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Abstract 

Background Methods for estimating variance components (VC) using restricted maximum likelihood (REML) typically 
require elements from the inverse of the coefficient matrix of the mixed model equations (MME). As genomic informa-
tion becomes more prevalent, the coefficient matrix of the MME becomes denser, presenting a challenge for analyzing 
large datasets. Thus, computational algorithms based on iterative solving and Monte Carlo approximation of the inverse 
of the coefficient matrix become appealing. While the standard average information REML (AI-REML) is known for its 
rapid convergence, its computational intensity imposes limitations. In particular, the standard AI-REML requires solv-
ing the MME for each VC, which can be computationally demanding, especially when dealing with complex models 
with many VC. To bridge this gap, here we (1) present a computationally efficient and tractable algorithm, named 
the augmented AI-REML, which facilitates the AI-REML by solving an augmented MME only once within each REML itera-
tion; and (2) implement this approach for VC estimation in a general framework of a multi-trait GBLUP model. VC estima-
tion was investigated based on the number of VC in the model, including a two-trait, three-trait, four-trait, and five-trait 
GBLUP model. We compared the augmented AI-REML with the standard AI-REML in terms of computing time per REML 
iteration. Direct and iterative solving methods were used to assess the advances of the augmented AI-REML.

Results When using the direct solving method, the augmented AI-REML and the standard AI-REML required similar 
computing times for models with a small number of VC (the two- and three-trait GBLUP model), while the augmented 
AI-REML demonstrated more notable reductions in computing time as the number of VC in the model increased. 
When using the iterative solving method, the augmented AI-REML demonstrated substantial improvements in com-
putational efficiency compared to the standard AI-REML. The elapsed time of each REML iteration was reduced 
by 75%, 84%, and 86% for the two-, three-, and four-trait GBLUP models, respectively.

Conclusions The augmented AI-REML can considerably reduce the computing time within each REML itera-
tion, particularly when using an iterative solver. Our results demonstrate the potential of the augmented AI-REML 
as an appealing approach for large-scale VC estimation in the genomic era.

Background
Accurate estimates of (co)variance components (VC) are 
crucial in computing precise genetic and genomic pre-
dictions. In the context of plant breeding, VC are typi-
cally estimated within each cycle of genomic prediction. 
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Conversely, in animal breeding, VC used for genomic 
prediction are often initially estimated using an ani-
mal model with pedigree information and subsequently 
updated at regular intervals. Although unbiased esti-
mates of VC can be obtained using complete data and a 
pedigree-based model, results from earlier studies have 
shown that ignoring the genomic information for popu-
lations undergoing intense genomic selection yielded 
biased estimates of VC [1, 2]. Notably, results from the 
U.S. dairy cattle genomic evaluation showed that pre-
diction bias decreased when heritability was reduced by 
about 50% to 70%, indicating an overestimated heritabil-
ity [3, 4]. Given these findings, there is a growing consen-
sus that the VC estimation needs to be done properly in 
the genomic era [5, 6]. Consequently, continued attention 
and refinement are essential for accurate VC estimation.

Restricted maximum likelihood (REML) serves as an 
important method in genetic analysis. It facilitates VC 
estimation within multivariate linear mixed models, 
which are commonly employed in the fields of animal 
and plant breeding to account for genetic correlations 
between traits and to make better use of available infor-
mation across traits. Unlike maximum likelihood esti-
mation, which estimates parameters using the likelihood 
function, REML adjusts the likelihood function using 
error contrasts. This adjustment accounts for the loss of 
degrees of freedom associated with estimating the fixed 
effects [7]. By using error contrasts, REML produces 
less biased estimates of VC, making it a widely applied 
approach in animal and plant breeding [5, 8–10].

Various approaches are available for maximizing the 
REML likelihood. The two most widely used methods 
are the expectation–maximization REML (EM-REML) 
and the average information REML (AI-REML) [11, 12]. 
EM-REML relies on the first derivatives of the REML 
log-likelihood, which make it straightforward to imple-
ment but suffers from slow convergence. In contrast, AI-
REML uses both the first and second derivatives of the 
REML log-likelihood, resulting in significantly quicker 
convergence rates [13]. All Newton-type methods such 
as AI-REML use the vector of first derivatives at the cur-
rent estimates, along with a matrix that characterizes the 
information content of the unknown VC in the analy-
sis. The popularity of AI-REML is attributed to its quick 
convergence compared to the EM-REML; however, AI-
REML is computationally more intensive [12, 13].

The analytical REML-based methods, typically used for 
VC estimation, require elements from the inverse coeffi-
cient matrix of the mixed model equations (MME), i.e., 
the prediction error (co)variances (PEV/PEC). In analy-
ses using pedigree-based models, computations can be 
efficiently conducted using sparse matrix techniques due 
to the sparse nature of the coefficient matrix of the MME 

[14]. However, with the increase of genomic informa-
tion and the emergence of high-dimensional datasets, the 
coefficient matrix of the MME tends to become denser. 
Consequently, animal and plant breeders working with 
large genomic data need to address this challenge of 
increased computational complexity.

To improve the computational efficiency and capa-
bility of REML analyses, various methods have been 
introduced. Masuda et al. [15] employed the supernodal 
methods to optimize the MME setting-up and trace 
computation in the AI-REML for genomic models and 
demonstrated that significant performance improve-
ment was achieved compared to the original AI-REML. 
Recently, Meyer [16] found that, with principal com-
ponents parameterization of the MME, the computing 
time of (co)variance components estimation for single-
step genomic best linear unbiased prediction (ssGBLUP) 
using AI-REML can be substantially reduced. Matilainen 
et  al. [17, 18] presented and implemented Monte Carlo 
(MC) approaches within the EM-REML and Newton-
type methods. These approaches allowed the approxima-
tion of PEV/PEC without explicitly making or inverting 
the MME coefficient matrix. Instead, the approximated 
PEV/PEC were computed by generating MC samples 
from distributions identical to those of the original data 
and the current VC estimates. They showed that the MC-
based REML methods using the preconditioned con-
jugate gradient (PCG) solver and the iteration on data 
method, is an efficient approach for VC estimation in 
large and complex models.

In the standard AI-REML framework, the Hessian 
matrix is replaced by an average information (AI) matrix, 
which is computed as the mean of both the observed and 
expected information matrices. This approach is widely 
adopted due to its simplicity, as it eliminates the need for 
intricate trace calculations required in both the observed 
and the expected information matrices. Instead, the AI 
matrix can be computed by solving the MME for each 
VC, with the data replaced by a working vector derived 
from the current random effect solutions [13]. However, 
this step can be computationally intensive for large sys-
tems (e.g. multi-trait random regression models), as it 
requires the construction of a work matrix obtained by 
repeatedly solving the MME with different right-hand 
sides (RHS). Thompson [19] identified this issue and pro-
posed an alternative approach, which only requires solv-
ing an augmented MME to obtain essential values for 
AI-REML.

In this study, we highlight the importance of the aug-
mented AI-REML method, as previously proposed by 
Thompson [19]. In particular, we demonstrate the advan-
tages of the augmented AI-REML over the standard AI-
REML. Unlike the standard AI-REML, the augmented 
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AI-REML can bypass the need to construct the work-
ing matrix (hereinafter referred to as the T matrix) and 
provide a more flexible framework to achieve the same 
information matrix with reduced computational cost. 
Furthermore, we illustrate how the augmented AI-REML 
differs from the standard AI-REML in the way it updates 
the VC estimates during each iteration (prototype code 
provided). We investigate the conditions under which the 
augmented AI-REML can significantly reduce computa-
tional requirements compared to the standard AI-REML. 
In addition, we explore different solving strategies (both 
direct and iterative) within the AI-REML framework to 
enhance computational efficiency. Therefore, the aims 
of this study were: (1) to present a computationally effi-
cient algorithm of augmented AI-REML, which stream-
lines the VC estimation by solving an augmented MME 
only once per AI-REML iteration; and (2) to apply this 
approach in VC estimation in a general framework for a 
multi-trait GBLUP model.

Methods
Statistical model
Consider a multi-trait GBLUP model [20] for l traits:

where y is the vector of observations for the l traits, with 
n records for each trait, b is the vector of fixed effects, 
u is the vector of random genomic breeding values, and 
e is the vector of random residuals. The design matrices 
X and Z relate the observations to the fixed and ran-
dom effects, respectively. The random effects u and e are 
assumed to be independent of each other: u ∼ N (0,G) 
and e ∼ N (0,R) , where G = G0 ⊗Grm , G0 is an l × l 
genetic variance covariance matrix, Grm is a q × q marker-
based genomic relationship matrix [20] with q equal to 
the number of genotyped individuals, R = R0 ⊗ I , R0 is 
a l × l residual variance covariance matrix, assuming all 
traits are recorded for each individual, I is an identity 
matrix size of n, and ⊗ denotes the Kronecker prod-
uct. We have assumed that all traits are observed for 
an individual. Furthermore, we have also assumed that 
all records to have the same residual covariance struc-
ture, i.e., a homogenous variance over individuals. These 
assumptions can easily be relaxed, but would unnecessar-
ily complicate the following derivations.

When the (co)variance matrices G0 and R0 are known, 
the fixed and random effects can be solved using the 
MME as follows:

(1)y = Xb+ Zu + e

(2)
[
X′R−1X X′R−1Z

Z
′

R−1X Z
′

R−1Z+G−1

][
b̂
û

]
=

[
X′R−1y

Z
′

R−1y

]

Let C be the coefficient matrix on the left-hand side 
(LHS) of the MME (2), s be the vector of fixed and ran-
dom effects, i.e., s′ =

[
b′ u′

]
 , and W =

[
X Z

]
 . Let ns 

be the total number of effects in s. Then, the MME (2) 
can be written as Cŝ = W

′

R−1y . Denote the vector of 
unknown VC by the parameter vector θ′ =

[
θ
′
G θ

′
R

]
 where 

θG = vech(G0) , θR = vech(R0) , and vech(×) represents the 
operator extracting the unique elements from a symmetric 
matrix and reshape them into a vector form. In our case, 
the θ vector of VC has v elements, containing l(l + 1)/2 
unique elements from G0 and R0 . Henceforth, we denote 
the i-th genetic (co)variance in θG as θGi and the i-th resid-
ual (co)variance in θR as θRi , respectively.

The standard AI REML
The REML log-likelihood function [21] can be written as 
follows:

where P = R−1 − R−1WC−1W′R−1 , V = ZGZ
′

+ R , 
and the constant const is independent of VC in θ. The 
REML estimates of θ̂ maximize the REML likelihood 
function logL

(
θ|y

)
 given the observed data.

Because complex models do not allow a closed-form 
solution of θ that maximizes logL

(
θ|y

)
 , iterative methods 

need to be used. The AI-REML [11, 12] updates VC esti-
mates from iteration k-1 to iteration k using the formula:

where θ̂
[k−1] is the vector of current VC estimates, � is 

the updating vector of VC estimates, IA
(
θ̂
[k−1]

)
 is the AI 

matrix at θ̂
[k−1] , and J

(
θ̂
[k−1]

)
 is the vector of first deriva-

tives of the REML log-likelihood (aka the gradient vec-
tor) with respect to θ evaluated at θ̂

[k−1] . The AI matrix is

where IO(θ) is the observed information matrix and IE(θ) 
is the expectation of the observed information matrix. 
Element (i,j), i,j = 1,…,v, of IO(θ) is

where tr( ×) represents the matrix trace operator. Ele-
ment (i,j), i,j = 1,…,v, of IE(θ) is

(3)
logL

(
θ|y

)
= const −

1

2
log|V| −

1

2
log

∣∣∣X′V−1X
∣∣∣−

1

2
y′Py

(4)
θ̂
[k]

=θ̂
[k−1]

+�

=θ̂
[k−1]

−

[
IA

(
θ̂
[k−1]

)]−1

J
(
θ̂
[k−1]

)

(5)IA(θ) =
1

2
(IO(θ)+ IE(θ))

(6)

∂2logL
(
θ|y

)

∂θi∂θj
= y′P

∂V

∂θi
P
∂V

∂θj
Py −

1

2
tr(P

∂V

∂θi
P
∂V

∂θj
)
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Hence, element (i,j) of the AI matrix is 12y
′P ∂V

∂θi
P ∂V
∂θj

Py 
[11, 13] and the AI matrix is

where the working matrices F =
[
f1 ... fv

]
 and 

T =
[
t1 ... tv

]
 have v columns but n and ns rows, respec-

tively. Column i in F is [18]

where ê = y − Xb̂− Zû . Column i in T is the solution to 
the MME (2) but using fi in place of the original y in the 
RHS (see Fig. 1 for illustration) [13]:

The gradient vector J(θ) element i, i = 1,…,v, is

Specifically, the gradient vector for the genetic VC is

where q is the number of levels within trait in the random 
effects u, i.e., the genomic breeding values in this study, 
U is a reshaped matrix of q by l of the u vector, and LG is 
an l by l matrix. The element (i,j) in LG is tr

(
KG,ij

)
 where 

KG,ij is an q by q submatrix of (Il ⊗G−1
rm)Cuu correspond-

ing to the random effects of trait i and j, Cuu is the sub-
matrix of C−1 corresponding to the random effects u in 
MME (2); Il is an l by l identity matrix, and ⊗ denotes the 
Kronecker product.

Correspondingly, the gradient vector for the residual VC 
is

(7)E

[
∂2logL

(
θ|y

)

∂θi∂θj

]
=

1

2
tr

(
P
∂V

∂θi
P
∂V

∂θj

)

(8)

IA(θ) =
1

2
F
′

PF

=
1

2

(
F′R−1F− F′R−1WC

−1
W′R−1F

)

=
1

2
(F′R−1F− (C−1W′R−1F)′W′R−1F)

=
1

2
(F′R−1F− T

′

W
′

R−1F)

(9)
fi =

∂V

∂θi
Py

=Z
∂G

∂θi
G−1û +

∂R

∂θi
R−1ê

(10)T = C−1W′R−1F

(11)
∂ logL

(
θ|y

)

∂θi
=

1

2
tr

(
P
∂V

∂θi

)
−

1

2
y′P

∂V

∂θi
Py

(12)
J(θG) = −

1

2
vech(qG−1

0 −G−1
0 (LG +U′G−1

rmU)G−1
0 )

(13)J (θR) = −
1

2
vech(nR−1

0 − R−1
0 (LR + E′E)R−1

0 )

where n is the number of records, E is a reshaped matrix 
of residuals e of n by l, and LR is an l by l matrix. The ele-
ment (i,j) in LR is tr

(
KR,ij

)
 , where KR,ij is an n by n subma-

trix of WC−1W′ corresponding to the traits i and j.

The augmented AI REML
The update vector � of VC estimates in Eq. (4) is

This indicates that Δ can be obtained by solving the fol-
lowing linear equations:

Based on Eq. (8), Eq. (15) can be written as

In Eq. (16), the RHS for the genetic VC (Gi), which can 
be derived from Eq. (12), is

where tGi = tr[G−1( ∂G
∂θGi

)G−1(G− Cuu)].
Because Py = R−1ê = R−1

(
y −Wŝ

)
 , with 

ê = y −Wŝ  , and G−1û = Z
′

Py [11], then

Hence, Eq. (17) can be written as

because of Eq.  (18) and fi = Z( ∂G
∂θGi

)G−1û according to 
Eq. (9). Similarly, the RHS for the residual VC (Ri), which 
can be derived from Eq. (13), is

where tRi = tr[( ∂R
∂θRi

)R−1] − tr[( ∂C
∂θRi

)C−1] . Thus, Eq. (20) 
can be written as

Combining Eq.  (19) and Eq.  (21) gives the RHS in 
Eq. (16) as

where t′ =
[
t
′

G t
′

R

]
 . Thus, using Eq.  (8), Eq.  (15) can be 

expressed as

(14)� = −

[
IA

(
θ̂
[k−1]

)]−1

J
(
θ̂
[k−1]

)

(15)
[
IA

(
θ̂
[k−1]

)]
� = −J

(
θ̂
[k−1]

)

(16)F
′

PF� = −2J
(
θ̂
[k−1]

)

(17)−2J(θ)Gi
= û′G−1(

∂G

∂θGi

)G−1û − tGi

(18)G−1û = Z
′

R−1
(
y −Wŝ

)

(19)−2J(θ)Gi
= fi

′

R−1
(
y −Wŝ

)
− tGi

(20)−2J(θ)Ri = ê′R−1(
∂R

∂θRi
)R−1ê− tRi

(21)−2J(θ)Ri = fi
′

R−1
(
y −Wŝ

)
− tRi

(22)−2J
(
θ̂
[k−1]

)
= F

′

R−1
(
y −Wŝ

)
− t



Page 5 of 10Strandén et al. Genetics Selection Evolution           (2024) 56:73  

Fig. 1 Illustration of the standard AI-REML. a vs. the augmented AI-REML b for (co)variance component (VC) estimation. The standard 
AI-REML requires solving the mixed model equations (MME) for each VC to obtain the working vector ( ti=1,··· ,ν ), with the right-hand side (RHS) 
replaced by a suitable working vector ( fi=1,··· ,ν ), where n is the total number of VC in the model, W =

[
X Z

]
 , R = R0 ⊗ I , R0 is a l × l residual 

variance covariance matrix, assuming all traits (l) are recorded for each individual, I is an identity matrix size of n/l, with n equal to the number 
of observations, and ⊗ denotes the Kronecker product. Note that the left-hand side (LHS) of the MME is unchanged for each solving process. 
F and T are working matrices containing column vectors of fi=1,··· ,ν and ti=1,··· ,ν , respectively. The average information matrix IA is computed 
using F and T, then the updating vector based on the current VC estimates ( � ) is computed using the inverse of IA and gradient vector (J). 
For the augmented AI-REML, the updating vector Δ can be solved using an MME where the original MME and model has been augmented 
by an effect Δ with the working matrix F and RHS for this effect has been corrected by the trace terms (t) in the first derivatives of the REML 
log-likelihood
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Because Cŝ = W′R−1y , the part involving ŝ  in the 
RHS of Eq. (23) can be reformulated:

This allows expressing Eq.  (23) in an augmented 
form [19] as follows:

Thus, the updating vector Δ can be solved using an 
augmented MME, where ŝ∗ is the new solution vector 
of fixed and random effects. The original MME and 
model are augmented by “the update effect Δ” with 
the working matrix F as its model matrix. RHS of the 
update effects, i.e., F′

R−1y , is corrected by the trace 
terms t in the first derivatives of the REML log-likeli-
hood (see Fig. 1 for illustration).

Equation  (23) allows solving the updating vector Δ 
without the need to make the augmented MME (25). 
Alternatively, it is possible to avoid solving the entire 
MME (25) by absorbing the augmented part into the 
original MME when employing a direct solver during 
each REML iteration. Thus, to obtain the solutions for 
Δ, the computational cost can be kept low by solving:

where

and in both Eq.  (27) and Eq.  (28), the term WC−1W′ is 
precomputed. Note that the dimension of LHS* (26) is v 
by v, corresponding to the augmented part only.

(23)

(
F′R−1F− F′R−1WC−1W′R−1F

)
� = F

′

R−1
(
y −Wŝ

)
− t

(24)F
′

R−1Wŝ = F
′

R−1WC−1W′R−1y

(25)
[

C W′R−1F

F′R−1W F′R−1F

][
ŝ∗

�

]
=

[
W

′

R−1y

F
′

R−1y − t

]

(26)LHS∗� = RHS∗

(27)LHS∗ = F′R−1F− F′R−1WC−1W′R−1F

(28)RHS∗ = F′R−1y − t − F′R−1WC−1W′R−1y

Data simulation
Data were simulated over 10 generations after the base 
population using the AlphaSimR package [22]. The simu-
lation had five traits. The cattle species history was used 
for generating the base population haplotypes with an 
effective population size of 200. The genome consisted of 
30 chromosomes. The simulated traits were determined 
by 900 QTL, i.e., 30 QTL per chromosome. The QTL 
effects for all traits were simulated from the Gamma den-
sity with shape 0.4 and scale 1.0.

After the historical population simulation, a base popu-
lation of 1000 males and 1000 females was generated. The 
base population individuals were mated randomly, each 
mating producing one offspring. After the base popula-
tion, the breeding population was created by selecting the 
top 100 males and 1000 females from the base population 
and the newly generated offspring to form the breeding 
population. The selection was based on a phenotypic 
index of all traits weighing them equally. Each mating in 
the breeding population produced one offspring: either 
male or female at equal numbers. In every subsequent 
generation, the best 100 males and 1000 females were 
selected from the group consisting of the current breed-
ing population and the offspring produced by the random 
mating of the breeding animals.

The final pedigree consisted of 6100 females and 6100 
males after simulating the breeding programme for 10 
generations. In the simulation, every individual was sim-
ulated to have one observation from all correlated traits. 
All individuals in the pedigree were genotyped with a 
total number of 54,000 single nucleotide polymorphisms 
(SNPs). The VC used to simulate these five traits were 
from Nordic Cattle Genetic Evaluation (NAV) used for 
the evaluation of metabolic body weight (metabolic body 
weight during the first, second, and third lactation, stat-
ure, and carcass weight) [23]. Table 1 presents the genetic 
(co)variances, heritability, and genetic correlations 
between these five traits.

Analyses
The multi-trait GBLUP model (1) with the general means, 
genetic effects, and residuals was used to fit the simulated 

Table 1 Genetic (co)variances (lower triangular elements), heritability  (h2), and genetic correlations (elements above diagonal) used in 
the simulation for five traits

Trait 1 2 3 4 5 h2

1 27.60 0.97 0.95 0.65 0.77 0.46

2 31.00 37.00 0.98 0.70 0.84 0.50

3 34.64 41.37 48.16 0.68 0.85 0.56

4 10.30 12.80 14.16 9.00 0.59 0.60

5 117.90 148.76 171.80 61.60 847.60 0.52
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data. The genomic relationship matrix was constructed 
using VanRaden’s method 1 [20] with the allele frequen-
cies computed from the genotyped data. We investigated 
VC estimation as a function of the number of VC in the 
model, including two-trait, three-trait, four-trait, and 
five-trait GBLUP models, representing 6, 12, 20, and 30 
VC, respectively.

Both the augmented AI-REML and the standard AI-
REML methods were applied to all models. Within each 
REML iteration, we used the direct solving method via 
inverting the coefficient matrix of the MME. In addi-
tion, for the two-, three-, and four-trait GBLUP models, 
we utilized the PCG solver as an iterative solving method 
to assess the augmented AI-REML; however, for simplic-
ity, the traces were still obtained by inversion. The con-
vergence criteria in the PCG solver was �Cs− r� < 10−5 
where C is the coefficient matrix of the MME, r is the 
right-hand-side vector, s is the solution vector, and ‖.‖ is 
the Euclidean norm of a vector.

For all analyses, identity matrices were used as the ini-
tial values for the VC. The convergence indicator in both 
AI-REML methods was based on the relative change 
between the current and previous iteration of VC esti-

mates, i.e., 

(
θ̂
[k]

−θ̂
[k−1]

)′(
θ̂
[k]

−θ̂
[k−1]

)

θ̂
[k]′

θ̂
[k]

 . The threshold value was 

set to 1.0E-12. To compare computational efficiency, we 
evaluated the augmented AI-REML against the standard 
AI-REML in terms of the elapsed computing time per 
iteration. All analyses were carried out using the Julia 
programming language [24] on a Linux server with an 
Intel(R) Xeon(R) Gold 6248 CPU (2.5 GHz) and 1.5 TB 
RAM.

Results
Overall, both the augmented AI-REML and the stand-
ard AI-REML produced identical VC estimates and 
used the same number of iterations until convergence. 

Table  2 shows the elapsed time per REML iteration 
using the direct solving method for the augmented AI-
REML and the standard AI-REML across two-, three-, 
four-, and five-trait GBLUP models. Our analyses of 
the simulated datasets revealed tangible improvements 
in computational efficiency with the augmented AI-
REML, leading to reductions in computing time per 
REML iteration. Although the augmented AI-REML 
and the standard AI-REML required similar computing 
times for models with a small number of VC (such as 
the two- and three-trait GBLUP model), the augmented 
AI-REML demonstrated more notable reductions in 
computing time as the number of VC in the model 
increased. The largest reduction in computing time was 
observed in the five-trait GBLUP model with 30 VC. 
Peak core memory usage was comparable between the 
augmented and the standard AI-REML methods.

Table 3 presents the elapsed time per REML iteration 
using the iterative solving method for both the aug-
mented AI-REML and the standard AI-REML across 
two-, three-, and four-trait GBLUP models. In contrast 
to the direct solving method, both the augmented AI-
REML and the standard AI-REML exhibited longer 
computing times when using the iterative solving 
method, especially for models with many VC, such as 
the four-trait GBLUP model. However, the augmented 
AI-REML demonstrated substantial improvements in 
computational efficiency compared to the standard 
AI-REML by eliminating the need to solve the MME 
for each VC. Based on the analysis of the simulated 
datasets, the elapsed time of each REML iteration was 
reduced by 75%, 84%, and 86% for the two-, three-, and 
four-trait GBLUP models, respectively.

Table 2 Elapsed times (seconds) for (co)variance component 
(VC) estimations using augmented and standard average 
information restricted maximum likelihood (AI-REML) with direct 
solver for two-, three-, four-, and five-trait genomic best linear 
unbiased prediction (GBLUP)

a Number of VC in the mixed model, bNumber of equations in the mixed model, 
cNumber of REML iterations to achieve convergence

Model Two-trait Three-trait Four-trait Five-trait

νa 6 12 20 30

Neq
b 24,402 36,603 48,804 61,005

Nit
c 14 15 15 17

Standard AI-REML (s) 216 677 1554 2972

Augmented AI-REML (s) 215 674 1523 2885

Table 3 Elapsed times (seconds) for (co)variance component 
(VC) estimations using augmented and standard average 
information restricted maximum likelihood (AI-REML) with 
iterative solver for two-, three-, and four-trait genomic best linear 
unbiased prediction (GBLUP)

a Number of VC in the mixed model, bNumber of equations in the mixed model, 
cNumber of REML iterations to achieve convergence

Model Two-trait Three-trait Four-trait

νa 6 12 20

Neq
b 24,402 36,603 48,804

Nit
c 14 15 15

Standard AI-REML (s) 2091 9780 33,452

Augmented AI-REML (s) 528 1569 3266
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Discussion
In this paper, we have introduced a computationally effi-
cient AI-REML algorithm called augmented AI-REML. 
While the standard AI-REML is known for its rapid con-
vergence, it has some computational challenges, particu-
larly when utilizing the iterative solver during AI-REML 
iterations. Specifically, the standard AI-REML requires 
solving the MME for each VC, which becomes increas-
ingly resource-intensive as the number of VC grows. In 
contrast, the augmented AI-REML algorithm stream-
lines the computational process by solving an augmented 
MME only once. This novel approach offers both com-
putational simplicity and efficiency. Notably, this study 
represents the first implementation of the augmented 
AI-REML method. Our results highlight its superiority, 
especially when estimating a large number of VC in the 
model.

A typical AI-REML algorithm relies on elements from 
the inverse coefficient matrix of the MME to compute the 
trace terms. Consequently, it has become common prac-
tice for AI-REML applications to use the direct solving 
method to compute the inverse. However, as the use of 
genomic information increases, the coefficient matrix of 
the MME becomes denser, posing computational chal-
lenges when analyzing large genomic datasets. Therefore, 
enabling VC estimation by the AI-REML method for 
large datasets and accelerating its computational process 
remains a critical concern in the genomic era. Masuda 
et  al. [15] developed a package called YAMS. YAMS 
enhances the MME setup, reorders sparse structures for 
trace computations, and enables parallel computing for 
large dense blocks. They reported that the performance 
of YAMS was on average 10 times faster than FSPAK, a 
sparse matrix operation package based on traditional 
pedigree-based models. Laporte et  al. [25] introduced 
the Min–Max (MM) algorithm as an alternative to the 
classical AI-REML algorithm for VC estimation in plant 
breeding. Although their method requires deriving a 
surrogate function within each iteration, it can offer a 
promising computational speed-up. Meyer [16] proposed 
a computational strategy involving the reparameteriza-
tion of the MME to principal components. Her approach 
takes into account differences in the sparsity of the coef-
ficient matrix within the single-step GBLUP model. She 
demonstrated a substantial reduction in computing time 
per iteration by leveraging this transformation to princi-
pal components.

In the current study, we first applied the direct solv-
ing method to both the augmented and the standard AI-
REML. Given that the inverse of the coefficient matrix 
was precomputed and stored in memory, solving the 
MME multiple times within each iteration via multipli-
cation with the corresponding vector on the right-hand 

side did not result in extreme computational expense. 
Consequently, based on the current datasets, the reduc-
tion in computing time per iteration using augmented 
AI-REML was not significantly different from the stand-
ard AI-REML (Table  2). Moreover, parallelization tech-
niques such as OpenMP can be employed to parallelize 
the MME solving step when dealing with a large number 
of VC.

Consider a genomic model such as GBLUP used in 
the current study, which produces a dense coefficient 
matrix for the MME. When using the direct solver, the 
computational cost of the augmented AI-REML can 
be further reduced by solving a small linear system 
(Eq.  (26)) with a size equal to the number of VC to be 
estimated in the model (ν). From a theoretical perspec-
tive, the estimate of computational cost in terms of the 
floating point operations per second (FLOPS) can be 
reduced from 13 (n+ ν)3 + 2(n+ ν)2 to 13ν

3 + 2ν2 . Note 
that the FLOPS for the standard AI-REML in Eq. (10) is 
ν(2n2 − n) , where n is the number of equations in the lin-
ear mixed model. This advantage of the augmented AI-
REML is due to the precomputation of WC−1W′ , which 
can be efficiently reused when absorbing the augmented 
portion of the MME into the original one. However, it is 
crucial to recognize that this feature cannot be preserved 
when using an iterative solver, because no inverted coef-
ficient matrix of the MME is available. Consequently, the 
entire augmented linear system (Eq. (25)) must be solved. 
Another noteworthy aspect of the augmented AI-REML 
is that, during each iteration, it avoids computing quad-
ratic terms, such as u′

G−1
rmu and e′e in our examples, 

even though the computation time for these terms is 
negligible.

Iterative solving methods such as PCG, in combina-
tion with iteration on data techniques [26–28], are the 
preferred approach for solving large MME when comput-
ing or storing the Cholesky factor of the MME is infea-
sible. The advantage of the iteration on data approach 
lies in its avoidance of explicit construction of the MME. 
In a study by Matilainen et  al. [18], they implemented 
an MC algorithm within the standard AI-REML frame-
work called MC (standard) AI-REML. In their approach, 
the MC samples generated from the same distribution as 
the original model were used to approximate PEV/PEC 
as equivalent to the inverse of the coefficient matrix of 
the MME. The MC-based REML methods improve the 
capability to handle large-scale VC estimation. However, 
it is essential to note that the MC (standard) AI-REML 
requires solving the MME for each VC in the model dur-
ing every iteration. Consequently, the MC AI-REML 
method imposes a significant computational burden, 
especially when dealing with complex models and large 
datasets, such as multi-trait random regression models.
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The augmented AI-REML can offer a significant 
advantage over the standard AI-REML in terms of com-
putational efficiency, particularly for large multi-trait 
genomic models. In the standard AI-REML approach, 
the inverse of the MME can be used to solve the update 
vector of AI-REML as in Eq. (10). In addition, the inverse 
can also provide the PEV/PEC values required in Eq. (12) 
and Eq.  (13). However, when an MC approach is used, 
the update vector and the PEV/PEC values need to be 
computed separately. Consequently, the standard MC 
AI-REML method is computationally less attractive than 
the EM-REML method where only one MME solving for 
the update is needed [18]. The augmented AI-REML can 
give a significant reduction in computing time in MC AI-
REML because the augmented MME need to be solved 
only once to obtain the update vector within each REML 
iteration. This increases the effectiveness of MC AI-
REML and will make it an attractive approach because 
AI-REML often converges in fewer iterations than EM-
REML. As shown in Table 3, there is a substantial reduc-
tion in the computing time per REML iteration with the 
augmented AI-REML. This indicates the benefit of com-
bining the MC method with the augmented AI-REML for 
large-scale VC estimation.

In this study, we focused on demonstrating the aug-
mented AI-REML algorithm in analyses of a simple 
multi-trait GBLUP model. This algorithm can offer com-
putational feasibility and simplicity across various models 
and can be integrated into existing AI-REML applica-
tions. The reduction in computing time achieved with the 
augmented AI-REML depends on the dimension of the 
dataset and the chosen model. However, it is important 
to recognize that the augmented AI-REML algorithm 
does not improve the convergence rates. In other words, 
it provides identical estimates and converges within the 
same number of iterations as the standard AI-REML. 
Moreover, in our analyses, even when using the PCG 
solver in both the augmented and the standard AI-REML 
algorithms, the trace terms were still derived by brute 
force inversion of the coefficient matrix of the MME, 
rather than approximated by the MC method.

Conclusions
In this study, we introduced and demonstrated the aug-
mented AI-REML algorithm, which is designed to 
improve the computational efficiency of VC estimation 
by AI-REML. We compared the augmented AI-REML 
with the standard AI-REML, employing both direct and 
iterative solvers in the AI-REML algorithms. In particu-
lar, the direct solver resulted in worthwhile reductions in 
computing time, while the iterative solver achieved sig-
nificant time savings. The reductions were larger when 
more VC were estimated in the model. However, further 

research is needed to study the effect of a larger number 
of estimated variance components on the convergence of 
the iterative method for solving the augmented system. 
Our results underscore the potential utility of augmented 
AI-REML as an appealing approach for large-scale VC 
estimation in the genomic era.
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