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A B S T R A C T

Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response
to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites
across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and pre-
cipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs),
classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that
may explain the major differences in model responses.

The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany
and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to
temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two
approaches describing their pattern.

The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield
(nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36
combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA)
groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies
a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial
correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether
different patterns of yield response could be related to different properties of the crop models, specifically their
genealogy, calibration and process description.

Although no single model property across a large model ensemble was found to explain the integrated yield
response to temperature and precipitation perturbations, the application of the EDA and SDA approaches re-
vealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring
wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions
compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in
IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler
process descriptions of root growth and water uptake compared to those with more complex descriptions; and
(vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation
than in those using a harvest index.

Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model en-
sembles, by distinguishing ensemble members that span a wide range of responses as well as those that display
implausible behaviour or strong mutual similarities.

1. Introduction

A wide range of dynamic crop growth simulation models have been
developed over the past few decades, many of which are being applied
to study impacts of climate change (Asseng et al., 2014; Challinor et al.,
2014; Ewert et al., 2015; Jones et al., 2017a, 2017b; White et al., 2011).
These models can differ greatly in their treatment of key processes and
hence in their response to environmental conditions (Asseng et al.,
2013; Palosuo et al., 2011; Rötter et al., 2012). Therefore, it is of in-
terest to examine model behaviour under changed climate in order to
characterise the types of responses estimated, contrast the responses of
different models and consider the reasons for these differences.

Fundamental structural differences in the way models simulate
processes such as development, assimilation, partitioning and water
and nutrient uptake can be traced back to the purposes for which
models were originally developed, their region of origin and the scale of
their application (Challinor et al., 2009; van Ittersum et al., 2003).
Given the many factors determining crop response, it is not surprising
that processes are accorded variable emphasis across different models.
For instance, a model developed to examine field-level processes of
yield formation under well-watered conditions might focus on growth
processes and the partitioning of dry matter, relying on only a simple
parameterization of soil water availability. Conversely, regional yield
estimates under water-limited conditions might demand a detailed re-
presentation of soil water and nutrient uptake, while adopting a simple
approach to estimating yield components. Moreover, most models have
not been developed independently and may share common antecedents
and genealogy, which may provide clues to their comparative beha-
viour. Models that have evolved from a predecessor can hence exhibit
many similar characteristics while including new processes or alter-
native descriptions of existing processes (Bouman et al., 1996;
Rosenzweig et al., 2014).

However, model structure alone cannot explain all of the reported

differences between model behaviour under a changing climate. Model
calibration – the procedure of adjusting parameter values to obtain a
good fit between model outputs and observations (Acutis and
Confalonieri, 2006; Kersebaum et al., 2015) – may also play a sig-
nificant role. Unless fixed calibration techniques have been pre-speci-
fied, most model inter-comparison exercises typically rely on “mod-
ellers' choice” for the techniques that are applied to the available
observations. The techniques themselves can vary from trial and error
methods through to optimization and Bayesian techniques (cf. Acutis
and Confalonieri, 2006; Angulo et al., 2013), and must necessarily be
tailored to the parameters of a given model. Even then, there may be
differences in the number of parameters treated and in how the cali-
bration data are interpreted and the techniques deployed (Confalonieri
et al., 2016; Palosuo et al., 2011).

Here, a multi-model ensemble approach has been adopted to ex-
plore patterns of simulated yield response under climate change. We
use an ensemble of wheat models at sites across a European transect (in
Finland, Germany and Spain – Pirttioja et al., 2015) and compare their
sensitivity to changes in climate by plotting simulated yield as impact
response surfaces (IRS; Fronzek et al., 2010). An IRS is plotted from the
results of a sensitivity analysis of an impact model with respect to
changes in two key climatic variables, e.g. changes in annual mean
surface temperature and annual precipitation. The observed baseline
climate is adjusted with systematic increments over a range of values.
Impacts are computed for each combination of changes in the two cli-
mate variables and plotted as contours on a two-dimensional IRS. Ex-
amples of IRS applications using crop models include estimates of yield
response for maize (Ruane et al., 2013) and barley (Kim et al., 2013), of
nitrogen leaching from wheat cultivation (Børgesen and Olesen, 2011)
and of adaptation options in wheat cultivation (Ruiz-Ramos et al.,
2017). The approach has also been applied in other sectors including
hydrology (Holmberg et al., 2014; Prudhomme et al., 2013a; Weiß and
Alcamo, 2011) and biodiversity (Fronzek et al., 2011).
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IRSs of yield changes were presented in Pirttioja et al. (2015) as
multi-model ensemble medians and inter-quartile ranges, focusing on
long-term averages. This paper extends that work by classifying the
responses of individual models and attempting to interpret differences
in response between groups of models by contrasting their structure and
representation of selected key processes as well as their behaviour in
selected anomalous years.

For the same four sites described in this paper, Pirttioja et al. (2015)
found that ensemble median yields decline with higher temperatures
and decreased precipitation, but increase with higher precipitation.
However, these aggregate responses disguise individual model beha-
viours that can depart markedly from the average. Furthermore, there
are differences in responses between sites. For example, in contrast to
sites in Germany and Spain, the site in Finland was more sensitive to
temperature than precipitation changes.

This paper has the following objectives:

1. To classify patterns of 30-year mean yield response to changes in
temperature and precipitation simulated by a multi-model ensemble
of wheat models;

2. To describe these classes, their utility and differences between them;
3. To analyse factors that may explain the major differences in model

responses; and
4. To examine if model behaviour in anomalous years can be related to

classes of 30-year mean response.

Section 2 describes the original model simulations and introduces
the classification approaches adopted in this paper. Section 3.1 presents
and contrasts the results of the classification (objectives 1 and 2), which

are then discussed in Sections 4.1 and 4.2, respectively. Factors ex-
plored in the paper that might explain differences in modelled yield
responses (objective 3), include site locations and crop varieties se-
lected for the simulations, model characteristics such as the description
of key processes and model genealogy, and model calibration. The
nature of their relationships to yield response is described in Section 3.2
and discussed in Section 4.1. Finally, patterns of model behaviour
during individual, anomalous years are compared to those for modelled
30-year mean responses (objective 4) in Section 3.3.

2. Material and methods

The ensemble analysis presented in Pirttioja et al. (2015) underpins
the work presented in this paper. Sub-section 2.1 provides a brief
summary of the wheat models, data, modelling protocol and con-
struction of impact response surfaces (IRSs) that are reported in more
detail in the earlier paper. The following four sub-sections describe the
new analyses undertaken for this paper. Methods of classifying IRS
patterns are set out in Sub-section 2.2 and criteria for grouping wheat
models according to various properties are introduced in sub-section
2.3. Procedures for relating IRS patterns to model properties are out-
lined in sub-section 2.4, while an analysis of IRS patterns in anomalous
years is described in sub-section 2.5.

2.1. Crop modelling

2.1.1. Crop models
An ensemble of 26 dynamic crop growth models (Table 1) has been

employed in this study to simulate the growth and yield of local spring

Table 1
Wheat models applied in this study (identifier and genealogy), their calibration (approach and number of parameters) and their representation of some key processes (evapotranspiration,
water dynamics, root distribution, water stress, heat stress and yield formation). Entries are based on Table S1 in Pirttioja et al. (2015), with some minor modifications and streamlining.

Model identifiers Calibration Process description

ID Model Family Approach Number of
parameters

Evapo-
Transpiration

Water
dynamics

Root
distribution

Water
stress

Heat
stress

Yield
formation

a b c d e f g h i j k

1 AFRCWHEAT2 I A >9 PM C E E/S M P
2 APSIM-Nwheat C – – PT C E S V P
3 APSIM-Wheat C M 6–9 PT C/R O E V P
4 AquaCrop – M 6–9 PM C O E/S R H*
5 ARMOSA S M 3–5 PT C O E/S M P
6 CARAIB – M – P C/R O S – H
7 CERES-wheat DSSAT v4.5 C M 6–9 PT C E E/S – G
8 CERES-wheat DSSAT v4.5 C A 6–9 PT C E E/S – G
9 CERES-wheat DSSAT v4.6 C A 6–9 PT C E E/S – P
10 CropSyst – M 0–2 PM C/R E E R H
11 DNDC – M 4 P C E E/S P H
12 FASSET – – 0–2 M C E E/S – H
13 HERMES S/C M 6–9 PM C E E/S – P
14 LINTUL-4 L M >9 P C L E – P
15 LPJ-GUESS E N 0–2 PT C L E/S P H*
16 LPJmL E M 3–5 PT C E E – H*
17 MCWLA-Wheat – M – PM R E E M H
18 MONICA S/C M 3–5 PM C E E V P
19 SALUS C – – PT C E E V P
20 SIMPLACE <Lintul2, Slim> L M >9 P C L E P P
21 Sirius – M 3–5 PT C L E – P
22 SiriusQuality I M 6–9 P C E S – P
23 SPACSYS – A – PM R E E – P
24 STICS – A 6–9 SW C O E/S M H*
25 WOFOST S M 3–5 P C L E/S – P
26 WOFOST S M 3–5 P C L E/S – P

a Model identifier; b Model name; c Genealogy: C, CERES; L, LINTUL; E, EPIC; S, SUCROS; I, Sirius; −, not reported; d Calibration approaches (based on a survey of modellers): A,
automatic; M, manual; N, no calibration; −, not available; e Number of parameters evaluated (from survey); f Evapotranspiration: P, Penman; PM, Penman-Monteith; PT,
Priestley–Taylor; M, Makkink; SW, Shuttleworth and Wallace; g Water dynamics: C, capacity approach; R, Richards approach; h Root distribution over depth: L, linear; E, exponential;
O, other; i Water stress: E, actual to potential evapotranspiration ratio, S, soil available water in root zone; j Heat stress: V, vegetative organ; R, reproductive organ; P, phenology; M,
multiple processes; −, not reported; k Yield formation: P, partitioning; G, grain number and biomass; H*, modified harvest index; H, harvest index.
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and winter wheat cultivars at four sites in Europe. Two models have
been used by different modelling groups who conducted their model
calibration independently. These are regarded as separate models in the
ensemble.

2.1.2. Study sites and weather data
Crop model simulations were conducted with observed weather

station data from the four sites across a European transect covering a
wide range of climatic conditions (Table 2): Jokioinen in Finland,
Nossen (only spring wheat) and Dikopshof (only winter wheat) in
Germany and Lleida in Spain. Wheat cultivation at these sites ranges
from being pre-dominantly temperature-limited at Jokioinen to largely
water-limited at Lleida for rain-fed cultivation, while the sites in Ger-
many experience climatically more optimal conditions. For more details
see Pirttioja et al. (2015).

Daily weather variables for the period 1980–2010 obtained for the
sites consist of minimum and maximum temperature, precipitation,
global radiation, wind speed, minimum and maximum dew point
temperature, minimum and maximum actual vapour pressure and
minimum and maximum relative humidity.

Perturbations of the baseline weather data were prepared for a crop
model sensitivity analysis using a simple change factor approach (e.g.
Ekström et al., 2015) for combined changes in temperature and pre-
cipitation. Constant changes for all days of the baseline period were
applied for temperature over the range −2 to +9 °C (at 1 °C intervals)
and for precipitation over the range −50 to +50% (at 10% intervals),
resulting in 132 combinations of weather perturbations. The ranges
were chosen to encompass the widest available range of climate model
projections by the mid-21st century at the four sites. For simplicity, all
other weather variables than precipitation and minimum and maximum
temperature were kept unchanged.

2.1.3. Sowing date, soil and calibration data
Annual sowing dates for the Finnish and German sites were calcu-

lated from observed sowing dates and used for crop model simulations,
whereas a fixed sowing date was selected for the Spanish site (Pirttioja
et al., 2015). A generalized soil type (clay loam) was used both for
calibration and simulations, but modellers also had the option to use
local soil information for calibration. Calibration data on management,
plant development and yields (for Lleida, taken from Abeledo et al.,
2008; Cartelle et al., 2006) are described in Pirttioja et al. (2015).

2.1.4. Modelling protocol
A sensitivity analysis was carried out with the ensemble of crop

models. Phenological stages and crop yield were simulated for 30
baseline years (1981–2010) and 132 perturbations of temperature and
precipitation for winter and spring wheat at the four sites. This resulted
in 23,760 simulated seasons per model. Sowing dates, atmospheric CO2

concentrations and other weather variables than temperature and
precipitation were kept at their baseline values for all perturbations.
Simulations were carried out on a daily time-step for water-limited
yields assuming optimal nutrients. Model outputs analysed in this paper
were the grain dry matter (DM) yields for each season. To avoid un-
realistically long growing periods, harvest cut-off dates (day of the year
[DOY] 258 for Finland and Spain and DOY 274 for Germany) were

applied if maturity was not reached earlier, and grain yields were then
set to 0 kg ha−1 (Pirttioja et al., 2015). This occurred mainly at the
Finnish site with up to 39% of simulations for spring wheat and 15% for
winter wheat affected under −2 °C cooling (results not shown here).
Under baseline conditions the respective values were 9% and 1%. In
sharp contrast, for the German and Spanish sites the cut-off was most
often applied for winter wheat under +9 °C warming, with 3% and
fewer than 1% of years affected, respectively (an affect attributable to
failure of the modelled crop to vernalise).

2.1.5. Calculation of impact response surfaces
Changes in grain yields for each perturbation of the weather input

data were calculated relative to the simulated yields under unperturbed
baseline conditions. Results of these were then plotted as contour lines
(defining the impact response surface) by bi-linear interpolation of the
yield changes at each simulated increment with respect to change in
annual temperature along the x-axis and precipitation along the y-axis.
This was done for the 30-year averages and for selected individual years
for each model, site and crop variety.

2.2. Classifying crop model responses

The pattern of bivariate response depicted in an IRS plot provides a
visual impression of modelled crop behaviour under climate change at a
given site relative to the conditions during a reference year or averaged
over a period of years. Since patterns of yield response to climate vary
by site and by model, it can be instructive to group similar patterns into
classes. This can help both in discriminating between types of model
behaviour at different sites, but could also be used for examining links
between this behaviour and different characteristics of the models
themselves (or model calibrations) that might explain their varied
patterns of response.

Two alternative approaches were explored to classify typical pat-
terns of yield response, plotted as percentage changes relative to the
baseline climate. To assist in discriminating between them, we have
labelled them the expert diagnostic approach and the statistical diag-
nostic approach.

2.2.1. Expert diagnostic approach (EDA)
The expert diagnostic approach (EDA) relies on an understanding of

the responses being represented. This is based on classifying the IRSs
according to two key aspects of the response (Fig. 1a):

1. The location of the maximum yield compared to the baseline with
respect to both temperature and precipitation, Classes are labelled
T−, T0 and T+ for maximum yield occurring at >1 °C below,
within ±1 °C of, and at >1 °C above the baseline temperature, re-
spectively, and correspondingly P−, P0 and P+ for maximum yield
at >10% below, within ±10% of, and at >10% above the baseline
precipitation. In combination this produces nine classes.

2. The strength of response, defined as the rate of change in yield ex-
pressed separately with respect to changes in precipitation and
temperature relative to the location of the maximum. Classes are
defined for a strong or weak response to temperature change, la-
belled T" (strong) and T' (weak) and for a strong (P") and weak (P')

Table 2
Weather stations used in this study, environmental zones as defined by Metzger et al. (2005) and wheat variety simulated. Coordinates are given in decimal degrees latitude and
longitude, mean annual temperature, monthly temperature range and precipitation are for the 1981–2010 period-mean.

Site Country Coordinates Environmental zone Mean annual temperature (and monthly range) Annual precipitation Wheat species

Jokioinen Finland 60.81°N, 23.5°E Boreal 4.7 (23.0) °C 627 mm Winter and spring wheat
Nossen Germany 51.06°N, 13.27°E Continental 9.3 (18.7) °C 722 mm Spring wheat
Dikopshof Germany 50.81°N, 6.95°E Atlantic Central 10.3 (16.2) °C 629 mm Winter wheat
Lleida Spain 41.63°N, 0.60°E Mediterranean

South
15.0 (19.7) °C 342 mm Winter and spring wheat
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response to precipitation change. There are four possible combina-
tions of these responses.

Combining classes for the location of the maximum yield with those
for the strength of yield response thus produces 9 × 4 = 36 potential
classes (Fig. 1b). More details of the classification can be found in
Supplement S1.1. The EDA classification was performed separately for
spring and winter wheat.

2.2.2. Statistical diagnostic approach (SDA)
The statistical diagnostic approach (SDA) groups IRSs according to a

comparison of their pattern and magnitude, without attempting to in-
terpret these features. This applies a hierarchical clustering method
using a distance metric, d, which is the product of the spatial correla-
tion and Euclidian distance between corresponding yield change values
across IRS pairs. IRSs for each crop were grouped by hierarchical
clustering that minimizes the distances between members of each
cluster using the agglomerative nesting algorithm (Kaufman and
Rousseeuw, 1990) implemented in the R package “cluster” (Maechler
et al., 2016) with the average method to determine clusters. A den-
drogram illustrating the clustering method for winter wheat is shown in
Fig. 2. More details and illustrations of the clustering approach and
distance metric are presented in Supplement 1.2.

2.3. Grouping models by their properties

Properties of different models were classified according to their
genealogy, calibration and process description (Table 1). Where in-
formation was available, crop models were first grouped into broad

“model families” that share a common genealogy (column c in Table 1).
These expand the information provided by Pirttioja et al. (2015) and
originally taken from Asseng et al. (2013), Palosuo et al. (2011) and
Rötter et al. (2012).

As the modelling protocol did not specify a specific calibration
procedure beyond the provision of calibration data, different ap-
proaches were applied by different modelling groups. Information
about these was collected in a survey to which most groups, but not all,
responded. This included text descriptions of the general approach
taken and the number of model parameters tested and modified during
the calibration. Three calibration approaches were identified: auto-
matic, manual and no calibration, and for each model the number of
parameters tested was allocated to one of four classes (Table 1, columns
d and e).

Documentation about the description of key processes in the crop
models was based on updated information from Table 1 in Pirttioja
et al. (2015). The process descriptions included the methods used to
estimate reference crop evapotranspiration, and water dynamics, root
distribution, water stress, heat stress and yield formation (Table 1,
columns f–k).

2.4. Linking model responses to model properties

In order to explore whether IRS patterns of modelled yield response
to temperature and precipitation perturbations can be related to par-
ticular properties of the models, IRS classes based on the alternative
expert and statistical diagnostic approaches were related directly to the
model properties grouped in Table 1. The EDA classification (Sub-sec-
tion 2.2.1) was applied by recording the frequency of IRS classes
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Fig. 1. Expert diagnostic approach for classifying impact response
surfaces (IRSs) illustrating the method (upper panel, a) and full
classification (lower panel, b). Upper panel illustrates the method of
computing the location of maximum response (black dot in this ex-
ample) and the rate of change (strength) of response (arrows) for a
typical IRS depicting changes in 30-yr averaged dry matter grain
yield relative to the 1981–2010 baseline (%). Maxima falling in the
hatched rectangle are considered to be located at the baseline. The
numbered arrows illustrate how the strength of yield response is first
identified separately, for both sides of the location of the maximum
with respect to both temperature (1 and 2) and precipitation (3).
Here only one calculation is required for precipitation, as the max-
imum occurs at the top edge of the IRS. Calculations are made across
all increments used to construct the IRS (dashed lines). For detailed
explanation, see Supplement S1.1. The lower panel shows the full
classification, which is defined according to location of the maximum
yield (black squares in icons – nine columns), strength of the yield
response (coloured icons – four rows) and combinations of these (36
cells). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

S. Fronzek et al. Agricultural Systems 159 (2018) 209–224

213



700 600 500 400 300 200 100 0

1_DE
23_ES
21_FI
12_DE
12_FI
23_DE
23_FI
25_ES
26_ES
2_DE
19_DE
6_DE
20_DE
11_DE
11_ES
3_DE
26_DE
3_FI
8_DE
8_ES
19_FI
2_FI
21_DE
10_DE
10_ES
25_DE
19_ES
14_FI
21_ES
25_FI
18_DE
18_FI
6_ES
15_DE
15_FI
7_ES
7_DE
7_FI
11_FI
1_ES
17_DE
22_DE
17_FI
22_FI
5_DE
3_ES
9_DE
12_ES
20_ES
2_ES
16_ES
22_ES
24_ES
9_ES
5_ES
18_ES
13_DE
13_ES
15_ES
17_ES
16_DE
14_DE
14_ES
10_FI
13_FI
16_FI
26_FI
5_FI
1_FI
9_FI
24_FI
6_FI
8_FI
20_FI
24_DE
4_DE
4_FI
4_ES

C8

C6

C5

C4

C3

C2

C1

C7

Distance
Fig. 2. Dendrogram of the hierarchical clustering method used to classify IRS period-mean yield responses across all models and sites for winter wheat (n = 78). Proximity in patterns for
any two model/site combinations can be judged by tracing the distance along branches of the dendrogram that connect them. Close proximity indicates high similarity, with numbered
C1–C8 clusters of similar patterns. Models are identified with numbers (for model names see Table 1). The equivalent dendrogram for spring wheat can be found as Fig. S1 in Supplement
1.2.
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represented by those model responses sharing a given property. This
was done separately for classes indicating the location of the maximum
yield, the strength of response and combinations of these.

The metric of distance between IRS patterns used in defining SDA-
derived clusters (Sub-section 2.2.2) was used to compare model re-
sponses that share the same property. The mean distance between pairs
of IRSs across a group of models (i.e. all possible combinations) was
calculated and compared to the mean distance statistics for the full
ensemble of models as well as mean distances for 100 randomly se-
lected groups of the same size to judge the significance of the result for
the specific group (Supplement S1.2, Fig. S2). This provided a measure
of similarity (distance ratio) between any group of models (defined by a
common property) and the full IRS ensemble. The analysis was also
conducted for the median distance within a group, whose results were
very similar to the mean distances and are therefore not presented here.

2.5. Analysis of model responses in anomalous years

The EDA classification was also applied to IRSs for individual years,
expressed relative to the yield for the unperturbed weather of a given
year, to demonstrate how model responses can differ from the long-
term mean. Results for spring wheat during the baseline years
1981–2010 at Nossen were selected as illustration, and two years with
anomalous weather were identified for closer scrutiny based on an
analysis of these 30 years.

3. Results

3.1. IRS analysis: classifying period mean responses

The full set of impact response surfaces (IRSs) of 30-year mean yield
changes relative to the baseline from all model simulations is shown in
Supplement 2, Fig. S3 for both spring and winter wheat at the different
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Fig. 3. IRS patterns of winter wheat yield change relative to the baseline (%) averaged across members of classes defined according to the location of maximum yield. Panels are
organised with the location of maximum yield occurring at cooler (T−), similar (T0) or warmer (T+) temperatures than the baseline in columns from left to right, and at wetter (P+),
similar (P0) or drier (P−) conditions than the baseline in rows from top to bottom. No model response was classified as T+P0. Frequencies of IRSs falling in each class for spring (S) and
winter (W) wheat are shown on top of each plot. See text for a definition of the classes.
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sites. These (excluding the ensemble median IRS) were classified using
the expert and statistical diagnostic approaches (EDA and SDA – Sub-
section 2.2) and the results of the two approaches compared.

3.1.1. EDA classes
The location of the maximum yield varies among these IRS plots,

both with respect to temperature and to precipitation. For winter wheat
there are representatives of eight out of the nine possible classes de-
picted in Fig. 1b, with average patterns across each set shown in Fig. 3.

For an IRS with the maximum yield located at a condition that is
cooler and wetter than the baseline (T−P+, Fig. 3, top-left), yield in-
creased from the baseline towards the maximum, whereas yield de-
creases were found for both drier and warmer conditions. The IRS with
its yield maximum close to the baseline temperature, but for increased
precipitation (T0P+, Fig. 3, top-centre) has a U-shaped pattern of re-
sponse, as does the T+P+ IRS, but it is shifted further to the warm
side. Similarly, the patterns with the maximum yield close to the
baseline precipitation (T−P0 and T0P0, Fig. 3, middle-row) are shifted
towards drier conditions. The IRSs with maximum yield at drier con-
ditions (P−, Fig. 3, bottom row) have patterns that are not U-shaped

but mainly influenced by changes in temperature (T−P−, bottom-left,
and T+P−, bottom-right) or show yield decreases with increases in
precipitation (T0P−, bottom-centre). There was no ensemble member
producing an IRS with maximum yield at warmer conditions than the
baseline and with precipitation close to baseline conditions (T+P0).

The four classes with different response strengths described in
Fig. 1b are illustrated in Fig. 4 by averaging across all representatives of
each class for winter wheat. Patterns of response are similar in these
four plots, with maximum yield located close to baseline temperature
and for increased precipitation. However, the magnitude of yield
change differs between the weak and strong responses. The greatest
yield decline exceeds 70% in the strong response plot (T"P", Fig. 4,
bottom-right), but is only slightly above 40% in the weak response plot
(T'P', top-left).

The frequency of model simulations falling in different EDA classes
is shown in Supplement 3, Fig. S4, across all sites and for each crop
separately. Out of a total number of 36 possible combinations of classes
defined by the location of the maximum yield (9) and the strength of
response (4), examples of 16 were identified for spring wheat and 19 for
winter wheat. For both spring and winter wheat the majority of model
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Fig. 4. IRS patterns of winter wheat yield change relative to the baseline (%) averaged across members of classes defined according to the strength of response. Weak (strong) responses to
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simulations had their maximum yield located at wetter conditions (P+)
and at cooler (T−) or similar temperatures (T0) than the baseline. For
spring wheat, the location of maximum yield was at the cooler side of
the baseline (T−) for nearly all ensemble members at the German site
and close to the baseline (T0) at the Finnish site. The distribution be-
tween T− and T0 was more even in Spain and for winter wheat in
Germany, whereas winter wheat in Finland had its maximum yield
close to the baseline temperature for the majority of ensemble mem-
bers. The location of maximum yield relative to the baseline pre-
cipitation was at drier (P−) or similar (P0) conditions for only five
ensemble members for spring wheat and 14 for winter wheat.

The distribution of ensemble members for the strength of response
were, by design of the classes, relatively evenly distributed among the
strong and weak response-classes for all three sites combined
(Supplement 1, S1.1). For the Finnish site, most model simulations had
a strong temperature response (T"), whereas the German and Spanish
sites showed a more even distribution between strong (T") and weak
(T') temperature response (Fig. S4). The strength of response to changes
in precipitation for winter wheat was predominantly weak in Finland
and strong in Spain, whereas it was more evenly distributed for the
German winter wheat site and for all sites for spring wheat.

3.1.2. SDA clusters and their relationship to EDA classes
The classification based on the statistical diagnostic approach (SDA)

used cluster analysis to order and group crop model responses along the
branches of a tree in a dendrogram (cf. Fig. 2). Eight clusters were
identified for each crop and, as for the EDA classes depicted in Figs. 3
and 4, the IRS patterns have been averaged across each cluster in Fig. 5.
Here both spring and winter wheat are shown, with the number of
members of each cluster given in parentheses. Unlike the EDA classes,
to which IRSs are allocated according to pre-defined pattern char-
acteristics, the classes here are defined by the clustering algorithm, with
dominant patterns allocated low cluster numbers and more deviant
patterns allocated higher numbers. The clusters for spring and winter
wheat IRSs were determined independently, so the order of the clusters
is not directly comparable between the two crops. For example, the two
largest clusters (C1 and C2) are quite similar for both crops, with a yield
maximum near to baseline temperatures and above baseline precipita-
tion, while C1 shows a strong temperature response and C2 a strong
precipitation response. In contrast, the yield maximum for C3 is found
under strong warming for winter wheat but under baseline tempera-
tures for spring wheat, though both crops show a strong negative re-
sponse to cooling. Note also that some of the clusters contain only one

member, so the pattern shown in Fig. 5 simply mimics the 30-year mean
IRS of one of the model simulations shown in Supplement 2, Fig. S3.

The two largest clusters obtained using this approach contained 55
of the 74 ensemble members for spring wheat and 63 of the 78 members
for winter wheat (Fig. 6, column n). The two largest spring wheat
clusters for the German and Spanish sites (clusters 1 and 2) included
IRSs with the maximum yield located to the cooler side or close to
baseline temperature and for increased precipitation. These differed in
the strength of precipitation response, with cluster 1 mainly containing
members with a weak response and cluster 2 with a strong response to
precipitation changes. For spring wheat, most members (38%) for the
Finnish site were found in cluster 3, which had no representatives for
the sites in Germany and Spain (Fig. 6). Here, maximum yields were
found for warmer than (T+) or close to (T0) baseline temperatures and
wetter than (P+) the baseline, with strong responses to temperature
change (T"). Compared to spring wheat, the three largest clusters for
winter wheat had a similar relation to the classes of the location of
maximum yield and the strength of response, albeit with more devia-
tions from those descriptions and fewer members in cluster 3 for the
Finnish site. The remaining clusters 4 to 8, which diverged from three
major patterns, contained few (up to 4) cases for both spring and winter
wheat.

3.2. Relationship between yield responses and model properties

The two classification systems were used to investigate whether
different patterns of yield response could be related to different prop-
erties of the crop models. Fig. 7 summarises these comparisons for
different types of property and for selected SDA clusters and EDA
classes.

An overall observation when comparing dominant IRS patterns for
the two crops is that response patterns for spring wheat appear to re-
flect greater sensitivity to temperature change than to precipitation
change (predominant T″ class with red/purple icons), whereas sensi-
tivity to precipitation change is more prominent for winter wheat (more
representatives of P″ with blue/purple icons). However, this general
observation masks deviations at some sites and for certain types of
models. These are discussed in the following subsections.

To aid that discussion, the distance metric used in the clustering
procedure is also presented in Fig. 7 to indicate the degree of similarity
(proximity) between IRS patterns in a given group. In order to distin-
guish more readily those model properties having similar responses
from those that are more dissimilar, Fig. 8 shows distance ratios that
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have been ranked and presented separately for groups defined by site,
genealogy and calibration (upper panel) and by process description
(lower panel). The ranking in Fig. 8 is of distance ratios for winter
wheat, with spring wheat ratios for equivalent property types also
shown for comparison.

3.2.1. Model genealogy
Models that share a common genealogy were grouped into model

families (see Bouman et al., 1996; Rosenzweig et al., 2014; van Ittersum
et al., 2003). These showed smaller values of the distance metric than
random samples for all five model families identified for spring wheat
and three of the five families for winter wheat (Fig. 7). In all cases,
family members shared dominant IRS clusters across both crops, while
classes defining the location of the maximum yield were also fairly
consistent between crops, though the strength of response usually dif-
fers between dominant spring and winter wheat classes. Note that the
same model independently calibrated and used by different researchers
showed similar responses for the WOFOST and CERES v4.5 models (not
shown).

3.2.2. Model calibration
IRSs of models calibrated using automatic methods displayed pat-

terns for both crops that differed more than would be expected for a
random sample (positive distance metric), while models calibrated
using manual methods showed similar patterns of response for winter
wheat but not spring wheat (Fig. 7). Similarity in IRS patterns was
observed among models for which few parameters were tested (≤2 for
spring wheat; ≤5 for winter wheat; Fig. 8).

3.2.3. Process descriptions
Distance ratios among models were used to distinguish those pro-

cess descriptions giving similar IRS patterns. Models using the Priestley-
Taylor equation to simulate evapotranspiration show similar IRS pat-
terns for both spring and winter wheat. Similar patterns are also found
among models using the Penman-Monteith equation for spring wheat
and the Penman equation for winter wheat (Figs. 7 and 8). Ratios
among the few models that used descriptions of the water dynamics
solving the Richards equation alone or as part of a mixed approach
indicated similar patterns of yield response for both crops, whereas
responses from the majority of models that relied on the capacity ap-
proach were more dissimilar. Models with simpler process descriptions
for the root distribution (linear) and water stress (only one process)
showed greater similarity in IRS patterns (smaller distance ratios) than
models with more complex descriptions. Models simulating heat stress
processes on the vegetative organs gave most similar responses,
whereas those representing heat processes on the reproductive organs
and on phenology (for spring wheat) were dissimilar (Figs. 7 and 8).

Those models that applied dry matter partitioning schemes to si-
mulate yield formation and some others that estimated grain number
and biomass were found to produce similar IRS patterns for both crops
(low distance ratios). Models that made use of a modified harvest index
exhibited large differences in patterns of response in both crops, while
those that used an unmodified harvest index showed large differences
for spring wheat but similarities for winter wheat (Figs. 7 and 8).

3.2.4. Site influence on response patterns
IRS patterns across all model simulations resembled each other

more closely than for random samples (low distance ratios) for the
German sites (both crops) and the Spanish site (winter wheat). For these
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Fig. 6. Proportion of IRSs of each SDA cluster among the sites and the classes defining the location of maximum yield and the strength of response for spring and winter wheat. Larger
percentages are indicated with proportionally wider horizontal bars. T0 denotes a location of maximum yield within 1 °C of the baseline temperature; for T− (T+) the location is outside
this range. P0 denotes a location of maximum yield within 10% of the baseline precipitation; P− and P+ are outside this range. The strength of response is defined with respect to
temperature (weak = T', strong = T") and precipitation (weak = P', strong = P"). Modelling sites are denoted as FI for Finland, DE for Germany and ES for Spain. Cells delineated by
solid or dashed lines sum up to 100%.
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Fig. 7. Relating model properties to IRS classes for simulations with spring and winter wheat. From left to right columns show: property type; property class (locations: FI (Finland), DE
(Germany), ES (Spain), for other codes, see Table 1 footnotes); five columns for spring wheat: number of models (n); statistical diagnostic approach (SDA) clusters with frequency above
33.3% and distance metric (relative to mean distance of 100 randomly selected IRS groups of the same size): >150%(++), 100%–150%(+), 50%–100% (-), ≤50% (–); classes with
frequency above 33.3% from the expert diagnostic approach (EDA – see Fig. 1 for explanation) for location of maximum yield (Ymax loc); ditto for strength of response (Strength): × no
class/cluster >33.3% frequency; equivalent five columns for winter wheat. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this
article.)
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cases, there was relative consistency in the dominant strength of re-
sponse: at Nossen both temperature and precipitation responses were
weak for spring wheat, whereas for winter wheat at Dikopshof and
Lleida, precipitation responses were strong. On the other hand, patterns
were more different than if selected at random for the Finnish site (both
crops) and spring wheat for Spain (Fig. 8). The Finnish site showed
strong yield sensitivity to temperature (T″), but high distance ratios.
This was because two different patterns were important, one reflecting
strong responses to increased temperature (i.e. C1, the dominant cluster
for winter wheat – Fig. 7 and cf. Fig. 5b) and the other strong responses
to cooling including frequent crop failure (i.e. C3, the dominant cluster
for spring wheat, cf. Fig. 5a), with some other patterns also con-
tributing. A higher distance ratio across spring wheat IRSs for the
Spanish site (Fig. 8) can be explained by the even mix of clusters C1 and
C2 (Fig. 7), which depicted patterns of strong yield response to tem-
perature and to precipitation, respectively (cf. Fig. 5a).

Another way of comparing models is to examine the response pat-
terns of individual models across the three sites (Fig. S5). Distance
metrics between three IRSs varied between models and crop variety
from nearly identical IRSs for some models to large differences between
the three sites for others. 17 of the 26 winter wheat models gave IRSs
for the three sites that were more similar to each other than IRS triplets
that were randomly selected from the full ensemble. For spring wheat,
this was the case for 14 of 25 models. 11 models showed closer IRSs
than random triplets for both spring and winter wheat, whereas for six

models IRSs differed for both spring and winter wheat.

3.3. Responses in anomalous years

1995 and 2003 were selected as examples of wet and dry years at
the German spring wheat site, Nossen. During the wet year of 1995,
growing season (April–September) precipitation was 68% above the
1981–2010 mean. In contrast, during the very dry year of 2003,
monthly precipitation totals were below the long-term mean in all
months except January and November, with the deviation from the
long-term mean during summer (June–July) the greatest in the 30-year
period. Additionally, regional yield statistics showed close to average
yields in 1995 but anomalously low yields in 2003 (cf. Fig. S1 in
Pirttioja et al., 2015). IRSs for spring wheat from all model simulations
for both years are shown in Fig. S6. The IRSs of several models have
denser contour lines for 2003 with a wider range of yield changes
across the IRS space compared to 1995. This can also be seen in the
counts of the strength of yield responses using the EDA classification,
which are presented for each year alongside the 30-year mean in Fig. 9.
Compared to the long-term average, this shows a clear shift towards an
increased number of model simulations showing weak responses to
both temperature and precipitation for the wet year 1995, and con-
versely an increased number showing a strong response to both for the
dry year 2003.
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Heat stress: phenology
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Root distribution: linear

Heat stress: vegetative
Water stress: AET/PET (E)
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Water dynamics: Richards (R)

Calibration parameters: >9
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Site: Finland
Calibration approach: automatic
Geneology: SIRIUS
Geneology: none
Geneology: LINTUL
Calibration approach: manual
Geneology: CERES
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Calibration parameters: 3−5
Geneology: SUCROS
Calibration parameters: 0−2

Site, geneology
and calibration 

Process description

Winter wheat (W)
Spring wheat (S)

Winter wheat (W)
Spring wheat (S)

Fig. 8. Ratios of the mean distance metric of the
statistical diagnostic approach (SDA – see text)
comparing impact response surface patterns of
all pairs found in groups of models having the
same property type (cf. Table 1), to the metric
computed for pairs randomly selected from all
IRSs into 100 groups of the same size. Ratios are
ordered from more similar to less similar groups
for winter wheat (+) for groups defined by site,
genealogy and calibration (top) and by process
descriptions (bottom). Ratios are also shown for
the same groups for spring wheat (circles). Group
sizes are given as W for winter and S for spring
wheat. The symbol colour indicates the most
frequent class(es) of strength of response with
frequency above 33.3% from the expert diag-
nostic approach (EDA – see Fig. 1 for explana-
tion); a cross means that two classes are more
frequent than 33.3%. Lines and shaded rec-
tangles delineate model groups with IRSs that are
very similar (distance ratio ≤0.5, green
shading), more similar than random (0.5–1.0,
light green), more dissimilar than random
(1.0–1.5, light yellow) and very dissimilar
(>1.5, brown). (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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4. Discussion and conclusions

The preceding results demonstrate the application of two ap-
proaches that offer alternative, complementary methods for classifying
IRS patterns of modelled yield response to climate. In addition, an at-
tempt has been made to relate classes of yield response to character-
istics of the model simulations. Here we discuss possible explanations
for differences in patterns revealed by the analysis and offer additional
observations on the potential utility of the classification approaches.

4.1. Explaining IRS patterns of wheat yield response to climate

The majority of IRS patterns for ensemble mean yields reported in
Pirttioja et al. (2015) could be found in only a few of the 36 classes
defined by the expert diagnostic approach (EDA). Contour lines were
roughly U-shaped with increases in yield towards the maximum located
at increased precipitation; the maximum yield appeared to the cooler
side of the baseline for the German and Spanish sites and close to or to
the warmer side of the baseline for the Finnish site. The differences for
these main classes of IRSs were in the strength of response to changes in
temperature and precipitation.

The exceptions to these main response types were IRSs with their
maximum close to or below the baseline precipitation, which were in all
cases also classified to have a weak precipitation response. These in-
cluded IRSs with o-shaped contours with a yield decrease for increases
in precipitation (T0P− in Fig. 3), found only for winter wheat at the

Finnish site. For one model, CARAIB, in which cloud cover is inferred
from precipitation, circumstances can arise whereby increased pre-
cipitation restricts crop photosynthesis through enhanced cloud cover
and reduced radiation receipt, even where water may otherwise not be
limiting for growth. Similar model behaviour could also be caused by
the effect of water-logging or by leaching of nutrients when too much
water is available (Geerts and Raes, 2009), processes not simulated by
most crop models. One exception is the DNDC model, which has been
used to simulate soil carbon processes that are strongly affected by
water table dynamics (Giltrap et al., 2010; Kröbel et al., 2010). Other
exceptional IRSs showed very weak response to changes in precipita-
tion, under which the exact location of the maximum yield along the
precipitation axis might be based on very small differences in yield.
Here, the representation of soil and crop growth processes and their
parameter calibrations might be an explanation for a model's relative
insensitivity to changes in precipitation. Indeed, for cases in which
model simulations show a very weak precipitation sensitivity at sites
where water limitation is known to be a dominant constraint on yield,
there would be strong grounds for discarding model results as im-
plausible, as demonstrated at Lleida by Castañeda-Vera et al. (2015)
and Ruiz-Ramos et al. (2017) in a related IRS modelling study for
winter wheat.

The similarity of response patterns among members of model groups
(cf. Fig. 8) gave an indication of which model properties are influential
in determining responses. Membership of the same model family (i.e.
models with a shared genealogy) tended to produce similar response
patterns. These models share some model principles and components,
but also differ in others. Documenting how models of the same family
differ from one another is a tedious task, as information is scattered or
not published as well as difficult to compare between different models.
One of the precepts for applying multi-model ensembles to represent
uncertainties in model estimates is that an ensemble should encompass
a diversity of model behaviour, and the “degree of relatedness” of
models has been advocated as one possible criterion for determining
model choice (Wallach et al., 2016). In this context, it would seem all
the more important to improve and further develop existing crop model
genealogies that were the basis for our analysis (Asseng et al., 2013;
Rosenzweig et al., 2014) so as to encompass a larger set of models and
include descriptions of how the models differ.

The method used to describe evapotranspiration in a crop model
also helped to explain differences in yield response patterns. These
approaches differ in their weather input data requirements as well as in
their complexity, accuracy and intended applicability to different en-
vironmental conditions. Of the three most common equations used in
the ensemble of wheat models, Priestley-Taylor has the simplest de-
scription and only requires information on temperature and solar ra-
diation, whereas Penman-Monteith requires wind speed and relative
humidity in addition, and Penman wind speed and air pressure. Further
investigation would be needed to discriminate between the effects of
different evapotranspiration schemes on a model-by-model basis, see
for example a comparison for maize using a single model (Webber et al.,
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Fig. 9. Number of crop models showing weak (T' and P') and strong (T" and P") yield
responses to respective perturbations of temperature and precipitation for spring wheat in
Nossen (Germany) for the 1981–2010 period mean and for wet (1995) and dry (2003)
years relative to their respective baseline yields.

Table 3
Some features of the expert and statistical diagnostic approaches presented in this study.

Classification approach

Expert diagnostic (EDA) Statistical diagnostic (SDA)

Diagnostics • Location of maximum response (1) • Pattern correlation (1)

• Rate of change of response (2) • Euclidean distance (2)

• Combined (1 & 2) • Distance metric (combines 1 & 2)
Typical features • Related to system-relevant criteria • Related to IRS pattern alone

• Applicable independently to other studies and ensembles • Constrained to available ensemble members

• Class members can be averaged • Class members can be averaged

• Subjective criteria for classification • Largely statistical criteria for classification

• No metric readily available to compare patterns • Distance ratio to compare patterns
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2016). However, other work suggests that a focus on evapotranspira-
tion schemes alone may not offer a sufficient explanation for simulated
model behaviour. For instance, Cammarano et al. (2016) analysed the
temperature sensitivity of crop water use simulated by 26 wheat models
and found that the main source of uncertainty was due to model dif-
ferences in the partitioning between soil evaporation and crop tran-
spiration, rather than the choice of the evapotranspiration formula it-
self.

The analysis of models using the same root distribution function and
water stress processes provided examples where models with simpler
model descriptions exhibited more similar IRS patterns than those with
more complex process descriptions. While this can be seen as a ten-
dency that more complex model descriptions can result in more com-
plex results, in order to generalize these two examples one would ide-
ally expand the analysis with further descriptions of model properties,
such as the number of parameters used in a model or a classification of
the ensemble members into different categories of model complexity.

The automatic and manual approaches to calibration were not ideal
descriptors of the detailed procedures actually followed, but the in-
formation provided by modellers on calibration was patchy and in-
complete and grouping was problematic. It is perhaps to be expected
that those models for which calibration focused on only a few para-
meters (commonly relating to phenology) were those showing greatest
similarity of response (cf. section 3.2.2). The effect of parameter se-
lection on yield outcomes can be large (Angulo et al., 2013), which also
becomes evident from the large distances between IRSs of the same
model calibrated for different sites (e.g. model 1 in Fig. S5). Hence, the
descriptions of the calibration approach that we were able to collect
may be insufficient to address the full effects of calibration strategies on
the yield response.

4.2. Assessment of the classification approaches

This paper has introduced and applied two diagnostic approaches to
the classification of IRS patterns generated in a multi-model sensitivity
analysis of simulated wheat yields to temperature and precipitation
perturbations. Characteristics of the expert (EDA) and statistical (SDA)
diagnostic approaches are summarised in Table 3 and outlined below.

4.2.1. Utility of the expert diagnostic approach (EDA)
The expert diagnostic approach (EDA) classifies patterns of response

using knowledge about the circumstances of the model simulations (e.g.
types of models and processes simulated, calibration, site conditions,
input data and other assumptions). Here, IRS patterns are placed in
classes defined using criteria pre-specified by experts.

One advantage of this approach is that any IRS pattern can be
readily described using criteria that relate directly to features of the
system being simulated. In this paper, the pattern of wheat yield sen-
sitivity is described in terms of the position on the IRS of the maximum
yield and the rate of yield decline from this maximum with respect to
temperature and precipitation change. The same criteria can be used for
different sites, different crops and patterns for period-averages as well
as individual years (cf. Sub-section 3.3). The EDA could also be applied
to other climate change sensitivity studies applying IRS for different
sectors or systems (e.g. hydrology, fisheries, forestry, human health),
though different classification criteria would need to be identified for a
given system. One such example is a classification of IRSs of water
availability for 18 European river catchments simulated with a hydro-
logical model (Weiß and Alcamo, 2011).

The EDA classification proved useful for describing model responses
in two anomalous years for the German spring wheat site (Sub-section
3.3). It demonstrated how the sensitivity of modelled responses can be
strongly influenced by the nature of the baseline climate – yields dis-
played stronger relative responses under anomalously dry than anom-
alously wet baseline conditions. Other sites and years (not reported)
showed different deviations. For example, responses to cool years in

Finland were sometimes characterised by crop failure, which can
complicate the interpretation. A systematic analysis of IRS patterns for
individual years using the EDA classification might be an alternative
approach for describing aspects of inter-annual yield variability, com-
plementing measures such as the coefficient of variation that are typi-
cally used in crop model studies. This could be a topic for future re-
search.

A potential disadvantage of the EDA is that the classification criteria
are chosen subjectively, so different studies might adopt different cri-
teria, making inter-comparison of results problematic. Another is that
very similar patterns may fall in different classes by virtue of falling on
either side of a threshold defined for a given selection criterion, without
their similarity being readily quantifiable.

4.2.2. Utility of the statistical diagnostic approach (SDA)
The statistical diagnostic approach (SDA) groups patterns of re-

sponse into classes based on statistical measures of their similarity.
Here, the similarity between IRS patterns and magnitudes is evaluated
without attempting to interpret these features. IRSs can then be clas-
sified using a clustering algorithm. One advantage of this approach is its
ease of application, requiring only the values describing each IRS pat-
tern and statistical software for computing the relevant metrics (i.e.
pattern correlation, Euclidean distance and the clustering procedure for
this study), though subjective choices are required for clustering.

While we have plotted average IRS patterns across members of in-
dividual clusters in Fig. 5, such an analysis is not a pre-requisite for
classification. However, if this is the only approach used to classify
responses, then it may become necessary to provide labels to describe
patterns represented in each of the clusters. For example, hierarchical
clustering of Euclidean distances was used by Prudhomme et al.
(2013a) to classify IRSs of river floods simulated with a hydrological
model. They plotted average patterns of response for each cluster, la-
belling and relating each one statistically to different characteristics of
the river catchments (analogous to the crop model properties examined
in the present study). In further work, they used these statistical re-
lationships to infer likely flood responses to climate change in other
catchments that were not part of the original analysis (Prudhomme
et al., 2013b).

The distance metric that is used for clustering the IRS patterns can
also be applied separately to indicate relative similarity in the patterns
presented by different IRSs (noted as a weakness of the EDA approach).
A disadvantage of this approach is that it applies solely to the ensemble
of IRS patterns analysed. Thus evaluations of different ensembles,
perhaps from other studies, would result in clusters that are not
equivalent (as demonstrated for spring and winter wheat in Fig. 5). The
choice of ensemble size to be analysed depends on what aspects of the
model simulations are of interest. For instance, in this study it was
found that IRS patterns of yield response differed between sites, so for a
strict inter-comparison of model behaviour, clusters should have been
estimated separately for each site. However, this would have resulted in
smaller sample sizes of the IRS clusters. Finally, it would only be pos-
sible to include a new IRS pattern by computing the distance metric
between the new member and all others in the ensemble and/or re-
peating the clustering procedure.

4.2.3. Relating EDA to SDA patterns and their sensitivity to modelling
assumptions

There are clear overlaps between dominant patterns described using
the statistical and expert diagnostic approaches, even if the approaches
themselves differ. A strong correlation between two IRSs (Supplement
1, Eq. (1)) indicates that these have a similar pattern, a finding analo-
gous to identifying the location of maximum yield for the EDA, which is
a specific aspect of the IRS pattern. Likewise, the Euclidian distance
bears similarities to the strength of response criterion used in the EDA.
Thus, it is not surprising to find correspondences between dominant
SDA clusters and EDA classes, although no exact matches were
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identified (cf. Fig. 6).
Model results were obtained following a protocol that necessarily

included a number of simplifying assumptions. For instance, a synthetic
soil was assumed with parameters common for all sites. Simulated crop
yields can be sensitive to soil properties and status in most models (e.g.
Varella et al., 2010), so had the analysis assumed a soil with a lower
water holding capacity, simulated responses to changes in precipitation
could be expected to have been stronger, thus affecting the outcome of
the EDA and SDA classifications. Another example is the management
assumption of a constant sowing date for baseline and perturbed cli-
mates. Had sowing dates been shifted to match the altered growing
conditions, modelled yield responses are likely to have been weaker
than those reported (Ruiz-Ramos et al., 2017).

4.3. Conclusions

In this paper two new approaches have been presented for classi-
fying impact response surfaces (IRSs) used to depict the modelled
sensitivity of crop yields to perturbed climate. We hypothesized that
such classifications might offer insights into differences in model be-
haviour under changed climate and on the possible reasons for these
differences. To examine this, we have applied the classification ap-
proaches to IRSs generated in a multi-model sensitivity analysis of si-
mulated wheat yields to temperature and precipitation perturbations.

Based on the analysis presented in the paper, we conclude that:

1. The expert diagnostic approach (EDA) and statistical diagnostic
approach (SDA) offer alternative, complementary and in some cases
overlapping methods for classifying and discriminating between
patterns of modelled response to temperature and precipitation.

2. EDA provides a useful means of describing different patterns of re-
sponse in terms directly relevant to a given impact (e.g. the strength
of yield response to changing temperature and precipitation) and is
directly applicable in other similar studies.

3. SDA offers straightforward procedures for comparing patterns of
response based on statistical measures, including a distance metric
that quantifies the similarity between two patterns, though its ap-
plication is constrained to those ensemble members under study.

4. There are multiple options for presenting and inter-comparing IRS
classes, including comprehensive tables with frequency counts of all
classes, cross tabulation of different classification methods, counts
of dominant classes, distance metrics, and use of coloured icons for
rapid visual comparison.

5. Complex models represent multiple processes in different ways, thus
no single model property across a large model ensemble was found
(or could realistically be expected) to explain the integrated yield
response to temperature and precipitation perturbations. However,
application of the EDA and SDA approaches to classify IRS patterns
in a large wheat model ensemble for sites in Europe and attempts to
relate these classes to characteristics of the model simulations re-
vealed some capability to distinguish:

• a stronger response to precipitation perturbations for winter wheat
than spring wheat;

• differing strengths of response to both temperature and precipita-
tion changes in anomalous weather-years compared to period-
average conditions;

• the effect of site conditions on IRS yield patterns, which showed
clear differences between sites in the location of the maximum yield
and strength of decline from that maximum with climate change;

• similarities in IRS patterns among models with related genealogy;

• greater similarity in IRS patterns for models with simpler process
descriptions for the root distribution and water stress than for
models with more complex descriptions;

• a closer correspondence of IRS patterns in models using partitioning
schemes to represent yield formation than in those using a fixed or

modified harvest index

Considering the many challenges reported in undertaking a con-
sistent wheat model ensemble IRS analysis, as well as the myriad op-
tions available for classifying IRS patterns, these conclusions support
our original hypothesis concerning the utility of classifying IRS patterns
for agricultural crops. By means of comparison, it would be interesting
to apply similar methods to IRS patterns obtained from other regions
and for other crops, as well as for impacts in other sectors, building on
the few existing examples in the literature. This could also be com-
plemented by a comparison to observed yields, also plotted as an IRS,
but for annual or period-averaged climate anomalies relative to the
long-term mean. Such results could be used to inform model selection in
future multi-model crop simulation studies by identifying ensemble
members that span a wide range of model responses, those that are
closely related and outliers that exhibit clearly implausible behaviour.
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