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Abstract

BACKGROUND: Unravelling the geneticarchitecture of non-target-siteresistance (NTSR) traitsin
weed populations caninform questions about the inheritance, trade-offs and fitness costs
associated with these traits. Classical quantitative genetics approaches allow study of the genetic
architecture of polygenictraits even where the genetic basis of adaptation remains unknown. These
approaches have the potential to overcome some of the limitations of previous studies into the

genetics and fitness of NTSR.

RESULTS: Using a quantitative geneticanalysis of 400 pedigreed Alopecurus myosuroides seed
families from ninefield-collected populations, we found strong heritability for resistance to the ALS
and ACCase inhibitors (h?=0.731 and 0.938 respectively), and evidence for shared additive genetic
variance forresistance to these two different herbicide modes-of-action, r,= 0.34 (survival), 0.38
(biomass). We find no evidence for geneticcorrelations between life-history traits and herbicide
resistance, indicating that resistance to these two modes of actionis not associated with large
fitness costsin blackgrass. We do, however, demonstrate that phenotypicvariationin plant
flowering characteristicsis heritable: h?=0.213 (flower height), 0.529 (flower head number), 0.449
(time toflowering), and 0.372 (time to seed shed), demonstrating the potential foradaptationto
other non-chemical management practices (e.g. mowing of flowering heads) now being adopted for

blackgrass control.

CONCLUSION: These results highlight that quantitative genetics can provide importantinsightinto
the inheritance and geneticarchitecture of NTSR, and can be used alongside emerging molecular

techniquesto betterunderstand the evolutionary and fitness landscape of herbicideresistance.



Introduction

Reductionin cropyields due to competition from weeds remains one of the greatest constraints to
maximisingyieldsin global crop production . While chemical weed control can be very effective,
over-reliance on herbicides has resulted in aglobal epidemic of herbicide resistance, with 266
herbicide resistant species now reported worldwide 2. Throughout Northern and Western Europe,
Alopecurus myosuroides (blackgrass)is considered to be the mostimportant and costly weed species
affecting cereal cropping?*, with resistanceto seven herbicide modes of action reported 2. Inthe UK
alone, blackgrass causes an estimated annual economicloss of £0.4 billion, due to wheatyield losses
of 0.8 milliontonnes>. Whilst our understanding of the geneticand evolutionary basis of herbicide

resistance isimproving ®%, there are still many unanswered questions.

Open questionsinclude; does resistance to herbicides with different mechanisms of action (MOAs)
share the same geneticbasis? And, does the evolution of resistance traits resultin otherlife history
trade-offs? Herbicide resistance mechanisms are divided into two main groups. Target-site-
resistance (TSR) involves either significantly increased expression of the herbicidal target, or
alteration of the structure of the target molecule to reduce herbicide-target binding. By their nature,
such mechanisms only convey resistance to those herbicides which share abiological target. In
contrast, changesin the rates of herbicide absorption, translocation, or metabolism, termed non-
target-site-resistance (NTSR), can convey broaderand more unpredictable cross-resistance®?2. The
cytochrome P450 monooxygenase (P450s) 1314 glutathione S-transferase (GST) *°, and ATP-binding
cassettes (ABC) transportersuperfamilies '® have all beenimplicated in NTSR to multiple different
MOAs, across a broad range of species®. Inaddition, links with broader plant stress responses and
reactive oxygen species (ROS) scavenging have been suggested to play a role in minimising herbicide
damage and recovery from herbicide injury 78, contributing to the NTSR mechanism. As such, the
underlying geneticbasis for NTSR remains poorly understood, but likely involves multiple genes and
pathways. Understandingvariation in the geneticarchitecture of NTSR withinand amongweed
populations has been highlighted as a priority forstudy !°, but has remained hampered by the

scarcity of geneticresources forthese non-model species.

Typically, there has been atheoretical assumption that evolved resistance mechanisms should result
infitness costs 2%, It has been hypothesised that TSR mutations, which alterthe structure of key
plantenzymes, mightalso reduce substrate binding affinity and catalytic capacity thereby reducing
enzyme efficiency 2, although evidence of this in practice has been scarce. Over-production of
herbicide targets or moleculesinvolvedin herbicide detoxification could also requireincreased

allocation of plantresources, diverting resources away from growth or reproduction. As such, many



studies have predicted that TSR or NTSR could resultin reduced fitness. Although thereare casesin
supportof fitness costs 2227, the prevailing evidence now is that such costs are not universal 2333, |n
some cases, co-evolution of other plant traits might act to directly compensate for detrimental
fitness effects of resistance alleles 34, whilein otherinstances, cultural practicesincluding crop
choice and competitive cultivars used alongside herbicide selection might concomitantly select for
greater’weediness’, potentially masking smallfitness penalties 3>:3¢, The possibility that fitness costs
(if present) might be small, and the potential for such multi-trait co-evolution highlights the need for
careful experimental design, appropriate statistical power, and assessment of multiplefitness-
related traits. Much has been written about methodological difficulties and limitations in studies to
detect costs associated with herbicideresistance, highlighting low statistical powerandissues
around uncontrolled geneticbackgrounds. Where resistance is polygenic, as suspected for many
NTSR traits, gaining meaningful estimates of fithess can be even more problematicdue to the
relative effects of multiple, generally unknown alleles. This has led some to call foralternative

approachesto measure such costs 2°:3738,

Quantitative genetics has been highlighted as an approach which might bridge these two areas of
research, allowing simultaneous investigation of the additive-genetic basis, and trade-offs associated
with herbicide resistance traits 2°3°4°, Through analysis of geneticlines with known pedigrees, the
additive geneticvariance and co-variance underpinning aset of plant traits can be estimated. Using
this approach, estimates of the heritability of herbicide resistance phenotypes can be ascertained *,
while geneticcorrelations can help toreveal the extent of shared ‘geneticarchitecture’ underpinning
resistance to different herbicide MOAs, and life history trade-offs. As an additional benefit, applying
guantitative geneticanalysesto field-evolved weed populations can help to provide evolutionary
inference on otheraspects of plantlife history which might be underselection. Forexample, a
guantitative geneticstudy of multiple populations of Amaranthus palmeriidentified several weedy
traitsunderselectioninthe field 2. With the increased adoption of non-chemical methods and
Integrated Weed Management (IWM) for weed control, such understanding of the heritability and
potential response to selection forarange of planttraits will be importantfor predicting future

adaptationto weed management.

Here we use a classical quantitative genetics approach toinvestigate the additive geneticvariance
and co-variance underpinning herbicideresistance in the weed Alopecurus myosuroides. Target-site
resistance to the acetolactate synthase (ALS) and acetyl CoA carboxylase (ACCase) inhibiting
herbicides has been extensively reported in this species, with mutations particularly frequent at
positions 197 (ALS) and 1781 (ACCase) respectively *3. Notably, non-target-site resistance to these

two modes-of-action (MOAs) is also widespread amongst A. myosuroides populations, co-occurring



with TSR and potentially causing broader and more unpredictable patterns of resistance *. Inthe
currentstudy, 400 pedigreed seed families from nine field-collected populations were established,
encompassing both TSRand NTSR mechanisms, and used to examine the inheritance and genetic
architecture of resistance. We test the hypothesis that there is shared geneticarchitecturefor
resistance to the ALS- and ACCase-inhibiting herbicides, indicative of some degree of generalist
herbicide cross-resistance in this species. Through assessment of genetic correlations, we also test
the hypothesisthatinheritance of the geneticarchitecture forresistanceto either MOA will resultin
some measurable fitness costin plant morphology or life-history. Finally, investigation of the
heritability and additive-genetic variance and co-variance amongst multiple plant traits allows us to
highlight the capacity for further plant adaptation and trait (co-)evolution in responseto weed
management. Comparison of phenotypictrait divergence (Qsr) with among-population molecular
differentiation (Fs) allows us to test the hypothesisthatsuch divergent selectionis already

underway amongst UKA. myosuroides populations.

Materials and Methods

Collection of the field populations

Blackgrassina predominantly autumn germinating grassweed infesting cereal crops throughout
North-Western Europe. As an obligate outcrossing species with high fecundity, resistance mutations
can spread rapidly and facilitate large population sizes. Nine blackgrass-infested agricultural fields
were visited inthe summer of 2014 as part of a widersurvey of herbicideresistance *. These nine
sites were widely distributed across the main blackgrass areasin England, and representavariety of
infestation and herbicideresistance levels (Figure 1). Ten sampling locations were identified within
each field usingastratified random approach, and five mature blackgrass seed heads were collected
at each location. Inall cases, seed heads were collected from differentindividual blackgrass plants,
with 50 seed heads collected from each field. Seed heads wereair-dried at room temperature for

one week before carefully removing the ripened, filled seeds.

[Figure 1 here]

Creating pedigreed seed families




The collected seeds were used to generate pedigreed seed families with a paternal %2 sibling crossing
design. Seeds from each individual field-collected seed head were germinated in Petri-dishes
containingtwo Whatman No. 1 filter papers soaked in 0.02 mol L' KNOs;. Petri dishes were
incubated forsevendaysina Sanyo, MLR-350 growth cabinetwitha17/11°C temperature cycle and
a 14/10 hour light/dark cycle. Individual germinated seedlings from each seed head were
transplantedinto 15cm (1.55L) plastic plant pots containing compost. Pots were keptina16/14°C
glasshouse between Septemberand November. During December, supplementary heating was
turned off, allowing the plants to vernalise at approximately ambient winter temperatures. After

vernalisation, the temperature was increased to 20/15°C with a 14/10 hour light:dark day length.

Once plants had established sufficient biomass, one quarter of the vernalised plants from each
population were randomly chosen to be pollen donors (paternal plants), whilethe remaining three
guarters of plants were designated for seed collection (maternal plants). Paternal plants were split
intothreetillers (geneticclones). Each paternal tiller was then randomly paired with an un-cloned
(maternal) individual from the same population. At the onset of flowering, paired plants were
bagged togetherusing plastic pollination bags, allowing cross-pollination of seed heads within each
pair, but preventing cross pollination between different pairs of parental plants. Once seed heads
were mature, seeds were collected from each maternal plant. As A. myosuroides is an obligate
outcrossing species, all seeds from the maternal plant were considered to be the result of pollination
from the paired paternal plant. All seeds from a single maternal plant are therefore considered full-
sibling families, while seeds collected from different maternal plants sharinga pollen donorare %-
siblingfamilies. Collected seed families thereforerepresentaclassicfull-sib, half-sib design. Between
30 - 52 seed families were successfully produced in this way for each of the nine source populations,

with 400 pedigreed seed families produced in total.

Herbicide resistance screening

To assess herbicide resistance in each seed family, seeds were germinated in Petri-dishes as
previously described, with individual germinated seedlings transplantedinto 7cm (0.23 L) plastic
plant pots. Pots were filled with a Ketteringloam soil, containing 2kg m2 osmocote fertiliser. 14,000
plants (35 per seed family) were grown in this way to the three-leaf stage before spraying with
herbicide usingafixed track-sprayer. The spray nozzle (Teejet, 110015VK) was mounted 50cm above
the plants, with boom speed setat0.33 m st applyingherbicideat approximately 200L hat. Plants
from each family were sprayed with either the commercial ALS inhibiting herbicide ‘Atlantis’

(containinga mixture of the sulfonylurea active ingredients mesosulfuron-methyl+iodosulfuron,



hereafterreferred to as meso+iodosulfuron), orthe ACCase inhibitor ‘Foxtrot’, (containing the active
ingredient fenoxaprop-P-ethyl, hereafterreferred to asfenoxaprop). Sevenreplicate plants (n=7)
were sprayed ateithera ‘low’ or ‘high’ dose of each herbicide. Forthe pre-formulated mixture of
meso+iodosulfuron, the low dose was 14.4 g a.i. ha! (combined weight of both active ingredients)
representing 1x the UK field rate, while the high dose was 43.2 g a.i. ha!, 3x field rate. For
fenoxaprop the low dose was 69 g a.i. ha?, representing 1x field rate, while the high dose was 207 g
a.i. hal, 3x field rate. Afurtherseven plants per family were grown as unsprayed controls. Four
weeks afterspraying, plants werescored as alive or dead, and all aboveground biomass was

harvested and weighed following oven drying at 80°C for 48 hours.

Due to constraints on space, all 400 seed families could not be assayed in a single experimental run.
Instead, the experiment was performed three times, each time testing a third of the seed families.
Approximately equal numbers of families from each of the nine source populations were assessed in
each experimental run, and % sibling families were not split between runs. Within each run, the
plantswere spread overthree adjacent glasshouse rooms, each set to maintain approximate
day/nighttemperatures of 16/11°C for the duration of the experiment. Plant position within each
glasshouse was determined using anincomplete randomised blocking (alpha) design. This was used
to ensure thatreplicate plants of each family were randomly, but approximately evenly, distributed
across all the available glasshouse space, avoiding any undesired grouping of replicates that can

occur witha fullyrandom design.

Life-history assays

A furtherseven plants of each seed family (2,800 plantsin total) were pre-germinated and sown
individually into 15cm (1.55 L) plastic pots containing Ketteringloam soil. These plants were kept
outdoors underambient environmental conditionsin anetted enclosure to exclude vertebrate pests
and birds. Plants were placed in the enclosurefrom the emergence of theirfirstaboveground leafin
autumn through to reproductive maturity the following summer (02/11/16 — 03/07/17). Replicates
from each family were organised in randomised blocks along the length of this area. Daily
supplementary watering was provided by overhead sprinklers from late spring to prevent excessive

soil drying.

Plants were assessed non-destructively onten occasions during establishment and vegetative
growth overwinter/spring (15/12/16 — 15/03/17). Ateach interval, the numberof tillers and length

of the longesttillerwas recorded for each plant. Flowering time was recorded as the time at which



the first flowerspike became visible afteremerging fromthe surroundingleaf-sheath. The
commencement of seed shedding was also recorded foreach plant. These dates were converted
intothermal growing-degree-days using meteorological data recorded daily on-site (Harpenden, UK).
A base temperature of 1°Cwas used **. On 03/07/17, once all plants had flowered, the total number

of seed-heads produced, and the length of the longest flowering tiller was recorded for each plant.

Mature seeds were collected from all plants, and seeds fromthe seven replicate plants perfamily
were combinedto create a single, family-level seed bulk. Three replicates of 50seeds were counted
for eachseed bulkand weighed to determine the 50-seed weight. Not all A. myosuroides seeds
contain a viable caryopsis *°. To calculate the proportion of such non-viable, un-filled seeds, aseed
squashtestwas used. Fourreplicate sets of 25 dry seeds from each seed bulk were distributed
evenly overasheetof card, stuck down using clear adhesive tape, and rolled flat usinga heavy
weight. Using this method, the filled caryopsis of viable seeds is squashed out; making these easily
distinguishable from unfilled, non-viable seeds. Using this method, the proportion of viable, filled
seeds was calculated foreach family-levelseed bulk. This value was used to correct the proportion

of seed that had the capacity to germinate in the calculation of germinability.

To determine germinability, three technical replicates of 50 or more seeds were plated on 0.8%
wateragar Petri-dishes and incubated fortwo weeks at 16/10°C with a 14/10 hourlight/dark cycle in
a Sanyo, MLR-350 growth cabinet. The Petri-dishes were stacked so that the technical replicates
were distributed across different stacks, and the stacks rotated every other day within the growth
cabinetto ensure equal exposureto light. At the end of this time, seeds were counted as germinated
if the radicle or shoot had visibly emerged through the seed coat. Binocular dissecting microscopes
were used to facilitate observation of very early emergence. Germination frequency was calculated
as the numberof seeds with a visibly protruding radicle or shoot divided by the proportion of the

seedthat had the capacity to germinate (after correction according to the seed-fillingtest results).

Assessment of among-population variability

To assess the magnitude of among-population variance in life-history and resistance traits, aninitial
set of univariate Bayesian mixed-effects models were fitted. In each case, ‘source population’ (theID
of the nine field-collected populations that the lines were derived from) was included as a fixed
effect, while ‘seed family ID’ was included asarandom term. Other sources of experimental variance
wereincluded as fixed effects, with models for herbicide resistance traits including fixed effect terms
for experimental run, glasshouse compartment, and the glasshousex runinteraction, while models

for life-history characteristics included afixed effect term for the experimental block. For binary



traits such as herbicide survival wherethe residual variance isinestimable, the value of Vs was fixed
at 1. Allmodels were fitted in Rversion 3.4.2 using the package MCMCglmm 6. In all cases, models
were fitted using parameter expanded priors, and run for 5 millioniterations with the burn-inand
thinningvaried to maximise chain mixing within each model. The posterior means and 95% highest
posteriordensity (HPD) intervals were calculated for each source population, and significant

differences were ascribed to populations with non-overlapping HPD intervals.

Quantitative geneticanalyses

Analysis of quantitative geneticparameters was performed using a Bayesian animal-modelling
approach ®& %7, Preliminary assessment of herbicide phenotyping dataand models showed that
responsesto both ‘high’ and ‘low’ doses of the same herbicide were very similar, with avery high
geneticcorrelation (Supplementary figure S1). Therefore, datafrom both doses was combinedinto
single ‘biomass’ and ‘survival’ response variables foreach herbicide in subsequent models. After
triallingarange of models with different life-history traits and/orresistance measuresincluded, a set
of four multivariate mixed-models were constructed. The responsevariablesincludedinthe four
models were; (1) bivariate measures of resistance (fenoxaprop survival, meso+iodosulfuron
survival), (2) measures of biomass after herbicide screening (control biomass, fenoxaprop biomass,
meso+iodosulfuron biomass), (3) repeated measures assessment of vegetative development (tiller
number, tillerlength), and (4) flowering characteristics (flower head number, flower head height,
thermal time to flowering, thermal time to seed shedding). Multivariate models containing a greater
range of the measured traits were trialled, but not evaluated due to poor chain-mixing and posterior

distribution estimatesin some cases.

As previously, potential sources of experimental variance wereincluded as fixed effects, such that
models (1) and (2) included fixed effects terms for the herbicide dose, experimental run, glasshouse
compartment, and the glasshouse x run interaction, while models (3) and (4) included a fixed effect
term for the experimental block. All modelsincluded random effect terms for ‘animal’ (additive
geneticvariance), ‘mother’ (maternal variance), and ‘Source population’. Model (3) included an
additional random effect term ‘plantID’, to account forthe repeated-measures nature of the data.
As above, the value of Vi (residual variance) was fixed at 1 for binary traits, while residual covariance
was fixed atzerowhere the response variables were measured on differentindividual plants.
Models were fitted using parameter expanded priors, and run for 5 millioniterations with the burn-
inand thinningvaried to maximise chain mixing within each model. Posterior distributions and chain

mixing were assessed forall models beforeinterpretation.



To evaluate the potential for geneticcorrelation between herbicideresistance and plant life history,
a furtherset of bivariate animal models were fitted. Plant survival after herbicideapplication was
used as the estimate of resistance. For each of the measured plantlife-history characteristics, a
separate bivariate animal model was constructed, containing asingle life history trait and herbicide
resistance to either meso+iodosulfuron orfenoxaprop. As above, sources of experimental variability
were included as fixed effects, with random termsincluded to estimate the additive geneticvariance

(Va), maternal variance (Vy), among-population variance (Vz).

The additive geneticvariance (V,) and total phenotypicvariance (V,) was extracted from the fitted

modelsfollowing the approach of Wilson etal.*, as:

Where V, isthe additive geneticvariance for a trait, Vy, is the maternal variance and V is the
residual variance. Among-population variance (Vg) was estimated in the modelbut notincludedin
the calculation of the total phenotypicvariance. Forbinomialtraitsthe Vyisinestimable and was
fixed as ‘1’. Narrow-sense heritability (h?) was calculated by dividing the additive geneticvariance

(Va) by the total phenotypicvariance (V,), as:

h? = -+ Eq. 2

The geneticcorrelation between two traits (rg) was calculated from the additive geneticvariances

and co-variancesas specified in Wilson etal.*’:

e = —— Eq3

Whereby COVAL2 represents the additivegeneticcovariance between trait 1and 2, while V4, and
V4, are the additive geneticvariances of traits 1 and 2 respectively. The among-population
differentiation foreach phenotypictrait (Qs;, analogous to F for genetictraits), was calculated using
the between-population (Vg) estimates of variance as givenin Wood et al. 8:

Vg

Ot = v 2 x v

Where V; isthe between-population variance, and V,is the additive geneticvariance fora particular

trait. All of the estimates of heritability (h,), genetic correlation (rg) and among-population



differentiation (Q,;) were calculated on the latent scale usingthe variance-covariance matrix directly
from the fitted MCMCglmm models. For calculation of evolvability (1,), first the latent additive
geneticvariances (V,) were transformed back to the observed data scale using the ‘QGmvparams’
functioninthe ‘QGglmm’ package *°. This stepis necessary to account forvariance introduced by the
family and link functions of the GLMM and allows mean standardisation of the variances using the
observed phenotypicdata. The mean-standardised evolvability was then calculated as givenin

Hansenet al. >°;

VAobs
2 Eq.5

IA:

Where Vs represents the additive geneticvariances after transformation back to the observed

data scale, while the denominator x2 is the squared mean of the phenotypictrait.

Results

Variabilityin resistance and life-history characteristics

Significant effects of source population were observed across all stages of plant life-history, though
differences were generally small in comparison to the variability amongst seed families within source
populations (Figure 2, and see Table S1, S2). Significant variationin herbicide resistance was
observed, both within and between seed-families from each source population (Figure 2 A, B).
Greatervariationinresistance to the ALS inhibitor (meso+iodosulfuron) was found, with families
ranging from 0% to 100% survival, even amongst seed families from the same source population. In
contrast, ACCase (fenoxaprop) resistance was more frequent across the seed families, although
significant variation was still observed amongst seed families from different source populations

(Figure 2).

Analysis of vegetative growth datafound thatincreasesin tiller numberfollowed an approximately
exponential relationship with thermaltime, whiletiller length followed a polynomial relationship
(Figure 2 C, D). For both traits, there was substantial variation within and between seed families,
though differences atthe level of the source population were very small, particularly during the
early stages of vegetative development (Figure 2, Table S1). Significant differences amongst the nine
source populations were observed forreproductive traits, including in flower head numberand

height (Figure 2E, F), and inthe weightand germinability of produced seeds (Figure 2G, H).



[Figure 2 here]

Heritability and Evolvability of resistance and life-history characteristics

Resistance to both herbicides was strongly heritable, with survival data giving higher heritability
estimatesthan biomass (Table 1). Tillerlength during vegetative development had avery weak
heritable basis and tiller numbershowed almost no heritable variation. In contrast all reproductive
traits had significant heritability, with the number of flowerheadsin particular being strongly
heritable ath?=0.52 (Table 1). The mean-standardised estimates of evolvability were uniformly low,
with the exception of resistance to the herbicide meso+iodosulfuron, measured as plant biomass

afterherbicide application (Table 1).

[Table 1 here]

Geneticcorrelation between resistance to different herbicide MOAs, and life-history traits

A significant, positive geneticcorrelation was observed between resistance to meso+iodosulfuron
and fenoxaprop, using both survival and biomass measurements (Figure 3, A). This clearly
demonstrates ashared geneticarchitecture forresistance tothese two herbicide modes of action.
There were, however, no significant genetic correlations between herbicide resistance and flowering
traits, although HPD intervals for negative correlations between resistance to meso+iodosulfuron
and phenological timings for flowering and seed shed were almost significant (Figure 3, C). There is
no evidence therefore that the geneticarchitecture underpinning resistanceto these two herbicides
isassociated with trade-off in reproductive traits, which would have been strongly indicative of

fitness costs.

Some geneticcorrelations were observed amongst the life-history data, however. The strongest
geneticcorrelation was between the thermaltime to first flower emergence and first seed shed. The
correlation was positive, i.e. plants which flower earlieralso set seed earlier. Flower height had
negative genetic correlations with both the total number of flower heads, and time to seed shed
(Figure 3, B). This suggests a genetictrade-off whereby plants which produce longer flowering tillers

have fewerflowerheadsandshed seeds later.



[Figure 3 here]

Among-population divergence (Q,)

Resistance tofenoxaprop was high amongst seed families from all nine of the field-collected source
populations, whereas resistance to meso+iodosulfuron showed greater variability (Figure 1A, B).
Concomitantly, Q,; valuesforresistance to meso+iodosulfuron were higher than forresistance to
fenoxaprop, suggesting that there are greater differences amongthe nine field-collected source
populationsin theiradditive-geneticvariance for meso+iodosulfuron resistance (Figure 4). Although
Fs: was not calculated in this study, the source populations here form part of a larger study of
blackgrass population structure (including F; estimation) in the UK *® 51, facilitating some estimated
F.: to Q.. comparison. Amongst the four floweringtraits, the height of the floweringtillerhad a
moderate Q;;value, witha HPD interval above the mean pairwise F,; (Figure4), while timeto
floweringalso neared significance. This may signify some selection acting on flowering strategy

amongstthese populations.

[Figure 4 here]

Discussion

Understanding the geneticbasis underlying plantresistanceto herbicides haslong been atopicof
study for weed biologists. However, despiteadvancesin understanding the biochemical basis of
enhanced metabolism-based herbicide detoxification °2°3, littleis currently known about the genetic
variation and co-variation underlying non-target-site resistance mechanisms 72195455 orthe

consequences of resistance on life history trade-offs.

One particularquestion surrounds the heritability and extent to which non-target-site resistance
(NTSR) to different herbicide modes of action (MOA) shares the same underlying genetic basis (e.g.
SNPs, alleles, QTLs). In grass weeds, the same protein superfamilies including the GSTs !> and P450s
56 are repeatedly implicated in resistance to a range of MOAs, and populations with NTSR to multiple
MOAs are widespread >’°°, However, the extent to which such multiple resistance shares the same
geneticarchitecture remainsincompletely resolved. As expected, the results of the current study

highlight extremely high heritability estimates for resistanceto both the ACCase inhibitor



fenoxaprop, and ALS inhibitor meso+iodosulfuron. As resistance isin part provided by single-locus
dominant TSR mutations a high heritability is unsurprising, although the controlled experimental
conditions may facilitate a higher heritability estimate here than might be observedinthefield.
Interestingly however, asignificant positive geneticcorrelation was also observed between
resistance to these separate herbicide groups, r,= 0.34 (survival), r,=0.38 (biomass). Given the
MOA-specificresistance (specialist resistance) provided by TSR mutations ®%, itis most likely that this
represents an element of shared geneticarchitecture for NTSRto these two MOAs. As MOA-specific
TSR is also presentamongst these populations, the true additive geneticcorrelation between NTSR
to the ALS and ACCase herbicides tested mightin fact be even higherthan shown here. Whilst this
doesnot mean that NTSR to these two herbicidesisidentical, it supports evidence that the non-
target-site mechanism of resistanceto these different herbicide MOAs may involve some of the

same underlyingalleles #3850,

From an evolutionary perspective, these results may help to explain why resistance to the ALS
inhibitors has evolved so rapidly in UK populations of blackgrass. Using experimental evolution
approaches, pre-selection with one herbicide MOA has been shown to resultin genotypes which
responded more rapidly to selection by another MOA in the unicellularalgae Chlamydomonas
reinhardtii, ®2. In the UK, use of ACCase inhibitors for control of A. myosuroides pre-dates ALS-
inhibitoruse, and so, many populations exposed to ALS herbicides will have had prior exposure to
ACCase inhibitors. We hypothesise, based on the geneticcorrelations found here, that widespread
selection with ACCaseinhibitors willhave pre-selected forthe rapid evolution of ALS resistance.
While glutathione-S-transferases (GSTs) have been implicated in metabolism of ACCase herbicidesin
A. myosuroides*®, cytochrome P450s have also been linked with resistancein this species 3.
Emerging evidencefrom otherspecies now suggests that overexpression of certain P450 enzymes
can convey simultaneous cross resistance to multiple herbicide MOAs, including both the ACCase
and ALS herbicide groups 1354, Further molecular geneticstudy is warranted to unpick this genetic
correlation, andidentify its transcriptional and mutational basis. Such results raise additional
concernsoverthe extentto which current NTSR genotypes may also have pre-selected for resistance

to novel, as-yet unreleased chemistry.

Evidence for costs and trade-offs associated with evolution of herbicide resistance remains
ambivalent?. Polygenictraitsin particular (as many NTSR mechanisms are suspected to be) involve
the contribution of multiple, potentially population-specific, alleles. As such, the extent of resistance,
and any associated consequences for plantfitness, need to be consideredinrelation to the overall
geneticarchitecture of the plant or population. Classical quantitative genetics approaches providea

novel meansto address thisissue %°. Interms of plantlife-history characteristics, we found that



vegetative traits had relatively low heritability, but that reproductive traits were more strongly
heritable. In particular, the narrow sense heritability for flower head numberwas high (h, =0.53),
and comparable with that observedin otherweed species ®& ¢5. Although a negative relationship
between ALS (meso+iodosulfuron) resistance and timings of flowering and seed shed was almost
significant, overall we found no evidence of significant genetic correlations between herbicide
resistance and any measured life history trait. While some previous studies have shown fitness costs
for non-target-site resistance mechanisms 23266667 the current results concur with growing evidence
that such results are not ubiquitous. In Apera spica-venti, NTSR to the ALS herbicides was found to
convey no associated fitness cost 32, and NTSR to the herbicide atrazine cause noreductionin fitness
inthe species Amaranthus tuberculatus ®®. In A. myosuroides, previous investigation has similarly
found nodirect costs in growth or fecundity associated with NTSR to the ACCase herbicides *3, orthe
ALS herbicides®. The benefit of the current quantitative genetics approach overthese previous
studiesisthatit incorporates multiple populations with potentially independent origins of resistance
whilst also providing control for differences in genetic background *°, providing an overview of
geneticcorrelations atalevel above that of the individual population. In so doing, we confirm that
there are no pronounced fitness costs associated with NTSR to the ACCase and ALS herbicidesinthe
blackgrass populations, and underthe experimental conditions tested here, although it should be
noted that the potential for Genotype x Environmentinteractions means that we cannot rule out

fitness penalties occurring under other environmental conditions.

Finally, with non-chemical practicesincreasingly employed for blackgrass control 7°, itis interesting
to speculate if plant adaptation may occurto counterthese managementtechniques. One practice
gainingincreased adoption for blackgrass control is the use of cutting headers, which remove
flowering heads which emerge above the crop 7. However, thisin turn may provide aselective
pressure forshorterfloweringtillers, and anecdotal evidence from growers employing these
techniques for A. myosuroides control has been that populations can rapidly (over 2-3 years) exhibit
a shorter-stemmed flowering morphology. In this study flower height was heritable (h?=0.21), and
the estimate of among-population divergence (Q,;) was greater than any of the other measured
floral traits (Qs = 0.11). Comparison of Qg with an estimated F,,>! suggests that these differences
may be greaterthan expected due todriftalone, indicating that this divergence may already
representaresponse toselectioninthe field. The potential for evolutionary response to non-
chemical control has previously been shown in Raphanus raphanistrum (wild radish), with earlier
floweringand reduced flowering height demonstrated through experimental recurrent selection,
highlighting the possibilityforthese adaptivetraits to evolve to comparable in-field selection (e.g.

viathe use of harvest weed-seed control), 7. The heritability of flowering time, and the presence of



a negative geneticcorrelation between flower height and time to seed shed suggests thatasimilar
response could be predicted in blackgrass. While these analyses do not provide direct evidence of
adaptation to non-chemical controls, they highlight that the evolutionary potential for such
adaptationis presentinthis species, and the value in quantitative genetics approaches for

proactively identifying this potential.

Conclusion

In conclusion, we have demonstrated the utility of a classical quantitative genetics approach to
provide importantinsightinto the inheritance and geneticlandscape of resistance in A. myosuroides.
The observation of shared additive geneticvariance forresistance to two different herbicide modes-
of-action lends weight to concerns that resistance mechanisms with broader, more generalist cross-
resistance are evolvingin thisspecies %%, The lack of significant genetic correlations of resistance
with plantlife-history also supports observations that the evolution of such resistance is not
accompanied by consistent reductionsin plant fitness 33, Moreover, we are able to demonstrate
the heritable nature of plant traits that may be directionally selected by the adoption of non-
chemical controls, highlighting the potential for evolutionary adaptation to these management
practices. Overall, ourresults highlight the importance of aweed species’ geneticarchitecture, and
additive-genetic correlationsinshapingresponse to selection by agronomic management, within
and between populations. Although the quantitative geneticframework employed is time-and
resource-heavy, itovercomes some of the criticisms directed at more traditional methods 37*%, and
could be used alongside emerging moleculartechniques’? to better understand the evolutionary

and fitness landscapein herbicide resistant species.
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Figure 4: Among-population divergence in phenotypic traits (Qst) calculated according to Equation 4 following MCMC glmm
analysis. Points represent the posterior modes, with thickand thinner horizontal bars showingthe 50% and 95% credible
intervals respectively. The vertical red line shows the mean pairwise Fs: froma broader assessment of43 UK blackgrass
populations collected alongside the nine source populations inthisstudy 5.
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Quantitative genetics reveals heritability of flowering traits and shared additive-geneticvariance for
resistance tothe ALS and ACCase inhibitors, though no evidence for large fitness costs associated

with these resistances.
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Table 1: Narrow-sense heritability estimates (h2) and mean-standardised evolvability (Ia) for herbicide resistance and life-
history characteristics in blackgrass. Herbicide resistance traits are the survival or dry weight of plants taken four weeks

aftersprayingwith either the ALS inhibitor meso+iodosulfuron or the ACCase inhibitor fenoxaprop. Posterior modes are
given, along withthe lowerand upper95% credible intervals.

Trait h? lower upper Ia lower Upper

Herbicide resistance

Survival: meso+iodosulfuron | 0.731 0.469 0.907 0.007 0.000 0.036
Survival:fenoxaprop 0.938 0.828 0.953 0.001 0.000 0.006
Biomass: meso+iodosulfuron | 0.432 0.312 0.531 0.408 0.285 0.519
Biomass: fenoxaprop 0.394 0.121 0.589 0.151 0.042 0.223
Vegetative development

Tillerlength 0.054 0.012 0.097 0.010 0.002 0.017
Tiller number 0.000 0.000 0.001 0.000 0.000 0.001
Flowering

Flower height 0.213 0.072 0.305 0.006 0.002 0.009
Flowerhead number 0.529 0.243 0.688 0.034 0.015 0.050
Time to flowering 0.449 0.289 0.546 0.002 0.002 0.003

Time to seed shed 0.372 0.235 0.473 0.001 0.001 0.002




