ears may also cause additional 
difficulties, especially with the presence of awns in some cultivars; 
and (iv) spikes in different varieties change significantly through 
development stages, as spikes show only little similarity between the 
early and later growth stages.

Several studies have utilized image-based automatic wheat ear 
counting for early evaluation of yields (Cointault and Gouton, 
2007; Fernandez-Gallego et al., 2018; Cointault et al., 2008b). 
These methods have relied on image data extraction techniques 
related to characteristics of color, texture, and morphological 
operations. Cointault et al. (2008b) proposed a mobile platform to 
acquire data where visible images were taken by a digital camera 
located vertically above the field of view using a tripod. The field 
of view is a closed system delimited by a black matte frame to 
control variabilities in illumination and weather conditions. The 
proposed framework creates a homogeneous environment and 
blocks unwanted image effects. Subsequently, the authors improved 
their platform by collecting images in different lighting conditions 
without any structure blocks (Cointault et al., 2008b). The main 
drawback is the restricted data acquisition pipeline required for 
the system to operate. For instance, prior knowledge of the 
environment is required to achieve an optimum result; moreover, 
even with the current restrictions, only a small number of images 

were selected based on which the authors felt presented “good 
illumination.” In a similar approach (Cointault and Gouton, 2007; 
Cointault et al., 2008a; Fernandez-Gallego et al., 2018), a supervised 
classification method was proposed to distinguish three classes of 
leaves, soil, and ears. In the end, morphological operations were 
applied for counting the number of blobs (potentially ears) from 
the binary image with the preassumptions of the shapes of the 
ears. Each pixel is represented by color and texture properties. As 
suggested, a hybrid space is constructed to address a sensitivity 
of color properties to the intensity variations in an image. The 
method has been tested on a limited number of wheat varieties 
without awns with a low level of wheat ear density; nonetheless, 
no evaluation was carried out to validate the accuracy of the 
proposed method with the manual measurements. In another 
study, Fernandez-Gallego et al. (2018) applied Fourier filtering and 
two-dimensional discrete Fast Fourier transform (FFT) (Cooley 
and Tukey, 1965) to distinguish wheat ears from the background. 
The approach performs, in three main steps of high-pass filtering, 
thresholding, and mathematical morphology, operations to 
eliminate “nonwheat” pixel groups, which are small and scattered. 
The threshold is predefined by a user to determine if pixels should 
be identified as foreground (ears) or background (leaf, soil, etc.). 
The drawback is that a wrong choice of the threshold value may 
result in distortion and low performance of the whole system in 
different environments. Finally, Zhou et al. (2018) proposed a twin-
support-vector machine segmentation method to segment wheat 
ears from visible images. The method relies on the hand-engineered 
features, including color, texture, and edge histogram descriptor. 
The images were collected from the side at 45 degrees above the 
horizontal because color and texture were suggested being typically 
more substantial from this perspective.

At the core, the success of any of the current state-of-the-art 
methods crucially depends on the feature representation of the 
images. While the aforementioned methods use handcrafted 
features to represent images by encoding of various features 
including corners, edges, texture, and color schemes, the features are 
tailored to a specific condition, and their effectiveness is inherently 
limited as these approaches mainly operate at the primitive level. 
Unlike conventional feature extraction techniques, which often 
use shallow architecture and solely rely on human-crafted features, 
relatively new learning-based methods based on convolutional 
neural networks (CNNs) show promising results for visual analysis. 
CNN models attempt to model high-level abstractions in images 
by employing deep architectures composed of multiple nonlinear 
transformations (Lomonaco, 2015; Schmidhuber, 2015). In CNN, 
features are extracted at multiple levels and allow the system to 
learn complex functions that directly map raw sensory input data 
to the output, without relying on hand-engineered features using 
domain knowledge. The convolution is an operation of applying 
the filter on a single color image to enhance some of its features. 
One-to-one convolutions take a single image as an input and return 
a single image as an output. However, in CNN, different kinds of 
convolutions exist. For instance, in one-to-many convolutions, 
a single input image is passed to k filters; then each filter is used 
to generate a new output image. Alternatively, in many-to-many 
convolutions, there are n inputs and m outputs where each output 
image is connected to one or more input images characterized by 
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k filters (Lomonaco, 2015). Potentially, this capability makes the 
deep neural network more robust to different types of variations in 
digital images. As a result, the model can adapt to such differences 
and has the capacity to learn complex models.

In recent years, CNNs have shown usefulness in a large variety 
of natural language processing and computer vision applications, 
including segmentation and image classification, and often 
surpassed state-of-the-art techniques (Krizhevsky et al., 2012; 
Mikolov et al., 2013; Lomonaco, 2015). Despite the promising 
outcomes of deep learning in computer vision, there are some 
limitations in implementing a deep neural network. Deep learning 
approaches are usually computationally intensive, and their 
performance relies on the quantity and quality of training datasets. 
In most cases, for deep learning to show great advantages, training 
datasets of tens of thousands to millions are required (Deng et al., 
2009; Ubbens et al., 2018). Having a large training dataset provides 
deep learning models with extensive variety, which leads to an 
effective learned representation as a result. Deep neural networks 
(DNN) are an area of active research, and applications to plant 
research are still in the early stages. There are few deep learning 
applications successfully applied in the field of image-based plant 
phenotyping (Pound et al., 2017; Madec et al., 2019). The small 
body of existing applications includes plant disease detection 
on leaf images (Mohanty et al., 2016), rice panicle segmentation 
(Xiong et al., 2017), leaf counting in rosette plants (Ubbens et al., 
2018), wheat ear counting (Madec et al., 2019), and localizing root 
and shoot tips (Pound et al., 2017).

This study utilizes a novel visual-based approach based on 
linear iterative clustering and deep CNNs to identify and count the 
number of wheat spikes. The proposed method can also calculate the 
number of wheat ears per square meter when a ground standard is 
present within the image. The proposed method, called DeepCount, 
alleviates the limitations and lack of separability inherent in existing 
wheat ear-counting methods and minimize the constraints of 
capturing digital images taken under natural outdoor environments. 

The approach presented will pave the way for computationally 
efficient and significantly faster approaches compared to the manual 
techniques, leading to reducing the labor involved and enabling 
high-throughput analysis.

MATERIALS AND METHODOLOGY

In this study, we explore the feasibility of automatically identifying 
wheat spikes under natural in-field conditions based on a completely 
data-driven framework. The main contributions of the work can be 
summarized as follows:

• Building a high-quality dataset of annotated spikes and utilizing 
them to train our CNN model.

• Developing a deep learning model called DeepCount that can 
learn from the training dataset and then identify and segment 
spikes from different wheat cultivars (awns and no awns).

• Demonstrating that the constructed model can automatically 
quantify the number of spikes within visible images under 
natural field environments and calculate the number of ears 
per square meter when a ground standard is present.

Quantification of spikes may be achieved in two ways. One 
approach is localization/detection of spikes, which provides not only 
the prediction for the whole image but also additional information 
regarding the spatial location of the spikes. Another technique 
is semantic segmentation (pixel-wise segmentation), which 
understands an image at pixel level. It enables dense predictions 
inferring labels of every pixel in the image, so that each pixel is 
labeled as an ear or background. Inspired by the success of the 
recent deep learning algorithms in computer vision applications, we 
propose a CNN approach combined with a superpixels technique 
known as simple linear iterative clustering (SLIC) (Achanta et al., 
2010). The core idea is to overcome the computational complexity by 
using SLIC to generate homogeneous regions instead of processing 

FIGURE 1 | Schematic representation of the DeepCount method. 
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at a pixel level. The homogeneous regions generated by SLIC will 
contain more information about the color and texture and are less 
sensitive to noise as opposed to pixel-level analysis. It also reduces 
the complexity of subsequent ear detection and localization tasks. 
The generated regions are later used as input data for the CNNs. 
The network is capable of not only recognizing spikes but also 
delineating the boundaries of each spike with the canopy based 
on dense pixel level predictions. Figure 1 illustrates an end-to-end 
wheat ear quantification, including the offline training and online 
ear segmentation and counting. In the following section, we will 
describe the data collection/annotation process and the model 
architecture developed to localize wheat spikes within images and 
quantify them.

Experimental Materials
The experiments were carried out at Rothamsted Research, 
UK (51°48′34.56′′N, 0°21′22.68′′W) in two fields, Great Field 
(Field Scanalyzer area) and Black Horse. Two experiments were 
conducted under the Field Scanalyzer platform (Virlet et al., 2016) 
during the growing season in 2014–2015 (hereafter referred to as 
2015-FS dataset) and 2015–2016 (hereafter referred to as 2016-
FS dataset). Six wheat cultivars (Triticum aestivum L. cv. Avalon, 
Cadenza, Crusoe, Gatsby, Soissons, and Maris Widgeon) were sown 
on 6th November 2014 and 20th October 2015 at a planting density 
of 350 seeds/m2. Nitrogen (N) treatments were applied as ammonium 
nitrate in the spring at rates of 0 kgN.ha−1 (residual soil N; N1), 100 
kgN.ha−1 (N2), and 200 kgN.ha−1 (N3) for both years and 350 kgN.
ha−1 (N4, 2015-FS only). The plot sizes were 3 × 1 m in 2015-FS and 
2 × 1 m in 2016-FS.

The third experiment has been funded by DEFRA since 2008, 
known as WGIN (Wheat Genetic Improvement Network), to 
provide genetic and molecular resources for research in other 
DEFRA projects and for a wide range of wheat research projects 
in the United Kingdom. In this study, we collected images from 
the 2015–2016 experiment (hereafter referred to as 2016-WGIN 
dataset) at Black Horse field. Thirty wheat cultivars were grown 
at four nitrogen fertilizer treatments (N1, N2, N3, and N4), sown 
on 12th October 2015. Each repetition consists of a 9 × 3 m “main 
plot” and a 2.5 × 3 m “sampling plot” used for nondestructive 
measurement and destructive sampling, respectively. The three 
experiments in this study use a split plot design (with three 
blocks) and were managed by local agronomic practices.

Image Acquisition
The images were acquired under conditions of natural illumination at 
multiple stages of ear maturation with different canopy complexities 
achieved through varied nitrogen inputs. The tests were carried out in 

extreme lightning conditions with typical environmental challenges 
faced in the field for images taken by different cameras and optics with 
no direct scaling relationships. Table 1 summarizes the characteristics 
of the three trials carried out in this study. The camera models include 
different types of commercially available visible cameras with various 
spatial resolutions and configurations (Table 1).

The images for 2015-FS and 2016-FS were collected by the 
Scanalyzer onboard visible camera (color 12-bit Prosilica GT3300) 
at a resolution of 3,296 × 2,472 pixels. The camera is positioned 
perpendicular to the ground and was set up at a fixed distance to the 
ground (3.5 m) for the 2015-FS experiment and at a fixed distance to 
the top of the canopy (2.5 m) for the 2016-FS. The camera is set up 
in auto-exposure mode to compensate for outdoor lighting changes.

In the 2016-WGIN experiment, two handheld cameras, Canon 
G12 and Sony Nex-7, were used to acquire visible images with the 
resolution of 3,648 × 2,736, and 6,000 × 3,376 pixels, respectively 
(Table 1). Similarly, to the Field Scanalyzer, the cameras were 
set up in an auto-exposure mode and held vertically over the 
canopy. In addition, a rapid and easy ground standard system 
was implemented by placing an A4 sheet over the canopy in the 
field of view of the camera lens (Figure 2B). The ground system 
was used to transform the total number of wheat ears within an 
image into the number of ears per square meter.

Evaluation
Two different evaluation methods were used and compared with 
the automatic ear-counting techniques. The first method is based 
on manual image-based annotation in which ears are manually 
counted on the images acquired by the Field Scanalyzer platform 
(2015-FS and 2016-FS datasets). Wheat ears were interactively 
marked using the VIA image annotator (Dutta et al., 2016), which 
enabled the automatic printing of the incremental number on each 
individual ear.

The second ground-truthing method is based on field manual 
measurements carried out for all three experiments. In the 2015-
FS and 2016-FS experiments, ears were manually counted on six 
rows of 1-m length, corresponding to the 1-m2 area, for each plot. 
In the 2016-WGIN trial, the number of ears per square meter was 
estimated based on the method presented in Pask et al. (2012). 
Samples of four rows of 1-meter length were cut at anthesis, then 
the ears per square meter were derived from the aboveground 
biomass (ABG) and the dry weight (DW) of the fertile culm:

 Ears/m AGB fertile culm (g)2 = (g/ m ) / DW_2
 

TABLE 1 | Characteristics of the three experiments considered in this study.

Dataset Plot Nitrogen
(kg/ha)

Image Camera Image size Focal length Resolution
(mm)

Date

2015-FS 72 0, 100, 200, 350 72 Prosilica GT 3300 
Allied Vision

3,296 × 2,474 50 mm 0.22–0.29 13/07/2015

2016-FS 54 0, 100, 200 54 Prosilica GT 3300 
Allied Vision

3,296 × 2,474 50 mm 0.26 29/06/2016

2016-WGIN 360 0, 100, 200, 350 78 Canon G12 3,648 × 2,736 6 mm 0.21–0.31 13/06/2016
121 SONY-NEX-7 6,000 × 3,376 18 mm 0.14–0.25 13/06/2016
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Figure 2 shows the representation of digital images of different 
wheat traits taken under the Field Scanalyzer platform (Figure 2C) 
and a handheld DSLR camera (Figures 2A, B). As depicted in 
the sample images, the data were collected in different weather 
conditions, with illumination changes from cultivars with differences 
in ear shapes and sizes.

Annotation and Generating the 
Training Dataset
The fundamental part of any supervised decision-making system, 
such as CNN, is how to specify the output based on a given 
set of inputs or training dataset. In practice, hundreds or even 
thousands of annotated training datasets are required to make 
a good training of CNN. Even though high-throughput image-
based plant phenotyping systems like Field Scanalyzer (Virlet 
et al., 2016) exist and generate a huge amount of image data daily, 
a large set of annotated images with ground-truth are not widely 
accessible yet within the plant phenotyping community.

To expose our CNN model to a wider variety of images, the 
data were collected by a handheld DSLR Canon Camera with 
a resolution of 5,760 × 3,840 pixels from diverse Limagrain field 
trials at different stages from heading to maturation under different 
ambient illumination condition. The broad range of images 
enabled the constitution of a “strong” training dataset, covering 
the ears development from multiple wheat varieties, making the 
detection model more robust and thereby increasing the precision 
of the wheat spikes quantification. The graphical image annotation 

tool, VGG image annotator (VIA) (Dutta et al., 2016), was used 
to draw boxes around the background, such as leaves, stems, and 
soil, (Figure 3C), and draw strokes using the polygon tool around 
ears (Figures 3A, B). Here, 330 representative wheat images are 
selected to build the annotated training dataset, in which the 
illumination variations, weather conditions, wheat ears shapes, and 
reproductive stages are all considered. As a result, 24,938 ears and 
30,639 backgrounds are manually annotated.

The next step is to combat the high expense of creating a training 
source with their corresponding labels. The augmentation model is 
constructed to simulate the illumination change by adjusting the HSV 
color space and applying various transformations, such as random 
rotation, cropping, flipping, zooming, scaling, and brightness to 
the images that are already in the training dataset (Figure 4). In 
addition, a nonlinear operation known as gamma correction (also 
referred to as gamma encoding or gamma compression) (Rahman 
et al., 2016) was applied to encode and decode luminance in the 
images. The augmented images are appended to the existing 
training samples, from which 20% of the sample set is randomly 
selected as the validation set (145,000 patches), and the remaining 
80% is selected as the training set (580,000 patches; 300,000 ears and 
280,000 backgrounds).

Superpixels Segmentation
Most computer vision algorithms use pixel grid as the underlying 
representation of an image. However, grids of pixels do not hold a 
semantic meaning of an image nor represent a natural representation 

FIGURE 2 | Overhead view digital images of wheat cultivars with different canopy complexities taken in the field using the handheld DSLR camera (A and B) and 
the Field Scanalyzer platform (C). An A4 sheet is placed over the canopy for each image as a ground standard system to transform the total number of wheat ears 
in the image into the number of ears per square meter.
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of a visual scene. It would be more efficient to work with perceptually 
meaningful entities obtained from a low-level grouping process. 
Superpixel algorithms aim to group pixels into perceptually 
meaningful regions based on their similarity characteristics, such 
as color and texture distributions. Superpixel techniques will reduce 
the complexity of images from thousands to millions of pixels to only 
a few hundred superpixels; thereby, it will diminish the influence 

of noise and potentially improves the computational efficiency of 
vision algorithms.

In light of the fundamental importance of superpixel algorithms 
in computer vision, many algorithms have been proposed in the 
literature (Achanta et al., 2010; Achanta et al., 2012, Li and Chen, 2015; 
Tu et  al.,  2018). The superpixel segmentation algorithms can 
be broadly categorized as graph-based segmentation and 

FIGURE 3 | Training patches. Examples of expert annotation of spikes for different wheat cultivars without awns (A), with awns (B), and backgrounds (e.g., soil, 
leaves) (C).

FIGURE 4 | Augmented samples of the same spike with various transformations, such as random zoom, rotation, flipping, brightness, and gamma correction. For example, 
1) the original image; 5 and 12) adjusted HSV color image; 6, 8, and 9) gamma color correction. 2-4, 7, 10, and 11) adjusted brightness samples Cropping, flipping, 
zooming, and scaling were applied to all images randomly with the probability of 0.5.
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clustering-based segmentation. In graph-based techniques, 
an image is considered a planar graph, where pixel vertices and 
pixel affinities are computed for connected pixels (Felzenszwalb 
and Huttenlocher, 2004; Ren and Malik, 2005). Alternatively, 
the clustering-based method starts with a rough initial clustering 
of pixels, then the clusters are refined iteratively until some 
convergence criterion is met to form superpixels (Achanta et al., 
2010; den Bergh et al., 2015; Achanta and Susstrunk, 2017).

In this study, we use SLIC (Achanta et al., 2010; Achanta et al., 
2012), which is fast and memory efficient for generating superpixels 
(Achanta et al., 2012). As opposed to other superpixels algorithms 
with many difficult-to-tune parameters, SLIC is simple to use in 
which the number of desired superpixels is its sole parameter. 
The spectral-spatial distance is measured between each pixel 
to its cluster center and then the cluster centers are updated using 
K-means clustering technique. For N prespecified superpixels, 
clustering pixels are represented based on their color similarity 
(CIELAB colour space) and pixel proximity in the 5-D space Ci = [li, 
ai, bi, xi, yi] where i = [1, N]. In this study, based on our experience, the 
number of superpixels is set to N = 3,000 to avoid oversegmentation 
and to produce roughly equally sized superpixels. We can also 
control the trade-off between the compactness of the superpixels 
and boundary adherence (Achanta et al., 2012). It means SLIC can 
prevent small or disconnected areas or islands within a larger region 
(Figure 5 and 6A.1, B.1). The candidate regions are then used as 
inputs for the CNN model to perform pixel-wise segmentation. 
Feeding the network with image descriptors extracted from the 
candidate regions enables the model to learn local information, such 
as texture and shape, rather than using the pixel grids.

Architecture of the Convolutional Neural 
Network Model
As previously mentioned, SLIC reduces the computational 
complexity by partitioning an image into homogeneous regions, 
instead of extracting features at the pixel level (Figure 5). 
However, the SLIC method, like many other superpixel techniques 
(Felzenszwalb and Huttenlocher, 2004; Ren and Malik, 2005; Li and 
Chen, 2015; Wang et al., 2017), relies on handcrafted features, thus 
often fails to separate objects within an image in appropriate regions 

(Figures 5C and 6A.1). To address the limitation, the proposed 
CNN model classifies each superpixel at a pixel level as opposed 
to characterizing the content of the entire candidate region and 
predict a single label. The network takes each candidate region 
as input data and outputs a pixel level segmented of the region 
(Figures 6A.2, B.2).

In general, semantic segmentation architecture in CNN 
can be broadly categorized as an encoder network followed by 
a decoder network. The encoder network gradually reduces the 
spatial dimension of the input by down-sampling and developing 
lower-resolution feature mappings, which are learned to be 
highly efficient at discriminating between classes. To get the 
dense pixel-wise classification, the decoder network semantically 
projects the discriminative features learned by the encoder onto 
the pixel space by up-sampling the feature representations into 
a full-resolution segmentation map. There are usually shortcut 
connections from encoder to decoder to help the decoder recover 
the object details better.

In this work, we leverage an existing model known as U-Net, 
which was originally designed for biomedical image segmentation 
for identifying lung nodules in a computed tomography (CT) scan 
(Ronneberger et al., 2015). The U-Net architecture consists of a 
contracting path to capture context and an asymmetric expanding 
path that enables precise localization. The model concatenates 
the encoder feature maps to up-sampled feature maps from the 
decoder at every stage. The concatenation allows the decoder at 
each stage to learn back relevant features that are lost when pooled 
in the encoder. Normally, U-Net is trained from scratch starting 
with randomly initialized weights (optimization variables). Since 
up-sampling in the decoder is a sparse operation, we need a good 
prior from earlier stages to better represent the localization.

Since transfer learning proved to be a powerful technique for 
semantic segmentation models, such as U-Net-like architectures 
(Iglovikov and Shvets, 2018), we used a pretrained VGG model 
(Simonyan and Zisserman, 2014) without fully connected layers 
as its encoder mechanism followed a decoder network as the 
original U-Net to further improve the performance of pixel level 
dense classification. The VGG family of CNN can be characterized 
by two components: 1) all convolutional layers in the network use 

FIGURE 5 | (A-C) Examples of superpixel segmentation using the SLIC technique. C) illustrates the imperfection in the SLIC method.
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3 × 3 filters; and 2) multiple convolutional layer sets are stacking 
together before applying a pooling operation. Normally, the 
number of consecutive convolutional layers increases the deeper 
the network goes (Simonyan and Zisserman, 2014). The VGG-
16 used in this work was proposed by a group of researchers in 
Oxford and the winner of the ImageNet competition (Deng et al., 
2009) in 2013. It uses a stack of convolution layers with small 
receptive fields in the first layers instead of few layers with big 
receptive fields.

By using an existing architecture in which the weights are 
initialized on big datasets, such as ImageNet, the network can 
converge faster and learn more general filters. To construct the 
encoder, the fully connected layers were removed and replaced 
with a single convolutional layer of 512 channels that serves as a 
bottleneck part of the network to separate the encoder from the 
decoder. The network contains a total of four max-pooling layers. 
For each of the pooling layers, the spatial size of the feature map 
is reduced by a factor of 2 vertically and horizontally.

The decoder part of the network consists of up-sample and 
concatenation with an output of the corresponding part of the 
decoder followed by regular convolution operations (Figure  7). 
Since the pretrained VGG model takes an input of 224 × 224 pixels 
with three channels, the irregular superpixels need to be resized to 
achieve proper input into the model. The network takes superpixels 
as inputs and outputs a segmented version of the inputs. Each pixel 
is labeled as 1 (wheat spikes) or 0 (background), which generated 
a binary image (Figure 8). After the semantic segmentation, the 
median filter is applied to minimize the noise and remove the 

result of misclassification over the binary image. In this process, a 
window size of seven pixels slides over the entire image, pixel by 
pixel. Then, the pixel values from the window are sorted numerically 
and replaced with a median value of neighboring pixels. In the end, 
for contour quantification, a classical image processing algorithm 
known as the watershed technique is used for postprocessing for 
further segmentation of individual contour.

Loss Function
The role of the loss function in our parameterized learning was 
investigated. Parameterized learning will allow us to take sets of 
input data (ears and background) and their class labels and learn a 
function that maps the input to the output predictions by defining a 
set of parameters and optimizing over them. At a basic level, a loss 
function quantifies how good or bad a given predictor is at classifying 
the input data in our dataset (Marsland, 2009; Harrington, 2012).

The binary cross-entropy loss function is used to quantify 
how accurate the CNN method is at classifying the input data in 
our dataset (a brief overview of the cross-entropy loss function 
and the calculations are provided in the supplementary data). 
A visualization of the loss function plotted over time for our 
model is shown in Figure 9A visualization of training accuracy, 
training loss, validation accuracy, and validation loss plotted 
over time for the model is plotted after 15 epochs.1 The smaller 

1 Epoch is a hyperparameter which is defined before training a neural network 
learning model. It means the learning algorithm has seen each of the training 
data points N times. 

FIGURE 6 | A.1 and B.1 show the SLIC superpixel outputs. A.2 and B.2 are the results of pixel-wise semantic segmentations. The red circle illustrates the 
imperfection in the SLIC method.
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the loss, the better a job the model/classifier is at modeling the 
relationship between the input data and output class labels. As 
shown in Figure 9, loss starts slightly high but then decreases 
rapidly and continues to stay low when trained on our dataset. 
As expected, the usage of the pretrained VGG model helps the 
network to converge faster, as a result, we obtained 98% accuracy 
after only 15 epochs. Furthermore, the training and validation 
curves match each other very closely, indicating that there is no 
issue of overfitting with the training process.

Handcrafted Features Extraction 
Techniques for Wheat Ear Quantification
A handcrafted image-based method presented in Jansen et al. 
(2015) was compared with the proposed DeepCount model. The 
technique is based on an edge detection technique and several 
morphological image-processing operations. First, the image 
is converted from a 3-D RGB image (Figure 10A) into a 2-D 
grayscale representation of the image (Figure 10B), then the 
edge detection based on Sobel kernel (Kaufman et al., 1994) 

FIGURE 7 | Encoder-decoder neural network architecture is also known as U-Net where VGG-16 neural network without fully connected layers as its encoder. The 
number of channels increases stage by stage on the left part while it decreases stage by stage on the right decoding part. The arrows show a transfer of information 
from each encoding layer and concatenating it to a corresponding decoding part.

FIGURE 8 | A.1 and B.1 show the SLIC superpixel outputs. A.2 and B.2 are the output of the DeepCount model. The red circle illustrates the imperfection in the SLIC method.
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performs a 2-D spatial gradient measurement on the gray image 
to emphasize regions of high spatial frequency that correspond 
to edges that return a binary image (Figure 10C). Edges may 
correspond to boundaries of an object, boundaries of shadowing 
or lighting conditions, and/or boundaries of parts within an 
object in an image. The next steps are morphological operations, 
including dilation to increase the size of foreground pixels (Figure 
10D), which is useful for joining broken parts of the image. Filling 
the holes (Figure 10E) and removing small objects (Figure 10F) 
are the fifth and sixth steps. The final step is erosion, where pixels 
near the boundary of an object in the image will be discarded. A 

foreground pixel in the input image will be kept only if all pixels 
inside the structuring element are bigger than zero; otherwise, the 
pixels are set to zero (Figure 10G). In the end, a list of all contours 
is returned, and their numbers are printed out on the RGB image 
(Figure 10H). The handcrafted method will be referred to hereafter 
as the edge method.

RESULTS AND DISCUSSIONS

The performance of the proposed DeepCount model (Figure 
11) was evaluated against the hand-engineered edge detection 
method and two manual evaluation techniques. The first 
technique was based on manual counting of ears within visible 
images while the second evaluation method was the field-based 
measurements. In addition, the ear-counting performances 
were quantified based on the coefficient of determination 
(R2), the root means squared error (RMSE), the relative RMSE 
(rRMSE), and the bias:
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FIGURE 10 | The handcrafted ear-counting method. (A) Original image. (B) Grayscale image. (C) Result after applying edge detection technique. (D) Dilate the image. 
(E) Fill the holes. (F) Filtering by removing small objects (noises). (G) Erode and smooth the image. (H) Counting the contours/ears.

FIGURE 9 | A plot of loss and accuracy throughout 15 epochs with a 1e-4 
learning rate. Using of pretrained VGG model on ImageNet dataset helped the 
model to converge quicker.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


DeepCount: Automatic Wheat Spikes CountingSadeghi-Tehran et al.

11 September 2019 | Volume 10 | Article 1176Frontiers in Plant Science | www.frontiersin.org

where N denotes the number of images, and ri and ei are the 
reference and estimated counts for image i, respectively.

The algorithm was tested on a workstation PC running a 
Centos7 operating system with 10-core Intel Xeon CPU, 3.6 GHz 
per CPU, 64 GB of memory, and Nvidia Quadro M5000 video card. 
The CNN framework was developed in python using OpenCV 
library and the Keras framework. While there is no restriction 
in the spatial resolution of the test images, the segmentation and 
quantification of wheat spikes will take approximately 90–100 
seconds on a single image with the resolution of 6,000 × 3,376 
pixels. The CUDA parallel acceleration was also used to improve 
the processing efficiency, especially for training the model. 
CUDA is a parallel computing platform created by NVIDIA, and 
the cuDNN library was developed for deep learning with GPU 
acceleration. The current method also has the potential to be 
faster in the future by CPU multithreading utilization.

DeepCount Versus Handcrafted 
Edge Method
First, the performance of the automatic image-based methods 
(DeepCount and the handcrafted technique presented in section 
2.7) was compared against manual image-based counting. In 
the image-based evaluation, 33,011 ears were manually counted 
from 126 images. The 2015-FS and 2016-FS trials include 72 and 
54 images in which 22,284 and 10,727 ears were manually counted 
on the images, respectively.

Figures 12A, B illustrate the linear regression between the 
automatic methods and the first evaluation method tested on 
the 126 images. The results showed a high correlation between the 
automatic methods and the manual image-based counting. The 
DeepCount model has a higher coefficient of determination and 
lower RMSE and rRMSE (R2 = 0.94, RMSE = 25.1, rRMSE = 11%) 

than the edge detection method (R2 = 0.75, RMSE = 45.5, rRMSE = 
21%), indicating that the DeepCount technique was closer to the 
visual observation. In addition, the bias values of -13.1 and -13.2 
for both methods show a slight overestimation of the number of 
ears compared to the visual assessment (Figures 12A, B).

The visual inspection of the results suggested that the edge method 
had more false positives than the DeepCount model. It was observed 
that in some cases, where leaves or objects have a clearer contrast 
than their surroundings, they were misidentified as ears. This was 
expected since the edge detection is defined as discontinuities in 
pixel intensity, in other words, a sharp difference and change in pixel 
values; thus, the edge detection method is more prone to noise. This 
may also pose more difficulties for the edge method to identify ears 
with awns (e.g., Soissons cv). The DeepCount model, on the other 
hand, had less false positive, regardless of the cultivars or level of 
nitrogen. Furthermore, visual inspection showed that the fraction 
of false negatives, in both automatic methods, appeared to be the 
failure of the watershed method to separate ears exposed to a severe 
degree of overlap.

While Fernandez-Gallego et al. (2018) argued that the edge 
method is unlikely to be reliable due to loss of RGB information 
during its color transformation to gray scale, our results indicated 
otherwise. The edge method showed similar performances 
compared to the method presented by the authors. The success rate 
metric (μ) used by the authors to evaluate the performance of their 
method showed 31.96–92.39% on RGB images and 65.36–93.01% 
on grayscale images, whereas we achieved a similar range of values 
with 86% and 81% in the 2015-FS and 2016-FS experiments, 
respectively. Moreover, the R2 values between the edge method 
and the two evaluation techniques (image-based counting and 
ground-based measurements) are high, with R2 = 0.75 and 0.60, 
respectively (Figures 12A, C). Nevertheless, the DeepCount model 

FIGURE 11 | Examples of result images. (A) WGIN experiment with an A4 sheet used as a ground standard. (B) Field Scanalyzer experiment in 2015.
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outperformed the edge method in every experiment carried out 
in this study. Our results are also in agreement with the method 
presented by Madec et al. (2019). The authors obtained R2 = 0.91 
and rRMSE = 5.3% from their manual image-based ear counting, 
which is also very similar to the 2016-FS dataset, where the 
results showed R2 = 0.97 and rRMSE = 7% (Figure S1). We also 
found similar outcomes between our methods and the technique 
presented by Zhou et al. (2018); however, as the performance 
metrics differ, a quantitative comparison is not possible.

Furthermore, the performances of the edge and DeepCount 
methods were validated against the ground-based measurements 
after the numbers of ears were converted into ears per square 
meter. As shown in Figures 12C, D, the performance degraded 
slightly compared to the manual image-based measurements 
(Figures 12A, B). In the edge method, R2 reduced from 0.75 to 
0.60, whereas the performance in the DeepCount model dropped 
from R2 = 0.94 to 0.86. The edge and DeepCount methods had a 
similar bias (36 and 35.3, respectively), which indicated that both 
methods underestimated the number of ears per square meter 

compared to the field data. In addition, the RMSE increased 
from 45.5 to 104.9 ears/m2 and 25.1 to 71.4 ears/m2 in both 
approaches, respectively.

A similar decrease in performance was also observed in 
Madec et al. (2019). This is partly attributed to the relatively 
different observation area used for the ground measurements 
and the visible images. The spatial representativeness was 
therefore limited to get an accurate comparison between the 
automatic counting and field-based measurements that were not 
measured at the same place over plots. For instance, in the 2015-
FS trial, the ground-based measurements were obtained from 
six rows, including the edge rows; however, the same area was 
not taken by the Field Scanalyzer. The number of rows captured 
in the images varies between 3.5 and 5 rows (Figure 2C). An 
additional factor may also be due to the fact that some ears are 
hidden deep down inside canopies or partially visible on the 
borders of images, which pose more difficulties for the automatic 
models to identify them. Further improvement can be achieved 
between the automatic counting and direct counting in the field 

FIGURE 12 | Comparison of the number of ears visually annotated on the images (Annotation – A, B) and the number of ears per meter square (C, D) with the number of 
ears estimated by the edge (A, C) and DeepCount (B, D) methods for the two datasets collected with the Field Scanalyzer in 2015 (blue dots) and 2016 (red triangles).
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if the same protocol is followed by both methods during data 
acquisition. For example, in the 2016-FS trial, the results showed 
an improvement in performance when images were consistently 
taken from four middle rows in every plot (Table 2).

DeepCount Model Versus Field-Based 
Measurements
The performance of the DeepCount model was further evaluated 
against the ground-based measurements in each individual trial and 
all together. As shown in Figure 13, the coefficient of determination 
was higher in the 2016-FS experiment (R2 = 0.89) compared to the 
2015-FS (R2 = 0.70) and 2016-WGIN (R2 = 0.57) trials. Also, the 
lowest bias was obtained in the 2016-FS (bias = 3.6), followed by 
2016-WGIN and 2015-FS with 37.4 and 59.14, respectively. As 
mentioned in the previous section, the notable difference in bias 
between the 2016-FS and the other trials may reside in the fact that, 
first, the measurements on the field and the visible images were 
obtained from the same area; also, in the 2016-FS, the camera was 
set up at a fixed distance to the top of a canopy (2.5 m) regardless 
of the height of the plots. As opposed to the 2015-FS trial, where 
the camera was set up at a fixed distance to the ground (3.5 m), or 
in the 2016-WGIN trial, where the distance between the handheld 
cameras and top of canopies vary from one plot to another.

Furthermore, the lower performance in the 2016-WGIN trial 
may be associated with several factors. First, improper placement of 
an A4 sheet used as a ground standard to transform the total number 
of wheat ears in an image into the number of ears per square meter. 
To have an accurate ear density estimation, the sheet should be 
placed perpendicular to the handheld camera’s viewing angle, 

which was not the case in many images taken from the WGIN-
2016 trial. In addition, in some images, the ground standard was 
partially obstructed by leaves and wheat ears. Second, the perspective 
of the images may also account for the slight lack of correlation 
between the proposed model and the field measurements. While 
focal length does not change perspective per se, it does change 
how the ears are represented; thus, it is important to capture the 
scene optimally. The ultra-wide angle focal length used to capture 
images from 2016-WGIN (6 and 18 mm) provided a bigger field 
of coverage but caused a perspective distortion, particularly on the 
image borders. Last but not least, the manual field measurements 
may have introduced human error into obtained data.

Despite the above uncertainties, the DeepCount algorithm 
showed the same accuracy in every experiment (rRMSE = 15% ± 
1) regardless of the number of ears identified in the images (2015-
FS: 309–655, 2016-FS: 183–634, 2016-WGIN: 238–821) and types 
of cameras with different spatial resolutions. The same accuracy 
was also obtained when all three experiments were combined 
together (R2 = 0.72 and rRMSE = 15%). As shown in Table 1, 
two cameras (Canon and Sony) with different spatial resolutions 
and lens focal lengths were used to acquire images. In the Canon 
camera, we observed lower R2 but higher bias compared to the 
Sony camera (R2 = 0.48 and 0.60, respectively; bias = 43.2 and 
33.7, respectively; Figure 13C); nevertheless, both show similar 
rRMSE (15% and 16%, respectively; Figure  13C). Figure 13C 
depicted outliers for both cameras, but it is not possible to 
attribute them to one of the cameras or a human error.

Overall, the DeepCount algorithm showed a solid performance 
in identifying wheat spikes at early or later growth stages. Visual 
inspection of results also showed that the proposed CNN model 
was able to discriminate ears and background (soil, leaves, etc.) 
and classified them on a pixel level. The proposed model was 
capable of minimizing effects related to brightness, shadow, ear 
size and shape, awn or awnless cultivars, and even overlap ears 
in most scenarios. It should be highlighted that the strength of 
the algorithm also resides in its training dataset, where images 
were collected by a third party on completely independent trials, 
different spatial resolutions, and different varieties than the wheat 
materials in this study. An improvement in the performance 
would be expected via the optimization of data acquisition process 
both in the field and within images. We believe that the optimum 
configuration is to take images at 2.0–2.5 m above canopies 
using the focal length between 35 and 60 mm, which is similar 
to what human eyes see. Moreover, we noticed that the textural 
information will fade away when spatial resolution is below 0.2–
0.3 mm, which will degrade the identification performances.

The Effect of Nitrogen Rate on the 
Performance of the DeepCount Model
We also investigated the effect of nitrogen on the performance of 
the DeepCount method. It was expected that the performance of 
the algorithm declines with the increase of nitrogen use since the 
canopies with a higher level of nitrogen have a higher ear density 
in which ears are more overlapped and clustered; however, the 
results showed otherwise. As depicted in Table 2, the overall N3 
and N4 data had a lower R2 (0.53 and 0.60, respectively) compared 

TABLE 2 | Comparison between the number of ears per square meter counting 
from the field and the number of ears estimated by the DeepCount model for the 
three datasets collected separately and combined for each of the nitrogen levels. 
A and B are the slope and the offset of the regression line, respectively.

  N1 N2 N3 N4

2015-FS a 1.16 0.96 0.64 0.68
b -18.40 55.22 263.06 282.56
R2 0.58 0.46 0.15 0.22

RMSE 61.50 60.30 92.20 122.90
rRMSE 13% 10% 14% 17%

Bias 42.30 35.20 58.90 100.10
2016-FS a 0.75 1.10 0.93  

b 45.23 -16.13 39.29  
R2 0.59 0.75 0.89  

RMSE 41.00 43.80 32.40  
rRMSE 22% 10% 7%  

Bias -19.60 20.20 9.70  
2016-WGIN a  0.95 0.71 0.88

b  33.87 189.27 89.62
R2  0.42 0.41 0.63

RMSE  67.10 98.30 72.00
rRMSE  15% 17% 14%

Bias  15.60 57.90 30.80
All datasets a 1.28 1.06 0.83 0.96

b -76.43 -4.10 131.26 66.39
R2 0.81 0.69 0.53 0.60

RMSE 52.20 61.40 90.00 84.40
rRMSE 18% 13% 16% 15%

Bias 11.30 20.70 50.30 44.30
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FIGURE 13 | Comparison between the number of ears per square meter counting from the field and the number of ears estimated by the DeepCount model for the 
datasets collected with the Field Scanalyzer in 2015 (A – open circle) and in 2016 (B - open triangles), for the WGIN trial in 2016 (C – cross) separated by camera 
(D), for all datasets together (E), and for all datasets together separated by nitrogen level (F - N1: blue, N2: green, N3: red, and N4: purple).
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to the overall N1 and N2 data (0.81 and 0.69, respectively). On the 
other hand, the 2016-FS and 2016-WGIN trials do not follow the 
same pattern. For instance, in the 2016-FS trial, N3 had the highest 
R2 value (R2 = 0.89), followed by N2 and N1 (R2 = 0.75 and 0.59, 
respectively), whereas in the 2016-WGIN, the N4 treatment had the 
highest R2 (0.63). Furthermore, on closer inspection, the N3 and N4 
treatments showed the highest bias values and underestimation of 
the ear density in the 2015-FS, 2016-WGIN, and combined datasets.

Despite that, the accuracy of the overall experiments for each 
nitrogen treatment did not change too much as the rRMSE value 
for N1, N2, N3, and N4 were 18, 13, 16, and 15%, respectively. In 
the end, the results did not suggest that the performance of the 
DeepCount model degrades due to the complex canopies with a 
high level of ear density.

CONCLUSION

In this study, the main objective was to present an automatic model 
that quantifies the number of wheat ears in an image or image series. 
Regardless of the challenges posed by the acquisition protocol or 
environmental variations in the field, the model was able to deliver 
the total number of wheat ears within an image and/or estimated the 
number of ears per square meter if a ground standard was present in 
the image. We demonstrated the feasibility of the proposed technique 
in which the model was validated on numerous images taken from a 
broad range of spatial resolution images and various data acquisition 
systems. It has been shown that the model can be an essential tool 
for high-throughput analysis and has the potential to reduce labor 
involvement considerably. To minimize the uncertainties between 
the automatic methods and the ground-based measurements, 
we recommend to 1) have the same sample areas, 2) have a more 
reliable ground standard rather than an A4 sheet used in this study, 
3) take samples from a larger area for both image sampling and field 
measurements, 4) increase the spatial resolution of visible image to 
avoid losing the textural information, and 5) use the focal length of 
lens between 35 and 60 mm. The code can be found at https://github.
com/pouriast.

In the end, the aim is to increase the adoption of the 
approach by farmers and breeders by lowering the expense of 
camera equipment. The proposed model can be used as a high-
throughput post processing method to quantify the number 
of spikes for large-scale breeding programs. Furthermore, the 
automatic technique can facilitate farmers to make improved 
yield estimates, which can be used to plan requirements for 
grain harvest, transport, and storage. Subsequently, improved 
estimates could reduce post farm gate costs.

The DeepCount model benefitted from the CNN architecture 
and even though the model was trained to distinguish two 
classes, nothing prevents modifying the network to classify 
and segment more plants or species. Given adequate training 
model, the proposed semantic segmentation technique offers 
the advantages of versatility and may be applied to other types of 
applications, such as segmenting different parts of plant organs 
and vegetation and even detect diseases. In future work, we aim 
to envisage the use of thermal and hyperspectral images, which 
will offer additional information to RGB visible images.
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