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Abstract
Aims Stable carbon isotopes are important tracers used
to understand ecological food web processes and vege-
tation shifts over time. However, gaps exist in under-
standing soil and plant processes that influence δ13C
values, particularly across smallholder farming systems
in sub-Saharan Africa. This study aimed to develop
predictive models for δ13C values in soil using near
infrared spectroscopy (NIRS) to increase overall sample
size. In addition, this study aimed to assess the δ13C
values between five vegetation classes.
Methods The Land Degradation Surveillance Frame-
work (LDSF) was used to collect a stratified random
set of soil samples and to classify vegetation. A total of
154 topsoil and 186 subsoil samples were collected and
analyzed using NIRS, organic carbon (OC) and stable
carbon isotopes.
Results Forested plots had the most negative average
δ13C values, −26.1‰; followed by woodland, −21.9‰;
cropland, −19.0‰; shrubland, −16.5‰; and grassland,

−13.9‰. Prediction models were developed for δ13C
using partial least squares (PLS) regression and random
forest (RF) models. Model performance was acceptable
and similar with both models. The root mean square
error of prediction (RMSEP) values for the three inde-
pendent validation runs for δ13C using PLS ranged from
1.91 to 2.03 compared to 1.52 to 1.98 using RF.
Conclusions This model performance indicates that
NIR can be used to predict δ13C in soil, which will
allow for landscape-scale assessments to better under-
stand carbon dynamics.

Keywords Carbon cycling . Landscape scale
assessments . Random forest modeling
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UNCCD The United Nations Convention to Combat
Desertification

UNFCCC United Nations Framework Convention on
Climate Change

Introduction

Aboveground vegetation influences belowground
carbon dynamics. Optimizing soil organic carbon
(SOC) content is recognized as an essential compo-
nent of ecosystem functioning (Lal 2010; Palm et al.
2007; Vågen et al. 2012). The United Nations Con-
vention to Combat Desertification (UNCCD) and the
United Nations Framework Convention on Climate
Change (UNFCCC) both recognize that reduced
SOC content is a consequence of, and can lead to
further land degradation, and ultimately poor land
and agricultural productivity. However, understand-
ing the influence of vegetation classes on SOC is
still needed, especially in light of progressive deg-
radation of soil and water resources (Vågen et al.
2013a; Vågen and Gumbritch 2012; Verchot et al.
2005). Although SOC is almost universally pro-
posed as the most important soil quality indicator
(Amundson et al. 2015; Gregorich et al. 1994), the
complexity and extent of SOC dynamics at the land-
scape scale is still poorly understood. This includes,
but is not limited to, understanding the influence of
inherent soil properties (e.g. geochemistry, aggrega-
tion, texture, etc.) on SOC content as well as the
effects of aboveground vegetation types, land man-
agement and climate. Furthermore, the impacts of
land-use change on SOC dynamics in sub-Saharan
African (SSA) ecosystems are still understudied,
especially across diverse landscapes, but essential
if food production is to keep pace with predicted
population growth in the region (Rosegrant and
Cline 2003). Assessing the impact of vegetation
shifts on SOC dynamics and quantifying SOC turn-
over rates can improve our understanding of the
effects of land-use change from native vegetation
to agricultural food production (Schlesinger 1997),
as well as the impacts of management shifts intro-
duced by climate smart agriculture (Lipper 2014;
Rwehumbiza 2014) and sustainable agricultural in-
tensification (Vanlauwe et al. 2014) on soil health in
smallholder farming systems.

Stable carbon isotopes in soil

Stable carbon isotopes are important tracers used to
understand ecological food web processes and vegeta-
tion shifts over time. This is because, the majority of
plants (trees and broad-leaved crops) use the C3 photo-
synthetic pathway and have δ13C values between −22
and −30‰, while about 15% of plants use the C4
photosynthetic pathway and have less negative δ13C
values, generally ranging from −10 to −14‰
(Farquhar 1989); Loomis and Connor 1992). The latter
includes the majority of tropical herbs and grasses,
including maize which is the major crop grown in many
of our study areas.

Understanding differences in photosynthetic path-
ways is important in the assessment of SOC dynamics,
including SOM turnover rates and carbon cycling
(Accoe et al. 2002; Bernoux et al. 1998; Ehleringer
et al. 2000; Six and Jastrow 2002); to identify vegetative
sources of organic matter in the soil (Boutton et al. 1998;
Von Fischer and Tieszen 1995; Kindscher and Tieszen
1998; Krull et al. 2006; Puttock et al. 2014, 2012;
Roscoe et al. 2001); to address the impact of land
conversion on soil condition (Awiti et al. 2008; Schulp
and Veldkamp 2008; Vågen et al. 2006b) and to im-
prove the overall understanding of ecosystem function
(Staddon 2004). In addition to vegetative shifts, there
are several other factors that influence δ13C values in
soil, including (i) microbial decomposition, (ii) the
Suess effect (Balesdent and Mariotti 1996; Roscoe
et al. 2001), and (iii) inherent factors such as soil texture
and geochemistry (e.g., quantity of iron and aluminum
oxides)(Krull et al. 2002; Krull and Skjemstad 2003;
Powers and Schlesinger 2002). There are still gaps in
our knowledge regarding stable carbon isotope signa-
tures in soils under in diverse systems, due in part to the
associated costs, infrastructure requirements and sample
preparation time required for stable carbon isotope anal-
ysis, which inhibit landscape-scale assessments. How-
ever, the interest in stable isotopes is increasing, as is its
utility across disciplines. For example, the spatial pat-
terns of vegetative signatures in soil have been mapped
using stable carbon isotopes (Boeckx et al. 2006; Wynn
and Bird 2007), δ13C values in the soil profile have been
used as a proxy for SOC stability (Oelbermann and
Voroney 2006; Salomé et al. 2010), to trace and quantify
erosion (Häring et al. 2013), and δ13C values in sedi-
ments have been used to determine vegetative sources in
depositional environments (Puttock et al. 2012).
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Compound-specific stable carbon isotope values are
increasingly applied to understand different soil pro-
cesses using a range of organic compounds with con-
trasting chemistries used as biomarkers (Dungait et al.
2008, 2010). The increase in the use of stable carbon
isotopes has created a demand for new, more rapid
analysis of plants, soils and sediments in order to obtain
the larger datasets needed for landscape-scale ecological
assessments.

Use of near-infrared spectroscopy (NIRS) to predict
soil properties

Infrared (IR) is now a well established methodology for
the prediction of soil properties such as SOC, pH, base
cations and texture (Brown 2007; Brown et al. 2006;
Genot et al. 2011; Nocita et al. 2014; Stenberg et al.
2010; Vasques et al. 2009; Viscarra Rossel et al. 2006).
In addition to being cost effective, IR spectroscopy
allows for estimation of several soil characteristics si-
multaneously, with minimal sample preparation and no
use of chemicals (Brown et al. 2006; Vågen et al. 2006a,
b; Terhoeven-Urselmans et al. 2010; Genot et al. 2011).
The ability to distinguish between different properties of
a wide range of materials using NIR has resulted in a
growing field of research across several disciplines,
including chemometrics, forage science, soil science
and plant science. In soil science, the application of
NIR has resulted in a significant lowering of costs
associated with measurements of soil properties, which
has in turn resulted in significant advances when it
comes to landscape-scale assessments of soil.

Soil spectroscopy is the Breflectance part of the
electromagentic radiation that interacts with the soil
matter across the VIS-NIR_SWIR spectral region^
(Ben-Dor and Banin 1995). Specifically, spectra in
the near infrared (NIR) range (wavelengths 8000–
4000 cm−1), can be analyzed to characterize the chem-
ical, physical and mineralogical composition of the
soi l (Ben-Dor and Banin 1995; Stoner and
Baumgardner 1982; Viscarra Rossel et al. 2006).
NIRS are influenced not only by the chemistry of
the soil but also by its physical structure, making
individual (well-defined and narrow) absorption
bands at specific wavelengths less pronounced. As
NIR absorbance features occur due to both overtones
and combination bands of fundamental vibrations of
OH, CH, NH, CO, CN and NO bonds in the mid

infrared region, the absorbance of light is directly
related to frequency or wavelength and corresponds
to the difference in energy between two vibrational
states (quantum numbers) in molecular bonds. These
energy levels are also influenced by surrounding mol-
ecules and functional groups, for example, but funda-
mentally various substances and molecules can be
identified due to different absorption patterns in the
spectra. For example, spectral regions around
7000 cm−1, 5200 cm−1 and 4460 cm−1 are particularly
important for the prediction of SOC (Ben-Dor and
Banin 1995). Iron oxides are often represented in the
adsorption bands at less then 1000 nm, hydroxyl
bonds near 1400 and 1900 nm, clay mineral absorb
near 2200, and organic matter absorbs at various
wavelengths throughout NIR spectrum (Soriano-
Disla et al. 2014; Viscarra Rossel et al. 2016). Few
studies have reported important spectral regions for
the prediction of other soil properties than SOC. The
difference between the application of spectroscopy in
soil science versus for example in food sciences, is
that that soil properties do not exhibit strong peaks at
particular wavelengths, calibration models with refer-
ence datasets containing wet chemistry analysis is
needed to develop robust predictive models.

The World Agroforestry Centre (ICRAF), with head-
quarters in Nairobi, Kenya has established a soil IR
spectral database that currently has soil spectra from soil
samples from across a wide range of landscapes that
represent agricultural soils, forested landscapes, wet-
lands, and savannas (Brown 2007; Towett et al. 2015).
These landscapes also represent a wide range of climatic
conditions, from sub-humid and humid ecosystems to
semi-arid and arid ecosystems in the global tropics. This
soil IR database combined with associated reference wet
chemistry enables the application of data mining and
analysis techniques to explore the potential of IR to
predict soil properties and even indices of soil condition
(Vågen et al. 2006a, b).

Other studies have assessed the potential for NIR
to predict stable carbon isotopes in soil, as it is
plausible that NIR spectra should be able to detect
the differences in the atomic mass of the carbon
isotope (Kleinebecker et al. 2009). For example, Fu-
entes et al. (2009, 2012) explored the possibility to
predict δ13C values in soil using NIR spectra from
soils collected from a well documented experimental
station in Mexico (n = 100 soil samples). Using
modified partial least squares (MPLS) regression,
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they developed calibration models with an R2 of 0.81
(Fuentes et al. 2012, 2009). Fuentes et al. (2009) used
Mahalanobis distance to characterize and discard
spectra from the population of soil samples, hence
attempting to reduce variability in the soil samples
used in the study. While the results presented in
Fuentes et al. (2009) were promising, and demon-
strated the potential for using NIR to predict δ13C,
the study represented a dataset with very limited
variations in δ13C and separate models were devel-
oped for soils with plant residues (n = 50 range − 16.6
to −23.3‰) and without plant residues (n = 50
range − 19.1 to −22.1‰), which limits the applica-
tion of these models beyond the specific case study
they were developed for. Our study builds on this
work to explore the potential for NIR to predict δ13C
values across a varied set of soils that represent a
wide range of chemical and physical characteristics,
including different vegetation classes. Kleinebecker
et al. (2009) used NIR spectra to predict δ13C and
δ15N in plant tissues. Applying partial least squares
(PLS) regression they developed calibration models
obtaining positive results with R2 values of 0.89 and
0.99 for δ13C and δ15N, respectively (Kleinebecker
et al. 2009). While NIR has long been used to deter-
mine protein quality in forages (Marten et al. 1983),
Clark et al. (1995) assessed the potential to determine
carbon isotope composition using NIR in various
genotypes and cultivars of forage species in the
USA. Their study used PLS regression models for
each cultivar and obtained R2 values between 0.69 to
0.93 for δ13C calibration models, further highlighting
the utility of NIR to predict stable carbon isotopic
content (Clark et al. 1995) in plant material.

Recent advances in big data analytics and ensem-
ble learning methods allow for the development of
predictive models that are stable across a range of soil
functional operating ranges. In this paper we present
a case study where we use NIR spectroscopy of soils
to develop predictive models for SOC and δ13C,
exploring the application of this approach in the
scaling of soil analysis to landscape level assess-
ments of soil health. Specific objectives of this study
include: 1) Assess the potential for NIRS to predict
δ13C using a diverse set of soil samples; 2) Compare
different predictive models (e.g., PLS and RF) and 3)
Better understand stable carbon isotope variation
across various vegetation classes and smallholder
farming systems in SSA.

Materials and methods

Soil sampling

Biophysical field surveys and soil sampling were con-
ducted in nine-100 km2 sites using the Land Degrada-
tion Surveillance Framework (LDSF). Top (n = 156)
and sub (n = 184) soil samples from nine LDSF sites
across Ethiopia (Mega), Kenya (OlLentille, Mpala,
Kipsing), Democratic Republic of Congo (DRC)
(Luhihi, Burhale), Uganda (Hoima), Madagascar
(Didy) and Tanzania (Mbola) were included in the study
(Fig. 1). The LDSF uses a spatially stratified random
sampling design (Vågen et al. 2013b) with 160 sam-
pling plots, each 1000 m2, across 16 spatially stratified
clusters (10 plots in each cluster), with 4 subplots
(100 m2) within each sampling plot. Measurements
and observations were made at the subplot and plot
levels, respectively. Land use was classified at each plot
using a simplified version of the FAO Land Cover
Classification System (LCCS) (Di Gregorio and
Jansen 1998), into three distinct vegetation classes: 1)
primarily vegetated, forest; (2) primarily vegetated,
woodland; (3) primarily vegetated, shrubland; (4) pri-
marily vegetated, grassland; and (5) primarily vegetated,
cropland (Di Gregorio and Jansen 1998). Altitude was
recorded at the plot level. Tree counts were made at the
subplot level and then averaged at the plot level. Soil
samples were collected from each of the 160 plots by
compositing soil samples from the four subplots within
each plot for topsoil (0–20 cm) and subsoil (20–50 cm).
For most of the sites, we analyzed soil samples from one
reference plot from each cluster, for a total of 16 topsoil
samples and 16 subsoil samples (unless there were depth
restrictions), providing a total of 30 soil samples from
Luhihi, Burhale, and OlLentille, 31 soil samples from
Mpala, 32 soil samples fromKipsing, Mega and Hoima.
However, two reference plots per cluster were used for
Didy andMbola, providing 64 and 59 soil samples from
these sites, respectively.

Laboratory analysis

Soil samples were air-dried and sieved to 2 mm. Air-
dried soil samples were scanned in duplicate in near-
infrared spectral range (wavelengths between 8000 to
4000 cm−1) with a resolution of 4 cm−1 using a Bruker
Multipurpose Analyzer (MPA) at the World Agroforest-
ry Centre (ICRAF) Plant and Soil Spectroscopy
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Laboratory in Nairobi, Kenya (http://worldagroforestry.
org/research/land-health/spectraldiagnostics-
laboratory).

Soil samples from all locations except DRC were
analyzed for carbon concentration (% dry mass) using
dry combustion on acidified samples and for stable
carbon isotopes with an elemental analyzer isotope ratio
mass spectrometer (EA-IRMS) at IsoAnalytics Labora-
tory (http://www.iso-analytical.co.uk). Soil samples
from DRC were analyzed at Isotope Bioscience
Laboratory (ISOFYS, www.ISOFYS.be) of Ghent

University, Belgium using EA-IRMS (ANCA-SL
(SerCon, Crew, UK), coupled to a 2020 IRMS (SerCon,
Crew, UK)). Stable carbon isotopes were expressed as
δ13C in parts per mile (‰) relative to the V-PDB (Pee
Dee Belemnite) standard (Loomis and Connor 1992).

NIR processing and prediction of SOC and δ13C

All calculations and statistical analysis were performed
using R statistics (R Core Team 2015) and KNIME
(Berthold et al. 2007). Manipulation of the NIR spectra

Fig. 1 Location of the nine LDSF sites used in the study (red circles)
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included computing the first derivatives of the spectra
using a Savitsky-Golay polynomial smoothing filter
implemented in the locpoly function of the KernSmooth
R package (Wand 2015). Partial Least Squares (PLS)
regression analysis was conducted in R using the pls
package and the mvr function (Mevik et al. 2015). A
Random Forest (RF) model (Breiman 2001) was com-
puted in R using the randomForest package (Liaw and
Wiener 2002), while statistical analysis of between site
differences was conducted using linear mixed effects
models using the nlme package in R (Pinheiro et al.
2013).

Prediction models for δ13C were developed using
PLS regression (Martens and Naes 1989), which is
commonly used as a standard tool in chemometrics
(Wold et al. 2001). In brief, PLS is a dimension reduc-
tion technique similar to classical canonical correlation
analysis (CCA), but where covariance is maximized
rather than correlation (Boulesteix and Strimmer
2007). The X- and Y-scores are chosen so that the
relationship between successive pairs of scores is as
strong as possible, similar to a robust form of redundan-
cy analysis. Directions are sought in the factor space that
are associated with high variation in the responses but
biasing them toward directions that are accurately pre-
dicted (Tobias 1995). The PLS model was compared to
a RF (Breiman 2001) prediction model. Random forests
have a wide range of applications, both in classification
and regression, and are increasingly used for multivari-
ate calibration, including in soil science (Vågen et al.
2013a; Winowiecki et al. 2016a). An ensemble of 500
regression trees was built, where each tree was learned
on a different set of observations in the input data and
different combinations of NIR spectral wavebands.

Results

Description of sites

Basic site characteristics for the nine sites included in
the study are shown in Table 1. The sites ranged in
elevation from about 970 m for Didy in Madagacsar to
about 1800 m for Ol Lentille, which is located in
Laikipia County in central Kenya (Table 1). The sites
ranged from wet tropical forests in Madagascar to dry-
land savanna in Kenya (Mpala, Ol Lentille and
Kisping), but also included agriculturally dominated
areas such as Burhale, Hoima, Luhihi, andMbola. There
were large variations in land use between the sites, with
69% of the sampled plots under cultivation in Burhale,
compared toMpala, Ol Lentille and Kipsing where there
was no cultivation (Table 1). The latter represent
shrubland/rangeland systems. In addition, we calculated
the average tree densities for each site. Didy had the
highest tree density (3910 trees ha−1) compared with
Mega, which had the lowest (13 trees ha−1) (Table 1).

NIR spectra, soil organic carbon (SOC) and carbon
isotopic signatures

There was substantial variation in soil NIR spectra both
between and within the sites (Fig. 2). For example,
Luhihi topsoil samples had high variation in absorbance
within the site, especially compared to Didy, Mbola and
Kipsing. The spectra of both top- and subsoil samples
were used to develop calibration and validation models
for δ13C in soil. Given the diversity of the spectra, the
potential for applying these models across diverse land-
scapes is high.

Table 1 Basic biophysical characteristics of the nine sites included in the study

Site Average elevation (m) % of the plots that
were cultivated

Average tree density
(tree ha−1)

Dominant Vegetation Classes

Burhale, DRC 1595 69 23 Cropland/ Woodland

Didy, Madagascar 973 5 3910 Forest

Hoima, Uganda 1168 41 41 Cropland/Shrubland

Kipsing, Kenya 1219 0 111 Shrubland

Luhihi, DRC 1653 68 85 Cropland/ Woodland

Mbola, Tanzania 1196 39 611 Cropland/Woodland

Mega, Ethiopia 1548 0.6 13 Shrubland/Grassland

Mpala, Kenya 1714 0 87 Shrubland/Grassland

Ol Lentille 1807 0 65 Shrubland
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Soil organic carbon varied across the nine sites from
0.9 to 98.3 g kg−1. Mean topsoil OC across the sites was
18.9 g kg−1 and mean subsoil OC was 12.5 g kg−1.
Figure 3 shows boxplots for topsoil and subsoil for each
site (e.g., the median, 25th and 75th percentiles).
Kipsing had the lowest median topsoil OC (3.8 g
kg−1), followed by Mbola (4.1 g kg−1), OlLentille
(8.3 g kg−1), Mpala (11.0 g kg−1), Mega (17.9 g kg−1),
Burhale (25.0 g kg−1), Hoima and Didy (29.0 g kg−1),
and then Luhihi (33.5 g kg−1) (Fig. 3). A comparison of
the boxplots per site, not only indicate with sites had the
highest SOC content, but also, which sites had the
greatest variation within the site. For example, Didy
had the greatest difference between top- and subsoil
OC. Luhihi, Hoima, and Burhale had the highest vari-
ability in both top and subsoil SOC values within the
site. Kipsing and Mbola had the smallest variation of
SOC within the site, despite the variation in vegetation
classes represented in Mbola.

Average δ13C in topsoil was −18.8‰, and average
δ13C in subsoil was −19.4‰, which indicates that these
are mixed C3-C4 ecosystems, with the exception of
Didy, which is dominated by C3 vegetation (forest).
Didy topsoil had the most negative δ13C values with a

median of −27.04‰, followed by Mbola (−21.77‰),
Kipsing (−19.00‰), Luhihi (−18.68‰), Hoima
(18.27‰), Mpala (−16.50‰), Burhale (−16.42‰),
OlLentille (−15.70‰), and Mega (−13.60‰) (Fig. 4).
Furthermore, there was very little difference between
top and sub soil δ13C values (with the exception of
Didy), which may have implications for whether or
not the organic matter is at steady state. However, the
lack of a strong shift in isotopic signature with depth at
most sites, could be due to the sampling intervals (0–20
and 20–50 cm), compared to sampling strategies that
use smaller increments, or it could indicate that their
have not been recent vegetative shifts.

Vegetation structure class and δ13C values

Fifty-six plots were classified as forest, 41 plots as
woodland, 135 plots as shrubland, 30 plots as grassland
and 78 plots as cropland. Forested plots had the most
negative average δ13C values (combining top and sub
soil values), indicating a dominance of C3 vegetation,
−26.1‰; followed by woodland, −21.9‰; cropland,
−19.0‰; shrubland, −16.5‰; and finally grassland,
−13.9‰ (Fig. 5). In general, the δ13C values for forested

Fig. 2 NIR spectra for the 156 topsoil samples from each of the nine LDSF sites. The black line is the mean spectra for the site and the
shaded area is the standard deviation
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Fig. 3 Boxplots of the top- and
subsoil SOC variation for each of
the nine LDSF sites. The black
dotted vertical line is the mean
topsoil OC across the sites, 18.9 g
kg−1and the gray dotted vertical
line is the mean subsoil OC,
12.5 g kg−1

Fig. 4 Boxplot of δ13C values for
the top- and subsoil samples for
each of the LDSF nine sites. The
black dotted vertical line is the
mean δ13C across the sites, −18.8
‰ and the gray dotted vertical
line is the mean subsoil δ13C,
−19.4‰
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plots exhibited a C3 signature, while grassland plots
exhibited a C4 signature. In contrast, the remaining
vegetation classes exhibited a mixed C3-C4 signature.
Results of the linear mixed effects models demonstrated
that compared to the forest δ13C values, only shrubland
(p < 0.05) and grassland (p < 0.001) plots showed
significant difference. These data have important impli-
cations for the use of stable carbon isotopes in East
Africa, e.g., since both semi-natural and cropland sys-
tems have mixed C3-C4 signatures large sample sizes
will be needed to develop robust models to assess veg-
etation shifts and soil organic matter turnover rates.

NIR prediction results for δ13C values

Prediction performance for δ13C was similar for the PLS
and RF models when tested on three different validation
datasets. Root Mean Square Error of Prediction

(RMSEP), which is a useful measure of accuracy
reflecting the overall difference between measured and
predicted values, was low for both PLS and RF models
(1.95 for PLS and 1.77 for RF). The results further show
average R2 for the validation runs using PLS of 0.80
compared to a slightly higher average R2 using RF of
0.84. Overall, R2 values were slightly higher for cali-
bration runs compared to validation runs, which is ex-
pected, with average R2 for calibration using PLS of
0.91 compared to 0.97 for RF. It is important to test
prediction models such as the ones presented here on
datasets that are independent of that used for developing
the model in order to generate some measure of model
stability. In our case, validation samples were drawn
randomly in each iteration and the calibration model
was fitted to this dataset with low RMSEP in both cases
indicating good performance for both models (Table 2).
Model stability was also good for both PLS and RF

Fig. 5 Density plots of δ13C
values for the top- and subsoil
samples for each of the five Land
Cover Classifications (Forest
(n = 56), Woodland (n = 41),
Shrubland (n = 135), Grassland
(n = 30), Cropland (n = 78). The
black dotted vertical lines are av-
erage δ13C for C3 vegetation, −14
‰ and for C4 vegetation, −26‰
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models (Fig. 6). Given the stability of the models,
indicated by the similarity between the slopes of the
regression lines in Fig. 6 and low RMSEP for the

calibration and validation runs, respectively, there is
significant potential for the application of RF models
to large spectral libraries.

Table 2 Prediction performance for δ13C for three cross-validation (CV) runs for the calibration and validation datasets for the partial least
squares (PLS) and random forest (RF) models, expressed as the root mean squared error of prediction (RMSEP) and R2

CV run Dataset n RMSEPd13C RF R2
d13C RF RMSEPd13C PLS R2

d13C PLS

1 Calibration 226 0.92 0.97 1.33 0.90

Validation 114 1.52 0.88 1.91 0.83

2 Calibration 227 0.86 0.97 1.24 0.91

Validation 113 1.98 0.85 2.03 0.81

3 Calibration 227 0.87 0.97 1.34 0.91

Validation 113 1.83 0.78 1.92 0.76

Fig. 6 Measured vs. predicted
δ13C values for the three
calibration (red open circles) and
validation (blue open triangles)
runs using the Random Forest
(RF) model (left panel) and the
Partial Least Squares (PLS) re-
gression model (right panel)
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Discussion

There is a need to better understand the global distribu-
tion of C3 and C4 plants for a number of different
reasons, including for improving global circulation
models for CO2, better assessing soil organic matter
dynamics, as well as estimatingwater and energy cycles.
Further, there is a need for better estimates of the spatial
distribution of and temporal changes in plant communi-
ties with different photosynthetic pathways as plant
communities respond differently to rising CO2 levels
in the atmosphere, as well as to land degradation status.
The nine sites used in this study had diverse vegetation
classes and cropping systems, which is reflected in the
wide range of SOC values (e.g., from 0.9 to 98.3 g
kg−1). We found the highest SOC concentrations in
Didy (eastern Madagascar), Burhale and Luhihi (eastern
DRC) and Hoima (western Uganda), which all represent
sub-humid and humid environments. The lowest SOC
values were found in semi-arid environments (Ol
Lentille, Mpala, Mega) and in Miombo woodlands
(Mbola).

There are many factors influencing SOC concentra-
tions, including inherent soil properties such as sand
content, land degradation status such as erosion preva-
lence (Winowiecki et al. 2016a, 2016b), as well as land
management practices (including burning in semi-
natural and cropland systems, fertilization, residue re-
tention, among others) (Vanlauwe et al. 2015). The use
of stable carbon isotopes can aid in better understanding
SOC dynamics and the influence of vegetation shifts
over time. Our results show that semi-natural woodland
and shrubland systems, as well as cropland systems in
East Africa had mixed C3-C4 signatures, while wet
tropical forest plots in Madagascar exhibited a strong
C3 signature and tropical grassland systems exhibited a
C4 signature, as expected. Given that woodlands and
shrublands contain both woody vegetation and grasses,
such as in Miombo woodland systems with deciduous
trees and an understory of tall perennial grasses, ex-
plains the mixed carbon isotopic signatures across most
of the sites. Furthermore, woodland fragmentation is
often driven by several competing activities including
agricultural expansion, demand for forest resources,
grazing, charcoal production, firewood collection and
shifting cultivation practices (King and Campbell 1994;
Sauer and Abdallah 2007; Syampungani et al. 2009). In
croplands where farmers predominantly plant C4 spe-
cies such as maize, we also saw a stronger C4 signature,

depending on factors such as time since conversion in
the case of areas that have been converted from natural
forest. Examples of such sites in our study included
Burhale in DRC and Hoima in Uganda. However, in
cropland systems where tobacco, rice, soybean and
maize are cultivated, the carbon signature is mixed,
which increases the complexity in assessing the impacts
on vegetation shifts using stable carbon isotopes.

In a chronosequence study from Madagascar,
Vågen et al. (2006a) found a strong relationship
between SOC and δ13C, with decreasing carbon go-
ing from C3-dominated systems (e.g., tropical forest)
to C4- dominated vegetation (e.g., degraded grass-
lands and croplands) along a conversion gradient
(Vågen et al. 2006a). However, in the current study
we observe more mixed results and a low level of
correlation between SOC and δ13C overall, partly due
to the inclusion of more diverse (mixed) systems. In
addition to conversion studies, Billings and Richter
(2006) highlight the need for decadal studies in
somewhat stable systems to better identify discrimi-
nation processes, again illustrating the complexity of
stable isotopic pathways (Billings and Richter 2006).

Based on the validation predictions, model perfor-
mances for predicting δ13C fromNIR spectra were good
both for RF (average RMSEP = 1.78) and PLS (average
RMSEP = 1.95) models. Average R2 values for the three
model validation runs were 0.84 and 0.80 for the RF and
PLS models, respectively. Our results show that both
PLS, which is a data-reduction technique, and RF,
which is generally good for feature selection, can be
successfully applied for the prediction of δ13C in soils.
Further, the high performance of the RF model applied
in our study indicates that this technique is suitable for
detecting spectral features that are important for
determining the relative abundance of 12C and 13C in
soils. Viscarra Rossel and Behrens (2010) also evaluated
a number of data mining techniques with NIR spectra,
however they reported that PLS and support vector
machines (SVM) outperformed RF, multivariate adap-
tive regression splines (MARS) and boosted regression
trees (BT) (Viscarra Rossel and Behrens 2010). Explor-
atory application of remote sensing to map carbon iso-
topes was used in southern Africa (mixed C3-C4 sys-
tems), highlighting the need and potential solution to
better understand ecosystem processes at larger spatial
scales (Wang et al. 2010). Our results are similar to those
reported by Fuentes et al. (2012), and given that we
develop models across such a wide range of sites and
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spectral variation shows the potential of NIR spectros-
copy for routine prediction of δ13C, including for the
direct classification of soil samples into C3, Mixed or
C4 carbon. Furthermore, we assessed the relationship
between SOC and δ13C, and found that it was not linear.
This confirms that the prediction accuracy of both the
PLS and RF models are because we are able to predict
δ13C (e.g., the weight of the isotope) and not merely
predicting SOC. This further highlights the promise of
spectroscopy for predicting stable isotopes in soil and
shows the potential of new technological advances such
as soil spectroscopic techniques for prediction of δ13C,
which can lower the costs of analytical procedures and
hence enable larger sample sizes and landscape-scale
assessments of vegetation dynamics and SOC.

Building on these results, the potential use of mid-
infrared spectroscopy (MIRS) should also be explored
and is recommended by the authors for future studies.
These results have important implications for the use of
stable carbon isotopes in East Africa since both semi-
natural and cropland systems have mixed C3-C4 signa-
tures. Hence, large sample sizes will be needed to de-
velop robust models to assess vegetation shifts and soil
organic matter turnover rates. In conclusion, application
of spectroscopic techniques would allow for more cost-
effective analysis and increased sample sizes, which are
needed for landscape-scale ecological studies.
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