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ABSTRACT

Most approaches to modeling lactation curves in-
volve parametric curves with fixed or random coeffi-
cients. In either case, the resulting models require the
specification of an underlying parametric curve. The
fitting of splines represents a semiparametric ap-
proach to the problem. In the context of animal breed-
ing, cubic smoothing splines are particularly con-
venient because they can be incorporated into a
suitably constructed mixed model. The potential for
the use of splines in modeling lactation curves is
explored with a simple example, and the results are
compared with those using a random regression
model. The spline model provides greater flexibility at
the cost of additional computation. Splines are shown
to be capable of picking up features of the lactation
curve that are missed by the random regression
model.
( Key words: lactation curves, smoothing, cubic
splines, genetic effects)

Abbreviation key: RR = random regression.

INTRODUCTION

Data for test day production of dairy cows provide
an example of longitudinal data or repeated meas-
ures, the essential feature of which is the presence of
correlations between tests on the same animal. Both
genetic and environmental covariances need to be
taken into account. Various methods have been pro-
posed for analyzing such data, ranging from simple
curve fitting to a full multivariate analysis. The latter
amounts to treating the measurements at successive
times as separate but correlated traits. Most methods
of analysis for longitudinal data can be regarded as

being derived from a model in which the traits have a
patterned covariance matrix. Different methods make
more or less stringent assumptions about the struc-
ture of the matrix.

Two curve-fitting methods, random regressions and
spline fitting, use patterned covariance matrices in
the analysis of longitudinal data. The random regres-
sion method, with polynomial or other simple func-
tions as covariates, is being used increasingly by
animal breeders (3, 5), but, as yet, splines have not
achieved the same popularity. However, for modeling
growth curves, Verbyla et al. ( 7 ) recommended spline
curves, which are flexible and can be fitted into the
familiar mixed model framework. The spline terms
play a role similar to that of the quadratic and higher
order terms in a polynomial random regression model
or to the exponential term of the lactation curve of
Wilmink (8) . Woolliams and Waddington (10) used
splines to model lactation curves at the phenotypic
level and reported a twofold increase in precision
relative to the use of the lactation curve of Wood; no
evidence of bias was found.

This paper shows that fitting splines to test day
records is computationally feasible and leads to
curves for estimated breeding value that are more
flexible than those derived from other methods. First,
we outline the basic mathematical theory of splines,
and then we show how splines can be fitted by BLUP
and REML methods, which are familiar to animal
breeders.

MATERIALS AND METHODS

Cubic Splines

A cubic spline is a piecewise cubic function that is
constrained so that the function and its first two
derivatives are continuous at the breakpoints (knots)
between one cubic segment and the next. Given q
knots x1 < x2 < . . . < xq, the piecewise cubic curve
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represented on the interval xj ≤ t ≤ xj + 1 by

g(t ) = ) + ( – t)(t – xj gj + 1 xj + 1 gj
–xj + 1 xj

– (t – ) ( – t)1
6 xj xj + 1

⎡⎢⎣
⎛
⎜⎝1 +

t – xj
–xj + 1 xj

⎞
⎟⎠

+vj + 1
⎛
⎜⎝1 +

– txj + 1
–xj + 1 xj

⎞
⎟⎠
vj

⎤⎥⎦
has value gj and second derivative vj at xj, j = 1 . . . q.
The first term is a broken-stick curve produced by
linear interpolation between the knots, and the se-
cond term, which vanishes at the knots, represents a
cubic deviation. Between x1 and xq, the curve is con-
tinuous and has a continuous second derivative. The
parameters (g i, vi) , i = 1 . . . q of a cubic spline
satisfy, in addition, the q – 2 constraints
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for j = 2 . . . q – 1, which ensure the continuity of the
first derivative (see Appendix). Natural cubic splines
are defined to be linear outside the interval ( , )x1 xq
and, therefore, have = = 0.v1 vq

Given data ( , ) , . . ., ( , ) , the smoothingt1 y1 tn yn
spline is the natural cubic spline that minimizes
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The integral is a roughness penalty, and the
parameter a determines the trade-off between fidelity
to the data and smoothness. Usually a is a parameter
to be estimated, but, occasionally, it is specified a
priori as a number n (1 ≤ n ≤ q) of equivalent degrees
of freedom. The case n = 2 ( a = ∞) corresponds to
fitting a straight line. The case n = q ( a = 0) produces
a spline of best fit with no smoothing. When q = n and
the knots coincide with , this spline interpo-, . . .,t1 tn
lates the data.

The term smoothing spline is usually restricted to
the case in which the knot sequence consists of the
distinct values in . Here, it is assumed that 3. . .t1 tn
≤ q ≤ n, but no assumption is made about the position
of the knots, which are chosen independently of . . .t1

.tn

A good general introduction to splines and their
statistical application is given by Green and Silver-
man (2) .

Mixed Model Formulation

Natural cubic splines can be incorporated into the
standard mixed model. The following demonstration
extends some results of Verbyla et al. ( 7 ) to the case
in which the knots are chosen independently of the
data locations .. . .t1 tn

Let = ( . . . ) and = ( . . . ) . Later,gT g1 gq vT v2 vq – 1

is used to denote (1,t), X (q × 2) has row ia( t) T

and T (n × 2) has row i a( . In matrixa( )xi
T )ti

T

notation, the spline equation becomes

g(t ) = z ( t) g + l( t) v,T T

and the constraints become g = Rv. Here =QT z( t) T

( . . . ) and = ( . . . ) , and each com-z1 zq l( t) T l2 lq – 1
ponent of z( t) and l( t) is a function of t. It is easy to
check that, for any fixed value of t, the vectors z( t)
and l( t) have at most two nonzero components and
that = . For the constraint equations,z( t) XT a( t) T QT

is (q – 2 × q), R is symmetric of dimension q – 2, and
each matrix has at most three nonzero components in
each row. Also X = 0. These results are discussedQT

in more detail in the Appendix.
A general solution to the constraints can be written

g = Xb + Q( Q) RvQT –1 [1]

where the components of b are the intercept and slope
of the regression of g1 . . . gq on x1 . . . xq. Substitution
for g and the use of = leads to anz( t) XT a( t) T

expression for the spline function in terms of b and v:

g (t ) = a( t) b + z( t) vT T [2]

where

z( t) = z( t) Q( Q) R + l( t) .T T QT –1 T [3]

The vector of spline values at the data points t1 . . . tn
is Tb + Zv, where Z is the (n × q – 2) matrix with
row i . According to Green and Silverman (2) ,z( )ti

T

the roughness penalty is Rv so that the quantityvT

minimized by the smoothing spline is

.( y – Tb – Zv) ( y – Tb – Zv) + RvT avT
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Differentiation of this expression with respect to b
and v and setting derivatives to 0 leads to equations
for a mixed model with fixed effects Tb (linear trend)
and random effects Zv, with cov(v) = , whereRss

2 –1 ss
2

= . This connection between mixed model equa-a–1se
2

tions and a minimization problem was noted by
Robinson (6) . A convenient way to choose an ap-
propriate degree of smoothing is by REML estimation
of the variance component .ss

2

Families of Splines

In suffix notation, the mixed model for a single
spline is

yj = + + ( ) + j = 1 . . . nb0 b1tj ∑
k = 2

q – 1

vkzk tj ej

where element k of the row matrix z( t ) (Equation
[3]) has been written .(t j)zk

From here, yj = milk yield, and tj = lactation stage
(DIM) for a particular animal at test j. Suppose there
are m animals and that animal i enters test j at tij
DIM. Use yij for the test j measurement for animal i
( j = 1, . . . ni) . Then, a natural extension of the spline
model is

yij = + + +b0 b1tij bi0 bi1tij

+ ( )∑
k = 2

q – 1

vkzk tij

+ ( ) +∑
k = 2

q – 1

vikzk tij eij

where the first two terms represent an overall linear
regression, the third and fourth terms (animal and
animal × linear) describe the deviation from the over-
all regression for animal i, and the fifth and sixth
terms (spline and animal × spline) represent, respec-
tively, a mean spline deviation and the deviation from
the mean spline for animal i. The final term is theeij

residual error with variance . The parentheses arese
2

ANOVA expressions for the individual terms in which
spline is shorthand for the joint effect of the covari-
ates z2(t ) , . . ., zq – 1(t ) .

Inspection of the equation shows that the structure
of the model is identical to that of a random regres-
sion ( RR) model with covariates t and zj(t),j = 2 . . .
q – 1. However, instead of representing polynomials
of increasing degree or a set of unrelated functions of

DIM (such as t2, log t), z2( t ) . . . zq – 1( t ) represent a
sequence of shifted curves. Each curve is approxi-
mately parabolic and centered on an internal knot.

In the absence of genetic effects, the covariance
structure for the values of v in the case of a single
spline is assumed to be true independently for each
animal (i.e., the overall covariance matrix is block
diagonal) with a block for each animal. TheRss

2 –1

linear terms are usually treated as fixed for a single
spline, and the intercept and slope terms are usually
treated as random when fitting a family of splines.
The covariance matrix for the values of b is assumed
block diagonal with a block F (2 × 2) for each animal.
With this covariance structure, the model fits a
separate spline with the same degree of smoothing for
each animal. Both linear and deviation components
are shrunk toward a common value.

Genetic effects are included either as an animal
model (fitting the interaction terms with an as-
sociated numerator relationship matrix) or a sire
model (fitting additional interaction terms sire, sire ×
linear, and sire × spline). In either case, the directly
fitted animal iteractions are also included and
represent permanent environmental effects. The
smoothing parameter and covariance matrix F aress

2

estimated separately at each level of deviation
(genetic, permanent, and environmental). In addi-
tion, there is a smoothing parameter determining the
smoothness of the mean spline.

The model can be further extended to include addi-
tional fixed or random effects. In general, any factor
F, which would be included as an F × test interaction
in an analysis treating tests as different traits, can be
treated as an F × spline term, representing a family of
spline curves, one for each level of F. The spline
method has the advantage that factor F effects are
constrained to change smoothly through the lactation,
which is usually appropriate.

Estimated Covariance Matrices

The values of a spline at the knots depend on the
parameters b and v from Equation [1], assuming that
b and v independently generate a covariance matrix

.cov(g) = XFXT + ss
2Q( Q) R( Q)QT –1 QT –1QT

Estimates of genetic and environmental covariances
are obtained by substituting appropriate values of ss

2

and F in this equation. The covariance function c(s,
t ) = cov(g(s),g(t)) for values of s and t between the
knots is derived in the same way from Equation [2] as
c(s, t ) = + , where b( s ) = Fa( s )a( t ) b( s )T z( t ) v( s )T
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TABLE 1. Mean DIM, variance estimates, and heritabilities by test.

1G = Genetic, E = environmental, R = residual, and P = phenotypic.

Variance

Test DIM G1 E R P h2

(kg2)
1 18 3.40 9.10 5.17 15.11 0.23
2 48 3.06 7.47 4.07 12.30 0.25
3 78 2.94 6.79 3.57 11.09 0.27
4 109 2.93 6.62 3.08 10.43 0.28
5 139 2.95 6.60 2.25 9.59 0.31
6 169 2.96 6.57 2.60 9.91 0.30
7 199 2.95 6.52 2.37 9.62 0.31
8 229 2.96 6.62 2.32 9.68 0.31
9 259 3.09 7.23 2.06 10.07 0.31

10 290 3.45 8.81 3.04 12.70 0.27

and v( s ) = . Considered as a function of tR z( s )ss
2 –1

for fixed s, c(s, t ) is a natural spline with knots x1 . . .
xq and parameters b(s ) , v(s ) .

Application

Lactation curves were fitted to test day records of
milk production for 2885 progeny of 30 Holstein-
Friesian sires in 503 herds using ASREML (1) . Each
curve modeled daily milk yield as a spline function of
DIM. The ASREML program fits conventional
smoothing splines with densely distributed knots
(i.e., one knot for each value of DIM occurring in the
data set). However, we fixed the number of knots in
advance and fitted smoothing splines with 10 knots
using the method described. Ten knots kept computa-
tional requirements to a reasonable level and allowed
sufficiently accurate modeling of the lactation curves.
Knots were placed at the mean number of DIM for
each test. The lactation stage of animals entering the
first test varied between 4 and 40 d, and successive
tests were conducted at approximate 30-d intervals.

The hierarchical model had linear regression and
spline terms for the general mean, sires, and cows
within sires. The regression coefficients (intercept
and slope) were treated as correlated random varia-
bles. The following additional fixed effects were in-
cluded in the model: age at calving, the percentage of
Holstein genes, and herd-test-month. The residual
variance was assumed to be constant for each test but
was allowed to vary between tests.

As well as the full model with 10 knots, reduced
models with 3, 4, 5, 6, and 8 knots were fitted. Results
were compared with those obtained using the ex-
ponential curve of Wilmink (8) . To emphasize the
similarity to the spline equation, this equation can be
written

g(t ) = b0 + b1t + vz(t)

where z(t ) = exp(–Dt) and D is a constant. The
spline model with 10 knots was fitted twice: once
using a sire model and again using an animal model.

RESULTS

Of the fixed effects in the model, the breed differ-
ence (Holstein – Friesian) was estimated at 1.60 kg
(SE = 0.45), the effect of age at calving as 0.17 kg/mo
(SE = 0.02), and the mean decline in production as
0.86 kg/mo (SE = 0.005). Table 1 gives variance
estimates for each test. Genetic and environmental
variances show the same pattern of variation over
tests. Variances are constant in the middle of the
lactation and rise at each end. The heritability rises
from 0.23 to a fairly constant 0.30 from tests 5 to 9
before dropping slightly to 0.27 at test 10. Most of the
genetic and environmental variance derived from the
linear part of the spline. The spline deviation compo-
nent accounted for, at most, 12% of the total. Esti-
mated genetic and phenotypic correlations are given
in Table 2. The genetic correlations never fall below
0.75, but the phenotypic correlations drop to 0.40.
Correlations with a midlactation test fall away sym-
metrically and increasingly rapidly as the gap be-
tween the tests increases. In contrast, correlations
with the first test fall away rapidly at first and re-
main almost constant between tests 6 to 9 before
falling again at test 10.

Figure 1 shows the mean spline curve and the
estimated breeding values for the 30 sires as devia-
tions from the mean curve (with exaggerated vertical
scale). For the most part, the resultant curves (not
shown) are similar in shape, rising rapidly to a maxi-
mum after about 50 d, followed by a steady decline.
The main source of variation in the curves was in the
vertical position, reflecting overall performance, but,
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TABLE 2. Estimated genetic correlations (below diagonal) and phenotypic correlations (above di-
agonal) for tests 1 to 10.

Test

Test 1 2 3 4 5 6 7 8 9 10

1 . . . 0.64 0.60 0.55 0.52 0.48 0.47 0.46 0.45 0.40
2 0.98 . . . 0.66 0.63 0.61 0.57 0.55 0.53 0.51 0.44
3 0.93 0.98 . . . 0.68 0.68 0.64 0.62 0.58 0.55 0.46
4 0.88 0.95 0.99 . . . 0.72 0.69 0.67 0.63 0.58 0.48
5 0.85 0.92 0.97 0.99 . . . 0.74 0.73 0.68 0.63 0.52
6 0.82 0.90 0.95 0.98 0.99 . . . 0.73 0.70 0.65 0.54
7 0.82 0.89 0.93 0.96 0.98 0.99 . . . 0.74 0.71 0.60
8 0.82 0.88 0.91 0.93 0.95 0.97 0.99 . . . 0.76 0.68
9 0.81 0.85 0.88 0.89 0.90 0.92 0.95 0.98 . . . 0.75

10 0.77 0.81 0.82 0.82 0.83 0.85 0.88 0.93 0.98 . . .

as Figure 1 shows, there is also considerable variation
in shape. The shape of the deviation curve does not
seem to be related to the level.

The exponential curve of Wilmink ( 8 ) was fitted as
a three-parameter random regression model to the
same data, and the results were compared with those
using the spline fit. An attempt was made to optimize
exponent ( D ) of the exponential term. Several runs
were conducted using different values and choosing D
to maximize the likelihood. Some values of D
produced negative genetic correlations between early
and late parts of the lactation, but the correlations
were positive for the optimum value D = 0.068. Agree-
ment was good between the overall breeding values
estimated, and the equivalent of Figure 1 for the
exponential curves showed the same general shape.
However, the variations in slope after the peak were
necessarily absent.

Reduction of the number of knots had a large effect
on the fit as measured by the negative log-likelihood.
Taking the value for the 10-knot spline as 0, the
values for 3-, 4-, 5-, 6-, and 8-knot splines were 312,
267, 184, 133, and 41. On the same scale, the value
for the exponential model was 39 and was roughly
equivalent to the spline model with 8 knots.

Using a sire model, fitting the spline model with 10
knots took approximately 60 min (four iterations)
and using the exponential model, about 30 min (eight
iterations). The spline fit was repeated using an
animal model, which took about 180 min.

DISCUSSION

The mean lactation curve for a large population of
animals may have a shape that is sufficiently regular
to be fitted by a simple parametric function, but
individual curves at sire and animal level show con-
siderable variation in shape. Thus, successful model-
ing of lactation curves is likely to require a model
with random coefficients such as the RR or spline
model. Both RR and splines fit into the mixed model

framework; unbalanced data can easily be dealt with,
and genetic and environmental effects form a natural
part of the model.

Because the two types of models are similar in
structure, the mixed model equation arrays for a
spline model with q knots and an RR model of order q
are of the same size and equal sparsity. The models
differ in the nature of the covariates used and the
associated covariance structure. The RR model typi-
cally includes polynomial terms or a set of unrelated
functions of DIM. The covariates of the spline model
comprise a sequence of similar curves centered on the
knots. In general, the RR model requires a full set of
1/2q (q + 1) variances and covariances to be esti-
mated at each level (genetic and permanent environ-
mental). The structure in the covariates of the spline
model is such that a patterned covariance matrix,
known within a constant, can be assigned a priori.
The constant reflects the smoothness of the spline
curve or family of spline curves. Thus, at each level,
only four parameters need to be estimated for the
spline model ( and the three elements of F).ss

2

A particular advantage of the spline approach is
the extra flexibility it offers in the shape of fitted
curves. Polynomials, even of high degree, are unlikely
to produce such a good fit because of their inbuilt
constraints. For example, a cubic curve has two turn-
ing points and one point of inflection, but the inflec-
tion point is necessarily midway between the turning
points.

Preselection of knots allows the computational ef-
fort required to fit the model to be tailored to the
computational power available. Once the number of
knots has been determined, prior knowledge of the
curves can be used to guide placement of the knots.
For fitting a single spline, Wold ( 9 ) recommended
that there should be no more than one extreme and
one inflection point between knots, and that extremes
should be centered in intervals between knots and
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Figure 1. Fitted mean spline curve (left) and BLUP estimates (right) of breeding values for 30 sires as deviations from the mean
curve.

inflection points located near knots. When a family of
related splines is being fitted, this advice can be
followed only insofar as the curves share the same
extremes and inflection points. We have ignored one
part of this advice by placing the second knot at about
50 d, at which the curves tend to peak.

With preselected knots, smoothing takes place at
two stages. Limitation of the number of knots to q has
a smoothing effect; to invoke the roughness penalty
produces further smoothing. This result is in contrast
to regression splines, which rely on the first source of
smoothing alone (i.e., there is no roughness penalty).
Regression splines can be fitted by standard least
squares calculations but show undesirable local be-
havior if there are too few knots [Chapter 9.3; (4)].

A comparison of the result of fitting the Wilmink
curve and fitting a sequence of spline models with

different numbers of knots shows that the Wilmink
curve does better than the spline models with fewer
than eight knots. It seems unlikely that this is due to
the form of the Wilmink curve. A more likely explana-
tion is that the better fit is due to the two extra
covariance parameters allowed in the Wilmink model.
Because the Wilmink model has the same number of
terms as a three-knot spline, and five knots must be
added to achieve a fit for the spline model equal to
that for the Wilmink model, each extra parameter is
roughly equivalent to two or three extra knots, which
suggests that the spline model could be improved by
allowing covariances between the spline ( v ) and
regression ( b ) coefficients. There seems to be no com-
pelling statistical or biological reason for the conven-
tional assumption that these are independently dis-
tributed.
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CONCLUSIONS

Splines provide significant, extra flexibility in fit-
ting lactation curves compared with RR models con-
taining polynomial or simple functions of DIM as
covariates. This flexibility extends to the covariance
function on which estimates of genetic and environ-
mental correlations are based. Fixing the number and
position of knots makes the procedure computation-
ally feasible. Figure 1 demonstrates that splines can
capture interesting features of curves of EBV that are
missed by simpler functions. With present methods,
fitting a spline model requires more computation than
does a simple RR model, but there is scope for improv-
ing present methods by exploiting special structure in
the spline matrix equations.
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APPENDIX

For j = 1 . . . q – 1, let hj = xj + 1 – xj. After
rearrangement, the constraint equations can be writ-
ten

–gj + 1 gj

hj
– ( + ) =

1
6

hj – 1 2vj vj + 1

–gj gj – 1

hj – 1

+ ( + ) .
1
6
hj – 1 vj – 1 2vj

In this form, the equations declare equality between
the left and right derivatives of the piecewise cubic
curve at each internal knot xj, j = 2 . . . q – 1.

The components of z( t ) and l( t ) are derived from
the coefficients of g1 . . . gq, v2 . . . vq – 1 as given in
the nonmatrix form of the spline equation. For xj ≤ t ≤
xj + 1, zj = (x j + 1 – t)/hj, zj + 1 = (t – xj)/hj, and all other

components are 0. Also, = –lu – (t – )
1
6

xj (x j + 1

t ) (1 + ) for u = j, j + 1 and is 0 for all other valueszu
of u. When t ≤ x1, z1 and z2 are calculated as for x1 < t

< x2, and = – ( ) is the only nonzerol2
1
6
h1 t – x1

component of l. Similarly, when t > xq, zq – 1 and zq
are calculated as for xq – 1 < t < xq, and =lq – 1

– t) is the only nonzero component of l.– (
1
6
hq – 1 xq

In all cases, l1 and lq are identically 0.
That X = (1, t ) can be obtained directly fromz( t) T

these results or by noting that g is the value at tz( t) T

of the broken-stick graph interpolating between
(x1,g1),. . .,(xq,gq) and by considering the two special
cases gi = 1 (case 1) and gi = xi, i = 1 . . . q (case 2).

The matrices Q and R are derived by inspection of
the nonmatrix form of the constraint equations. For j
= 1 . . . q – 2, = , = – , =qj,j hj

–1 qj + 1,j –hj
–1 hj + 1

–1 qj + 2,j

, and = + ) . For j = 1 . . . q – 3,hj + 1
–1 rj,j (

1
3

hj hj + 1 rj,j + 1

= = . All other elements of Q and R are 0.rj + 1,j
1
6
hj + 1

That QTX = 0 follows by direct evaluation or by
noting that the columns of X correspond to the special
cases 1 and 2, for which v = 0.


