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 A B S T R A C T

Phenotyping, the measurement of attributes or traits, is crucial in selecting superior cultivars for specific 
environmental situations. This is a time-consuming process when applied to large populations but can be 
accelerated through the use of deep learning, resulting in an algorithm that can phenotype images of specimens 
in negligible amounts of time. The primary issue with deep learning is the large quantities of high-quality 
training data required to make a viable phenotyping pipeline. To address this, we present a semi-synthetic 
training data generation system which significantly reduces the amount of human effort spent on data 
collection. We use active learning alongside this system to create DeepCanola, an instance segmentation model 
that successfully segments and measures the valves from Brassica napus pods. We demonstrate that the model 
accurately estimates the effect of different winter cold treatments on a range of different cultivars and crop 
types as effectively as manually curated measurements. Furthermore, the resulting model is effective on 
data from various experimental settings and on different, but related, species such as Arabidopsis thaliana,
Allaria petiolate (garlic mustard) and Raphanus raphanistrum subsp. sativus (radish). This robust tool could 
be easily scaled, thereby accelerating breeding or fundamental research programs. Code and model weights: 
https://github.com/kieranatkins/deepcanola.
1. Introduction

Phenotyping, the accurate measurement or estimation of traits from 
individuals, is a very powerful technique to explore and quantify dif-
ferences within diversity populations, which display genetic variation 
and form the foundation of many breeding programs. In a crop breeding 
context, traits of particular interest often include the size and number 
of fruits as these are often the economically relevant part of the plant. 
In ecological terms, fruits reflect the effort that a mother plant put into 
reproduction. In both cases, their production and quality are affected 
by the plant’s tolerance to environmental stresses, such as the ability to 
cope with warming climates and resistance against naturally occurring 
diseases. The ability to accurately, quickly and reliably measure traits 
such as fruit size is then, clearly, of high importance.

Brassica napus has given rise to several major crops, including the 
oilseed canola/rapeseed, forage rape, swede/rutabaga and industrial 
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oilseeds. Breeding cultivars suitable for different environments has led 
to locally adapted and highly productive commercial crops (Diepen-
brock, 2000). Phenotypic traits commonly measured in these crops are 
flowering time (Calderwood et al., 2021; Williams et al., 2023) and seed 
yield (Siles et al., 2021). Flowering time (when the first flowers open) is 
easily scored using traditional manual assessment and the genetic basis 
has been dissected in detail (Schiessl et al., 2017; Calderwood et al., 
2021). Yield, measured at harvest time, is a complex composite trait 
that is influenced by the environment and by multiple genes acting at 
various stages throughout development. Components of yield include 
pod number and the amount of seed per pod.

B. napus pods are botanically defined as siliques, derived from the 
two ovary carpels. Each pod is formed by two walls, also known as 
valves, which contain the seeds, a pedicel that attaches the pod to 
the plant stem, and a beak at the distal end. The beak is a seedless 
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Fig. 1. An example Brassica pod from the cultivar expert with the pedicel, valve and 
beak regions annotated. The length of the valve region is shown by the yellow line.

structure derived from the gynoecia style (Hossain et al., 2012; Gulden 
et al., 2008) and has different shapes and sizes depending on the geno-
type and the environment experienced during the flowering season. 
Variation in valve size, and the ultimate output of the fruit, does not 
necessarily correlate with the beak size. Due to the differences observed 
in different genotypes and the fact that this pod structure does not 
contain seeds, it is more accurate to measure valve length rather than 
the whole pod length to relate it with seed content/production (Siles 
et al., 2021). An example pod with annotated valve and beak regions 
is illustrated in Fig.  1.

For image-based size analysis, pods are usually removed from the 
mother plant, arranged as isolated pods and imaged against a high-
contrast background. This arrangement facilitates the use of classical 
computer vision tools as algorithms such as connected components can 
isolate disconnected segmented objects for analysis after thresholding. 
However, this approach typically requires that each pod is arranged 
to have no occlusion (overlap) or contact of any kind. Meticulous 
arrangement of material increases the amount of human effort and time 
needed during the imaging phase, and therefore reduces such a system’s 
utility in a high-throughput phenotyping context. Furthermore, classi-
cal CV can only reliably phenotype the pod as a whole, as opposed 
to the yield-relevant valve, as there are few reliable landmarks that 
can be used to robustly segment the valve region using classical CV. 
Therefore, classical CV algorithms have limitations for high-throughput 
valve phenotyping. While classical CV struggles with these challenges, 
deep learning offers a versatile and robust approach to the task.

Deep learning presents a paradigm shift compared to classical CV 
pipelines, as models are trained to replicate the relationship between 
inputted images and hand-collected training data, to generate new 
outputs on unseen images. Deep learning models have been used pre-
viously for a variety of fruit phenotyping tasks. For example, Lu et al. 
(2022) developed a system where a CNN object detector (YOLOv3) 
identifies and counts leaves and pods in images of soybean plants. A 
generalised regression neural network (GRNN) then uses this infor-
mation to accurately estimate seed yield. This approach offers advan-
tages such as in-situ estimation, reduced researcher bias, and increased 
phenotyping throughput.

Although object number is an informative trait, there is rich infor-
mation, such as size, shape, colour and location, about each object that 
these detection/counting methods do not necessarily capture. Instance 
segmentation offers three key capabilities for extracting object traits: 
object detection, classification, and pixel-level segmentation. A proven 
and robust model choice for these tasks is Mask R-CNN, a model built 
on top of an existing powerful object detector (Faster R-CNN) with a 
branch for mask prediction. Mask R-CNN utilises a CNN backbone to 
extract image features (He et al., 2017). These features are then used 
by: 1) a region proposal network (RPN) to identify potential regions 
of interest, 2) an object detection branch to infer a bounding box and 
class for each region proposed by the RPN (Ren et al., 2015), and 3) a 
mask prediction branch to generate a detailed pixel-level mask for each 
region of interest, outlining its shape.

Once object masks have been extracted, extracting phenotypic data 
such as area (a 2D substitute for biomass) and length is comparatively 
computationally inexpensive. Therefore, Mask R-CNN shows consider-
able promise for extracting phenotypic data from different crops. Su 
2 
et al. (2020) trained two Mask R-CNNs to identify individual wheat 
spikes and Fusarium head blight, an infection that affects wheat grains. 
The first model detected individual wheat spikes with a spike classi-
fication accuracy of 77.76%, whereas the second model was able to 
recognise the diseased grains within the spike with an accuracy of 
98.81%, with a mask average precision (AP) of 0.57. Eventually, the 
area of the spike and the area of the disease were used to estimate a 
disease severity score. The lower accuracy of the first model is partially 
caused by occlusion of wheat spikes. Due to the nature of field images, 
overlapping wheat spikes are unavoidable. This overlapping can be 
difficult to resolve using Mask R-CNN alone, especially if the model 
was trained on a dataset with limited examples of such overlap.

Occlusion of one object by another is a common challenge for 
accurate object detection. To address this, Liu et al. combined Mask R-
CNN with a DBSCAN clustering algorithm to resolve overlaps between 
leaves in seedlings. While Mask R-CNN alone reached a detection AP of 
0.877 (with a 0.7 confidence threshold in object classification), adding 
DBSCAN reduced false positives and improved the detection AP to 
0.892.

An instance segmentation model’s output is much more fine-grained 
and can generate more precise information than their object detection-
only counterparts, allowing for the generation of more informative 
data. This comes at a cost, however, as the training step requires man-
ually annotated masks rather than simple classifications or bounding 
boxes. Hand-collection of mask data is a labour-intensive and time-
consuming process. To reduce the annotation burden, synthetic data 
with masks is often generated using (1) semi-synthetic approaches, 
which compose real objects with augmentations into new scenes, and 
(2) fully synthetic methods, which create data via computational mod-
els.

For example, Toda et al. (2020) used semi-synthetic data to train a 
Mask R-CNN which was then evaluated on real images. By annotating 
a relatively small number of barley seeds and using them to create 
semi-synthetic images, they were able to reach an average recall and 
average precision of 0.96 and 0.95 in object detection, respectively, and 
a mask AP of 0.59 on real images. The approach was transferable to 
other crops, such as rice, lettuce, oats and wheat, indicating wider ap-
plicability. A similar approach used to segment individual soybeans and 
extract phenotypic traits for high-throughput data extraction achieved 
a high accuracy in object detection. However, it struggled to recognise 
burst pods (Yang et al., 2021).

Unlike composition-based semi-synthetic data generation, recent 
fully synthetic methods often rely on 3D modelling tools like Blender 
to create detailed 3D scenes for generating synthetic images. For exam-
ple, Napier et al. (2023) utilised L-systems, a grammatical framework 
encoding plant morphological development, to generate 3D models of 
wheat heads, which were then rendered into synthetic in-field images 
for training. Lately, denoising diffusion models, such as Stable Diffu-
sion, have demonstrated their effectiveness in style and domain transfer 
from given images, surpassing earlier GAN-based methods for image 
generation (Wu et al., 2023a). These models rely on prompts, often 
carefully crafted text, to describe domain-specific features for style 
adaptation. har (2024) applied Stable Diffusion and LoRA to L-system 
based 3D models of Arabidopsis rosettes, producing realistic datasets 
for training Mask R-CNN in leaf detection and segmentation.

Fully synthetic image generation, such as diffusion-based models, 
are capable of producing convincing outputs in negligible time. This 
could be invaluable in the crop phenotyping domain where image 
collection can protract over seasons (or even years in the case of 
perennials) and many objects may need annotation within a single data 
sample. However, generative AI models are often significantly compu-
tationally expensive to train, requiring large datasets and substantial 
resources. Furthermore, generative AI models can be susceptible to 
hallucination, where inaccurate or imprecise outputs are confidently 
produced. Generating training samples from 3D models, however, does 
not typically have the same issues as generative AI, and can be used 
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to create high-quality training data, without large training datasets, 
nor being susceptible to hallucination. Instead, 3D models require 
detailed modelling of plant structure. The specific task discussed in 
this study, the imaging of Brassica pods (and parts of pods) isolated 
from the mother plant on a consistent largely uncluttered background, 
is a more constrained task than those to which generative AI and 3D 
modelling are typically applied. Therefore, these complex modelling 
systems would likely result in unnecessary computational overhead to 
produce outputs that could be similarly produced using classical CV 
algorithms. For a more appropriate training data generation system 
for the target domain, we chose to annotate the valve regions within 
images of ordered and isolated Brassica pods, and programmatically re-
arrange the annotated pods with randomised positions and orientations, 
or diverse combinations or crowding of pods across different images 
making a much larger set of high-fidelity semi-synthetic samples for 
training.

Although it may not be as complex or produce images with the same 
fidelity as synthetic data generation using large or complex models in 
some domains, our proposed method offers distinct advantages over 
fully synthetic data generation. Firstly, the computational overhead is 
reduced, requiring only pod images with annotations to be collected, 
along with the development of a simple pipeline to place these images 
within novel scenes of the researcher’s choosing. Utilising true images 
ensures the creation of novel training samples based on real data as 
collected by crop scientists and is incapable of producing hallucinated 
outputs.

Furthermore, additional training data could be generated by ge-
ometric transformation and non-linear shape alterations, akin to the 
work by Thompson (1961). D’Arcy Thompson described how variation 
between parts of organisms (i.e. organs) of related species can be 
described by relatively simple geometric transformations. We reasoned 
that introducing simple geometric transformations into semi-synthetic 
sample generation could therefore expand the model’s generalisation 
potential, allowing the model to generalise to related cultivars, and 
wider relatives in the Brassicaceae family. To iteratively understand 
the limitations of a model trained using this system and to expand 
its capabilities, we therefore employed such a semi-synthetic dataset 
alongside an active learning system.

Active learning is a time-efficient computational method to retrain 
models, iteratively improving its ability to identify atypical features or 
to extend the range of a model to recognise related features. Active 
learning typically involves selectively choosing which additional data 
will deliver the largest gain in accuracy with the least amount of 
labelled data (Blok et al., 2022; Granland et al., 2022). This can 
reduce the amount of manual annotation required. Active learning 
systems have successfully been used in the phenotyping of cereal spikes 
and stalks, including wheat and sorghum (Kumar et al., 2019; Chan-
dra et al., 2020). However, these studies focused on object detection 
only. Rawat et al. (2022) used different strategies of uncertainty-based 
active learning for semantic segmentation of apples, wheat and rice 
and showed that it had little benefit compared to random sampling. 
This reflects the significance of task-specific data augmentation to 
address real-world challenges like occlusion. Whilst strategies for active 
learning perform differently on different tasks, the theory of using the 
model’s output to identify which data is best suited for improving 
accuracy is important for diverse datasets such as those from plants.

To reduce the cost of manual labelling and address the limitations of 
typical automatic uncertainty measures in active learning, we employed 
a hybrid approach combining synthetic data augmentation with a 
human-in-the-loop (HITL) strategy. Human experts play a vital role in 
selecting validation dataset (conscious of biases) and qualitatively as-
sessing model performance on predicted instance segmentation masks. 
Their insights directly inform the generation of synthetic images, tai-
lored to the specific challenges of our instance segmentation tasks, 
ensuring effective semi-synthetic data generation.
3 
In this study, we developed a robust method to accurately iden-
tify and measure pod valves from B. napus in both organised and 
disorganised scenes, based on a deep learning instance segmentation 
model and a semi-synthetic training dataset. B. napus and its relatives 
display a range of pod morphologies that vary in terms of both size 
and shape (Łangowski et al., 2016), providing a good test for the 
model’s ability to generalise across different types of pod. To train the 
model, images of the pods of B. napus were manually annotated and 
extracted prior to creation of a semi-synthetic image dataset. The semi-
synthetic image dataset was used to train a Mask R-CNN model, which 
was subsequently validated using a set of real images to evaluate the 
model’s performance. We use uncertainty sampling, an active learning 
strategy where new samples are included based on low-confidence 
results from previous iterations, to allow for the model to generalise 
better on more diverse samples. By using this paradigm, where new 
training data was selected based on the model’s mistakes, new semi-
synthetic datasets were created for further training. After 4 rounds of 
active learning, the model outputs were judged to be satisfactory, the 
predictions were used to estimate the length of the valve and tested 
against manually measured data to check for the accuracy of the model 
and consistency with the manually obtained experiment results. We 
then validated our final model, which we term DeepCanola, on images 
from diverse experiments, imaging setups, and species to assess its 
versatility in applying learned patterns to novel biological systems and 
its adaptability across different imaging scenarios.

2. Materials and methods

2.1. Experimental design and sampling

The initial images were taken from experiments designed to analyse 
the trait variation associated with the transition to flowering and 
subsequent developmental events such as raceme elongation in a range 
of cultivars (Williams et al., 2023). These experiments are named BR9, 
BR11 and BR17. For BR9 and BR11, seedlings were vernalised and then 
grown to maturity in a mechanised greenhouse or Smarthouse. BR17 
was designed to understand the developmental response to defined pe-
riods of cold as a seedling. Seedlings from each cultivar were subjected 
to a cold period of either 5 ◦C or 10 ◦C before transfer to a common 
growing environment within a Smarthouse where they were allowed 
to flower and set seed (Williams et al., 2023). These and other sources 
of material are summarised in Table  1. The pod sampling strategy was 
based on (Siles et al., 2021) and approximately 20 typical mature pods 
were harvested from the primary stem of each individual.

2.2. Image acquisition

Isolated pods from each individual plant were imaged. An example 
pod is shown in Fig.  1. Pods were either neatly ordered into rows 
(where pods are all pointing in the same direction and separated to 
eliminate occlusion) or disordered (where pods lay across one another 
to variable degrees).

To test the final model’s generalisation potential on more complex 
images, we took advantage of image data that had been collected 
during the systematic disassembly of mature plants from experiment 
BR17. This involved the removal and scanning or photographing of 
each branch with its pods still attached. Additionally, images were 
obtained from other Brassicaceae, including Raphanus raphanistrum
subsp. sativus (radish) and Alliaria petiolate (Garlic mustard), which 
were collected from farmland (Norfolk) and natural wooded areas 
(Aberystwyth) respectively. To test whether the approach could be 
extended to data collected for other purposes, (i.e as could be obtained 
by the general public) images were collected from the iNaturalist com-
munity (iNaturalist community, 2023) for pods of Arabidopsis, which 
produce fruits with some similarities to Brassica pods.
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Table 1
Summary of data sources used in this study, showing number of images, annotations and related details. (a) Real-world datasets include datasets used to create the synthetic 
training data and datasets used for model validation. (b) Generated datasets include the semi-synthetic data created at each step of the active learning process. # Images contains 
the number of images in the full dataset. In (a) # Annot. contains numbers of valve mask annotations collected from the dataset, in (b) # Annot. contains number of annotated 
pod valves present in full generated dataset.
 Dataset # Images # Annot. Image details Biological details  
 BR9 211 ordered 

97 disordered
673 Ordered and disordered pods, 

2552 × 3508 pixels, imaged on 
flatbed scanner

Randomised, triplicated design 
including 89 lines of the OREGIN 
B. napus diversity fixed 
foundation set comprising winter, 
spring, Chinese, kale and swede; 
5 ◦C vernalisation

 

 BR17 412 ordered 332 Ordered pods, 2551 × 4200 
pixels, imaged on flatbed scanner

Randomised, triplicated design 
including 73 lines of the RIPR B. 
napus diversity fixed foundation 
set, either 5 ◦C or 10 ◦C 
vernalisation, collected with 
manual length measurements

 

 BR11 35 ordered 
36 disordered

0 As BR9 As BR9  

 Misc. 0 Images from various locations 
and sources

Various Brassica relatives  

(a) Real-world datasets

 Dataset # Images # Annot. Generation details Data source  
 Dataset 1 100 4410 

(30–60 per 
image)

2552 × 3508 pixels, pods 
randomly placed on background

BR9  

 Dataset 2 100 4501 
(30–60 per 
image)

2552 × 3508 pixels, pods 
randomly placed on background 
with random blur

BR17  

 Dataset 3 200 8356 
(20–60 per 
image)

2552 × 3508 pixels, pods 
randomly placed on background 
with random blur

BR9 & BR17  

 Dataset 4 1000 44823 
(average 45 
per image)

2552 × 3508 pixels, pods 
randomly placed on background 
with synthetic blur representative 
of real-world images, higher 
quantity of objects and images, 
stronger object and background 
augmentation

BR9 & BR17  

(b) Generated datasets
 

2.3. Model development

Development of strong deep learning models requires a large amount
of high-quality training data. To accumulate sufficient training data, 
we employed a semi-synthetic training data generation schema, which 
was iteratively expanded and improved using active learning. The 
generation of semi-synthetic training data allowed for (1) a reduction 
in the time required to collect training data and (2) tuning of diversity 
of pod types and morphologies with object-level augmentation to cre-
ate an informative training dataset. Basing training on semi-synthetic 
samples required pods to be individually annotated separate from other 
plant biomass so that they could be arranged, at will, on a selected 
background. These collected pod image pools with associated annota-
tions formed the basis of our semi-synthetic training data generation. 
The pools, along with the generation parameters, were expanded and 
adjusted, responding to the results of the active learning process.

The active learning process utilised uncertainty sampling to identify 
weaknesses in a given model’s outputs. Uncertainty sampling is a 
commonly used active learning process whereby poorly performing 
samples, identified by their low confidence scores or incorrect segmen-
tation, are identified and reintroduced in later rounds of training. We 
also utilised human crop-breeding experts who qualitatively assessed 
outputs, for example, identifying specific weakness in model perfor-
mance or where the semi-synthetic training data was unrepresentative 
of real-world samples. This workflow is outlined in Fig.  2.
4 
2.3.1. Semi-synthetic image generation
The semi-synthetic images were designed to capture and reflect 

the placement, angle and distribution of randomly placed pods on a 
surface, as would be the case for a large-scale breeding program. The 
process is as follows: Firstly, a random background is selected from 
the background pool and an empty mask of the background initialised. 
Then, a number of pods 𝑛 to be placed in the image is randomly 
selected. Each pod is randomly selected from the pool of pod images, 
segmented from the high-contrast black background, and placed at a 
random position, orientation and scale with the bounds of the image. 
The associated valve masks are then stored with the same position, 
orientation and scaling applied to them. This is repeated until the 
required number of pods is reached. Once all are placed with the image, 
occluded pods have a level of depth-of-field blur applied to them to 
imitate real-world imaging. This workflow is illustrated in Fig.  2. The 
training sample is then stored, and the next sample is created until the 
desired dataset size is reached.

2.3.2. Iterative expansion of the semi-synthetic dataset for model training
Each round of the active learning process involved collecting new 

data for the model to learn, resulting in four datasets. In order to 
create each semi-synthetic dataset, a pool of backgrounds and pods 
with annotations was needed. In all rounds, pod annotations were 
collected using Fiji (Schindelin et al., 2012).

To create the initial pod image pool, the valve regions within 20 
images containing organised pods from seven different BR9 cultivars 
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Fig. 2. Active learning and semi-synthetic generation workflow — Workflow of the active learning process from dataset generation to training to validation. Exploded sub-illustration 
of the data generation process is also shown, starting from the background, pod and valve annotation pools, resulting in a generated semi-synthetic training sample. Training 
sample shown is from Dataset 4 (4th iteration of the active learning process). Note: Colours shown in the example semi-synthetic annotations are illustrative, colours are reused 
and therefore do not represent a single instance.
were manually annotated, which took about 15 man-hours to complete. 
For the second round of training, another 20 images were annotated 
and for the third round of training the pods included in both the first 
and second rounds of training were combined. After non-singletons 
were removed, the pod pool consisted of 673 images of individual 
pod objects and their associated masks. To create an image pool of 
backgrounds, 15 patches that had no pods present were manually 
cropped from real images, after which the patches were randomly 
chosen, rotated and placed in an empty image, which resulted in four 
background images. 100 semi-synthetic images were generated for the 
first dataset, and used to train the first model, however, during expert 
evaluation overfitting was observed on the pod phenotypes present 
in the BR9 dataset, showing poor performance in more extreme pod 
shapes.

The second round of training was designed to address the model’s 
performance issues on extreme pod shapes, therefore more diverse and 
larger Brassica pods images and annotations were collected from the 
BR17 dataset. Manual annotation took approximately 24 person-hours 
of work and resulted in 332 additional pod objects with valve masks. 
100 semi-synthetic images were generated using the new pod images 
pool and used to train a model. During evaluation, overfitting on the 
newer pod types was observed, with poorer results on pod phenotypes 
from the first dataset. This demonstrated that samples need to be 
blended from previous rounds to combat the overfitting that occurs 
when only training on the new samples. Issues were also observed 
where the model returned true positive results for ‘‘noise’’ within the 
images (such as dusty fingerprints, debris and pieces of the ruler). To 
address this, another seven patches that contained real-world noise 
were cropped and randomly placed on duplicates of the first four 
background images, which resulted in a total background pool of eight 
images.

The third round combined the pools of the first two rounds in order 
to combat overfitting, while expanding the size of the generated dataset 
to 200 samples. The resulting model showed a notable increase in 
performance, however during evaluation there were still issues related 
to extreme pod shapes, unrealistic blur and difficulty to detect pods in 
dense scenes.
5 
To address these issues, we create a fourth training round with 
a focus on capturing the pod morphological diversity by creating an 
additional synthetic dataset, with the following changes.

1. Five-fold increase in the generated image count, increasing from 
200 in round 3, to 1000 images.

2. Independent random scaling in the 𝑥&𝑦 directions, allowing free-
axis morphological stretching rather than fixed scaling. This 
augmentation mimics the work by Thompson (1961), and should 
allow the model to better generalise towards extreme pod shapes 
of different cultivars.

3. Background lightness augmentation to add background variation 
to make the model more robust against changes in background 
lightness. To achieve this, backgrounds had a random level of 
gamma adjustment before placement of pods began.

4. Improved blurring system designed to better mimic the depth-of-
field blurring effect caused by pods being at different distances 
to the camera lens when overlapping. To achieve this, depth-
of-field blur was iteratively added depending on the number of 
pods occluding each pod.

These changes improved the results on our generated test-sets and on 
the real-world test-sets.

2.3.3. Model training and evaluation
We used a Mask R-CNN instance segmentation model (He et al., 

2017), with a ResNet-50 + FPN backbone. For each model, the initial 
learning rate was set to 0.005, the momentum to 0.9 and weight 
decay 0.0005. All models were trained for 12 epochs, with learning 
rate decay factor (gamma) of 0.1 at epochs 8 and 11. The first, third 
and fourth models were initialised on weights pre-trained on the MS 
COCO dataset (Lin et al., 2014). The second model was initialised 
on the weights of the first model. All images were rescaled to the 
shortest edge being 1914 pixels long, whilst keeping the original aspect 
ratio. For training, this resulted in images of size of 1914 × 2631 
(downscaled from 2552 × 3508). This downscaling kept memory usage 
down. Training details are listed in Table  A.1.
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We chose a consistent set of hyperparameters in all model training 
in order to keep the comparison between the different training datasets 
as fixed as possible. Consistent hyperparameters allowed us to observe 
how changes in the semi-synthetic dataset generation process affected 
model performance. Therefore, the default hyperparameters for Mask 
R-CNN training, provided by torchvision, were selected for this reason. 
We also observed little change when attempting to fine-tune the initial 
learning rate. 12 epochs of model training was selected as all model 
loss and validation metrics had converged and stabilised by this time, 
without overfitting.

After every training cycle, the model’s performance was evaluated 
using the validation set to calculate the average precision (AP) and 
average recall (AR). These metrics provide insights into the model’s 
ability to detect pod valves accurately. AP measures the proportion of 
correctly identified valves among all detections made, calculated by the 
ratio of True Positives (correctly identified pods) to the total number 
of positive predictions (True Positives + False Positives). AR measures 
the proportion of correctly identified pods among all pods in the test 
samples, calculated by the ratio of True Positives to the total number 
of actual positive objects.

To provide a comprehensive evaluation, AP and AR were averaged 
across different Intersection-over-Union (IoU) thresholds. IoU measures 
the overlap between the predicted bounding box/mask and the ground 
truth. IoU thresholds denote the minimum IoU of a detected object 
compared to the ground truth before being considered a True Positive. 
Common IoU thresholds include 0.5, 0.75 and an average from 0.5 to 
0.95, with increments of 0.05. We report the latter 0.5:0.95 average, 
as it reports an average of model results from a range of IoU quality 
thresholds, giving a more rounded view of model performance.

The active learning process requires both model assessment and 
training data selection throughout the training process. To assess the 
model’s performance, the BR17 dataset was used. How well the model 
performed on this selection of images informed us as to which pods 
should be included in the generation of the semi-synthetic dataset. After 
the semi-synthetic dataset was created, the model was trained and then 
assessed again. This process continued until a model with a desirable 
level of performance was achieved. The model was assessed quantita-
tively by metrics previously outlined, and qualitatively by assessing the 
output masks to see where and for what pods there are issues like false 
negatives, where pods are completely ignored, false positives, where 
the model detects pods valves that do not exist, or poor quality masks 
that do not properly segment the pod.

All experiments were performed on a workstation with an Intel Core 
i7-11700K CPU, 32 GB RAM and a single NVIDIA GeForce RTX 3080 
with 10 GB VRAM

2.4. Phenotype data extraction

2.4.1. Manual measurement
To assess the model’s accuracy in measuring valve lengths, we 

compared its computed measurements with manual reference values 
obtained of the BR17 images. Manual measurements in Fiji (Schindelin 
et al., 2012) involve setting the scale using the ruler present in the 
image to establish a pixel-to-millimeter conversion factor. Then, a line 
is drawn along the valve’s central axis, following its curvature from 
base to tip (excluding the beak, as shown in Fig.  1). This manual 
approach serves as the ground truth for our evaluation. This process 
takes about 15 min per 20 pods.

2.4.2. Model prediction
For each individual object identified the model returns a bounding 

box that surrounds the predicted object, a confidence score for classifi-
cation, and a mask that is located within the bounding box specifying 
the pixels predicted to be part of the object. We selected a confidence 
score threshold of 0.75 to ensure the quality of results returned by 
the model. Detections with a lower confidence score than the selected 
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threshold tended to be false positive detections, often containing two or 
more pods in a single detection resulting in an incorrect mask. Selecting 
a higher confidence score threshold resulted in the suppression of 
true positive results. Additionally, each pixel within the bounding box 
has a mask probability. Pixels with probabilities exceeding 0.5 were 
considered part of the object.

To calculate length, the binary output mask was skeletonised, a 
mathematical operation that effectively erodes the sides of a binary 
image (the mask, in this case) and returns a central line, equidistant 
from the edges, that best approximates the object’s topology. In the 
case of pods, this gives a central line that follows the curvature of the 
pod and extends from one end of the valve region to the other (see Fig. 
1). The Euclidean distance between each pixel along this line gives a 
final length value for the valve length. The area was then calculated by 
summing the number of pixels in the mask.

2.5. Testing methodology

To investigate the progression of the models through the active 
learning process we split each dataset into random subsets of size 80% 
for training and 20% for testing. This allowed us to calculate the mask 
and box AP and AR metrics on unseen test data. We then evaluated 
each iteration against all the test sets of the previous iteration (Table 
1) to assess how well the model performs on similar semi-synthetic 
datasets. However, to understand real-world performance, we tested 
against three real-world datasets: BR17, BR9 ordered/disordered and 
a species diversity panel.

BR17 represents a large scale experiment of ordered Brassica pods 
with hand-collected length measurements. This dataset allows us to 
directly compare the measurements generated by the model against 
ground-truth hand-collected data. While giving a good evaluation of 
the model’s potential, BR17 only evaluates the model’s performance on 
ordered images.

Disorder is a crucial factor to consider in biological samples. In 
high-throughput phenotyping many samples are naturally disordered, 
however ordering requires extra human intervention, therefore a phe-
notyping system must be able to cope with disorder. Dataset BR9 
captures the difference between the two concepts. BR9 has two main 
image types: Ordered pods arranged in a grid fashion with zero overlap 
(the initial source of our annotated pods, see row 1 of Fig.  A.1);
Disordered pods placed without ordering and high amounts of overlap 
(see row 2 of Fig.  A.1). We perform the same evaluation for BR17 on 
BR9 to assess how disorder affects the 𝑅2 correlation between manual 
and deep learning phenotype data. This comparison is of particular 
interest because we can evaluate how each model responds to disorder 
by using exactly the same pods but in different states of disorder/order.

To evaluate the model’s broader applicability, we collected smaller 
diverse datasets, representing different experiments, image acquisition 
settings, even non-experimental images. The model then generated 
outputs for these datasets, and we qualitatively assessed the results.

3. Results

3.1. Model refinement through active learning

We analysed each model iteration against the test sets generated 
at every training round. This allowed us to check how the model’s 
detection performance evolved throughout the active learning process. 
Table  2 reports the box and segmentation AP for valve detection at each 
iteration. For more details on dataset generation, see Section 2.3.2 and 
Table  1.

Table  2 outlines the models’ improvement against each step’s test set 
over the course of the learning process. The first two training iterations 
highlight the problem of overfitting when using only the image pool 
from new annotations; the model excels on the newly generated dataset 
but performs poorly on older ones. Our solution was to combine new 
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Table 2
Model performance (Detection/Segmentation AP) on each semi-synthetic dataset through the active learning process. Post-hoc analysis on earlier 
models are shown in grey. Best results shown in bold.
 Dataset 1 Dataset 2 Dataset 3 Dataset 4 
 Model 1 0.618 0.304 0.528 0.406  
 Model 2 0.558 0.51 0.565 0.471  
 Model 3 0.661 0.485 0.615 0.511  
 Model 4 ‘‘DeepCanola’’ 0.715 0.59 0.685 0.684  

(a) Detection/Bounding Box AP (0.5:0.95) results

 Dataset 1 Dataset 2 Dataset 3 Dataset 4 
 Model 1 0.421 0.28 0.418 0.287  
 Model 2 0.403 0.449 0.456 0.349  
 Model 3 0.466 0.437 0.493 0.38  
 Model 4 ‘‘DeepCanola’’ 0.483 0.444 0.515 0.583  

(b) Segmentation/Mask AP (0.5:0.95) results
Fig. 3. Active learning progression example — Example patch of test image from disordered BR9 dataset showing results from each of the steps of the active learning process. (a) 
Model 1 is the initial version of the model containing a limited pod image pool, without refined generation parameters. (b) Model 2 is built upon Model 1 but had overfit by being 
trained further on exclusively newly added samples. (c) Model 3 contains a larger dataset, with the combined image pools of Model 1 & 2 and achieves better results. (d) Model 
4 (DeepCanola) builds upon Model 3 by expanding the size of the generated dataset five-fold and includes improved data generation parameters. Colours are for visualisation 
purposes only. Colours represent each instance of pod valve detected by the model, and is used for both the bounding box and segmentation. Note that colours are cycled through 
and reused for multiple instances. Extra examples are shown in Fig.  A.2.
and old image pools when generating a semi-synthetic dataset through-
out the training process. Despite the similarity between Datasets 1 and 
2 (pods from related species), this mixing proved essential for high-
quality results and generalisation, as demonstrated by the improved 
performance of Model 3. This is visualised in Fig.  3, we show a portion 
of an image from the BR9 dataset that visualises the model progression 
over the active learning process. Initially, we see good segmentation 
on isolated pods, but when pods are in close proximity or occluding 
one another then the mask generation fails to isolate one pod’s valve 
from another. Model 2 was designed with more diverse samples, but 
was trained only on samples generated from the new pods, and as such 
we see some improved segmentation in some pods, but a regression 
in others. Model 3 combined all pods and expanded the number of 
training samples, and as such we see improvements, but overall poor 
results in situations of overlap. The final model largely addresses these 
problems, resulting in a markedly better handling of segmentation in 
overlapping and neighbouring samples.

Model 4’s performance improvement stems primarily from the sub-
stantial increase in training images, achieved without additional human 
annotation effort. Our Thompson-inspired augmentation strategy gen-
erated a semi-synthetic training dataset with greater sample variation 
and better representation of real-world variation, boosting the model’s 
robustness against morphological variability. This is reflected in the 
increase in both detection and segmentation results, with detection AP 
rising from 0.615 to 0.685 and segmentation AP from 0.493 to 0.515 
between Model 3 and Model 4. Based on these improvements, Model 4, 
henceforth referred to as DeepCanola, will be used for real-world data 
analysis.
7 
Fig. 4. Length prediction accuracy — Average valve lengths for each cultivar and treat-
ment manual measurement (𝑥 axis) against average values predicted by DeepCanola (𝑦
axis), with treatment colour-coded. The target 𝑦 = 𝑥 line is shown as a grey dotted 
line.

3.2. Results on ordered images

Dataset BR17 has a large quantity of hand-collected length data, 
and as such provides a strong test of a deep learning model trained 
on semi-synthetic data. Fig.  4 plots average valve lengths (per culti-
var/treatment combination) obtained from manual measurements and 
those inferred by the model. With the 𝑦 = 𝑥 line being a perfect model, 
this demonstrates the model’s ability to detect the variability in the 
pod-length phenotype, despite the difference in the size extremes being 
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Fig. 5. Select cultivar ground-truth and predicted valve lengths — Boxplots comparing 
5 ◦C (blue) and 10 ◦C (orange) vernalisation treatments on valve length in four 
cultivars (experiment BR17). Ground truth measurements were acquired manually. 
Example cultivars were selected to highlight morphological variation. See Fig.  A.6 for 
the complete output for BR17.

Fig. 6. Concordance of treatment effect significance on valve length — For each 
cultivar/treatment, related samples 𝑡-tests were conducted to assess the treatment 
effect on average valve length as determined by DeepCanola estimates and manual 
measurements. Scatter plots visualise the resulting 𝑝-values (square root transformed) 
for both methods. Agreement on the hypothesis test visualised in green, with agreement 
on rejection of the null hypothesis shaded in dark green, and agreement on acceptance 
of the null hypothesis shaded in light green. White regions highlight disagreement on 
hypothesis test between methods, with 𝑝-values reported.

almost 3-fold. On these ordered images the model achieves an 𝑅2 =
0.9930 for the length calculations. This high value demonstrates the 
strength of our model and processing methods for extracting accurate 
phenotypic data from such image types.

To test DeepCanola’s ability to measure the effect of environmental 
treatment on different cultivars, we compared predicted measurements 
against the hand-collected measurements taken from each cultivar 
treated with either 5 ◦C or 10 ◦C. Typical results for diverse pod mor-
photypes are illustrated in Fig.  5, including examples of cultivars with 
extreme pod lengths. These results show that the model’s measurements 
correspond very well to manual measurements and the significance 
of each cultivar’s treatment difference is also preserved despite the 
outputs for Zhongshuang II containing a number of false positives, poor 
quality masks and shorter measurements than its manual measured 
data, due to it is more extreme morphology (long and thin). Therefore, 
we conclude that the iterative active learning process has been effec-
tive. As shown in Fig.  A.6, the valve length measurements based on 
DeepCanola accurately capture the genotypic differences and treatment 
effects across the entire BR17 dataset.

Fig.  6 shows 𝑝 values calculated from a two-sample 𝑡-test denoting 
the statistical significance of the effect of treatment on its average 
pod length for each cultivar. This test was conducted for both hand-
collected ground truth data and data predicted by DeepCanola. For 
𝑝 < 0.01 we have 100% concurrence between the two methods and 
for 𝑝 < 0.05 we get a 95.7% concurrence between the two methods.
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3.3. Results on disordered images

To evaluate how DeepCanola performs on real disordered image 
data and on previously unseen images, we utilised the BR9 dataset that 
has images from a similar earlier experiment where the pods had not 
been fully organised before imaging. Fig.  7 shows the qualitative results 
from two images of the dataset, typical of cases of more dense and more 
sparse scenes.

In situations where overlap occurs mainly perpendicularly and 
where density is relatively lower, the model is robust to disorder. How-
ever, where pods are largely orientated in parallel and almost touching 
or in a large dense group the model tends to become less accurate. A 
likely cause of this problem is the Mask R-CNN’s two-stage architecture, 
where the model creates thousands of region proposals and suppresses 
the suboptimal ones via a Non-Max Suppression (NMS) algorithm. NMS 
treats the bounding boxes with high overlap as multiple proposals of 
one object, thus the algorithm works well for sparser scenes where 
juxtaposed multiple proposals most likely represent a single object. 
However, when objects are physically close or overlapping, the clusters 
of proposals merge and the NMS algorithm suppresses samples that it 
considers to make up a set of one object, but include multiple separate 
objects. The objects may be fused, one object may get suppressed, or a 
sub-optimal box including all or parts of multiple objects gets selected. 
In all such cases, the likelihood of correct detection and segmentation 
is reduced.

Results on dataset BR9 highlight the impact of ordering. Comparing 
predicted results to ground-truth masks with calculated valve lengths 
(see Section 2.4), we see a higher accuracy for ordered pods vs. disor-
dered, with valve length 𝑅2 = 0.9966, area 𝑅2 = 0.9728 for ordered, 
and length 𝑅2 = 0.9597, area 𝑅2 = 0.9400 for disordered (see Fig. 
A.5). While physical ordering improves accuracy, there is a trade-off 
in terms of increased sample handling time, and as such would need to 
be assessed for each application. While highly dense and disordered 
images present challenges, the model still performs well on sparser 
samples. This suggests its potential applicability to similar images of 
related species.

3.4. Assessing the extent of generalisation

Although DeepCanola was designed specifically for highly con-
strained images of Brassica pod valves, we assessed how well the model 
had started to generalise, checking to what extent it could recognise 
the shape of pods in more diverse species and environments. Fig. 
7 illustrates a panel of qualitative outputs — including samples of 
ordered and disordered BR11, Brassica stem material with attached 
pods, and related species in either ordered scenes or in a more natural 
but visually complex context. We see that, as expected, the model 
performs best on ordered samples of the same species as the training 
data, imaged under similar conditions. Remarkably, in similar imaging 
domains, the model is capable of detecting the valve region of pods 
in related species within the Brassicaceae family. We see examples 
of the morphologically diverse garlic mustard and radish fruits, with 
pedicel and beak attached, where the model has successfully detected 
and segmented the valve region from other pod parts. There are even 
some successful detections within in-field images of Brassica relatives, 
with partial detection of siliques. This supports our idea that the semi-
synthetic training data allows the model to recognise similar objects 
under diverse conditions. Further improvement would be required to 
extract high-quality data, necessary for genetic or agronomic studies, 
from these more complex images. However, DeepCanola’s ability to 
recognise morphologically diverse objects in these different domains 
highlights its potential for transfer learning on downstream tasks.
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Fig. 7. DeepCanola generalisation capability — Examples test images showing samples from varying domains from the target and novel species. The top row of panels represents 
ordered, disordered, and different domain example images on the same species as used for model training. The bottom row represents ordered and different domain example 
images from different species (from left, Alliaria petiolate (Garlic mustard), Raphanus raphanistrum subsp. sativus (radish) and Arabidopsis). Colours are for visualisation purposes 
only, representing each instance of a pod valve detected by the model, and is used for both the instance’s bounding box and segmentation. Note that colours are cycled through 
and reused for multiple instances.
4. Discussion

4.1. Overview

Here, we have iteratively trained a Mask R-CNN model to recognise 
and measure valves from scanned images of pods from diverse species 
and under different imaging scenarios. Object identification based on 
bounding boxes is useful for counting discrete botanical features such as 
fruit (Yang et al., 2021; Hamidinekoo et al., 2020), leaves, shoots (Wu 
et al., 2023b), wheat ears but such models often lack the spatial preci-
sion necessary for accurate phenotyping. Segmenting a spatially defined 
region (the valve or seed bearing region) within the bounding box of a 
larger more complex object (the pod) provides the precision required 
for accurate and flexible measurements and further extends the model’s 
capabilities. Finally, we combine our model’s predictions with classical 
computer vision methods to extract the pod curve, enabling accurate 
measurement of phenotypic traits such as valve length and valve area.

Our hybrid approach, combining human-in-the-loop active learn-
ing with semi-synthetic training data, significantly improved model 
performance and robustness across diverse imaging modalities, while 
dramatically reducing the burden of manual image annotation. Using 
an experimental dataset that was associated with detailed manual mea-
surements of pod valves, the deep learning model performed as well as 
an expert human with an 𝑅2 of 0.9930. The pod-valve annotations took 
about 39 person-hours in total to collect, whereas generation of the 
1000-sample/44823-annotations (Dataset 4) took approximately one 
hour on a desktop workstation (hardware details in Section 2.3.3). The 
most rapid manual annotation was approximately 45 pods per hour, 
at which rate Dataset 4 would have taken approximately 996 person-
hours to complete. This represents a 1000-fold increase in training data 
collection speed. The semi-synthetic dataset generation script is highly 
scalable, parallelised to run across multiple processor threads and could 
be easily adapted to other tasks.
9 
Pod number and pod size are 2 key yield components for oilseed 
rape (Siles et al., 2021). Siles and co-workers examined 96 B. napus cul-
tivars and found that the 2 main oilseed crop types (Winter and Spring 
OSR) share a common reproductive strategy with high numbers of 
long pods on the main inflorescence being the principal source of seed 
yield. Moreover, the relationship was further defined as being between 
valve length and the number of seeds per pod, which was exponential 
up to 5 cm and then linear. This motivated us to develop a method 
that could measure the valve region rather than the total pod length. 
However, initial versions performed poorly on cultivars with very long 
pods. Therefore, we developed an active learning process that increased 
the range of pod size that the model can accommodate by correctly 
labelling the pods that contributed to poor performance. The improved 
model then evaluated the effect of environmental conditions (2 types of 
simulated winter) with equal accuracy to an experienced crop scientist. 
Furthermore, we found that the model could be applied to additional 
datasets not included in the training, including other species, entire 
branches with attached pods and even images downloaded from the 
web.

4.2. Generalisation

We found that Thompson-inspired data augmentation allowed the 
model to generalise not only to related cultivars, but also to related 
species. Fig.  7 shows examples of Raphanus raphanistrum successfully 
segmented, although it is morphologically diverse from the brassica. 
We also see limited success in the presence of stem material. This 
suggests that the Thompson-inspired mathematical augmentation of 
pod shape has made the model robust in recognising similar shapes, 
even when potentially confusing material, such as stems, is present in 
the image. It also recognises valves in species with quite distinct overall 
pod morphologies. However, the precision of pod valve segmentation of 
these alternative species was marginally reduced compared to B. napus.
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In some species, such as Arabidopsis, the beak-like region is very 
small relative to the rest of the fruit. However, inspection of Arabidop-
sis images labelled by DeepCanola indicates accurate restriction to the 
valve regions. Moreover, the shape of the beak region does not seem to 
impact the model’s ability to accurately segment exclusively the valve 
region, which we see with unseen species such as the radish. This is 
likely due to the augmentation of pod shape variation, allowing the 
model to be robust to shape variation in these parts of the pod. The 
model also functions to a limited extent on even more extreme fruit 
shapes such as exhibited by Lunaria (honesty plant, Fig.  A.4). However, 
further re-training would be required to achieve accurate results in the 
more morphologically distant samples.

We observed DeepCanola generalising well to diverse morphologies 
of pods of brassica and brassica relatives. To visualise the statistical 
distributions of the test images, t-distributed stochastic neighbour em-
bedding (t-SNE (van der Maaten and Hinton, 2008)) is used to reduce 
the dimensionality of the feature maps from the hidden layers of the 
DeepCanola network, using both real-world test datasets and the test 
split of the generated dataset used for training. Fig.  A.7 shows the t-SNE 
visualisation, where distinct clusters can be observed from each dataset 
and each pod ordering method. The semi-synthetic image cluster is 
positioned close to the other disordered datasets. This suggests that 
DeepCanola has learned that the generated and true disordered datasets 
have distinct yet similar compositions, and that the semi-synthetic data 
closely mimic the disordered images. We also extract the feature map 
outputs of the objects detected by our Mask R-CNN DeepCanola model. 
Fig.  A.8 presents the t-SNE visualisation of each detected object across 
all test datasets. Due to the high overlap across datasets, we split each 
dataset and ordering method into its own sub-figure to better illustrate 
the distributions. Observing the disordered samples, we see that BR9 
and BR11 pods occupy a similar region, while the generated samples 
lie within the same general area but exhibit more spread. This indicates 
that the objects created using the Thompson-inspired augmentation are 
similar to the true samples, but with greater morphological variation.

4.3. Limitations

A primary aim of our work was to reduce the time required to 
phenotype large quantities of brassica pods using image analysis. Re-
ducing the need for personnel time input, our semi-synthetic data 
generation system quickly produces large quantities of high-quality, 
diverse (within the domain) training data. Despite the success of Deep-
Canola on uncluttered image data, the model has limitations. Some 
limitations are inherent in 2D images, such as overlap or occlusion. 
Other limitations stem from the nature of the semi-synthetic images, 
and the constrained domain of the images we generate.

A major component of the manual time requirement for pheno-
typing large quantities of pods is arranging samples. Therefore, we 
trained our model on samples that had varying degrees of complexity 
and order, resulting in both partial and fragmented occlusion. Partial 
occlusion is where a small region of the object is occluded. Fragmented 
occlusion is where multiple parts of the object are occluded, making it 
difficult for a model to determine which part belongs to what object. 
Examples of fragmented or partial occlusion can be seen in Fig.  3. 
Typically, currently available object detection models tend to fail when 
dealing with fragmented occlusion, including Mask R-CNN (Pegoraro 
and Pflugfelder, 2020; Pflugfelder and Auer, 2021). Although the model 
improved through the active learning process, when there are high 
levels of fragmented occlusion, there is simply not enough information 
within an image to accurately and consistently denote one object from 
another. We observe similar issues in dense clusters of pods, especially 
when physically touching and lying in parallel. Finding the optimal 
balance between order and disorder during image acquisition will 
therefore depend on the specific phenotyping application. This is a 
general limitation of single-image photogrammetry, but the use of dis-
ordered training data, both real and synthetic, means that DeepCanola 
has improved capabilities as a high-throughput phenotyping tool.
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Complex or variable backgrounds, such as the image of Arabidop-
sis in Fig.  7 present several challenges, including but not limited to 
occlusion and out-of-focus objects, which may or may not be part of 
the subject of interest. These data types tend to generate more false 
positives and false negatives, which is perhaps not surprising since the 
model was not trained on such data. Although the current model is in-
sufficiently robust for extracting accurate quantitative information from 
in-field images, generative AI and 3D modelling could potentially be 
used to produce new synthetic data to capture more diverse domains, 
including variable sample angles, lighting conditions, and backgrounds.

A potential issue with semi-synthetic data generation could also 
be the amplification of incorrectly labelled samples. If incorrectly la-
belled samples are frequent within the initial training data and then 
augmented to create additional abnormal training samples, this would 
cause the model to learn the incorrectly labelled relationship across 
different morphologies and locations. The training of object detection 
models benefits from having a highly informative and robust loss 
calculation that is a combination of all samples within a scene (Atkins 
et al., 2024). However, resampling and recomposition of the same 
object during augmentation may train the model to learn unintended 
relationships, such as unrealistic compositions that do not generalise 
well to real-world data with more constraints.

4.4. Addressing limitations

Object placement and density affect how well deep learning models 
detect objects. However, it can be challenging to find an optimum 
balance between the best possible images with minimal occlusion, 
while ensuring efficient image capture and accurate information extrac-
tion. For post-harvest material, minor changes in object arrangement 
can assist with detection within dense scenes. Three main features 
seem to improve valve detection: first, both ends of a given fruit 
should be visible, second, the obfuscated area along the body of the 
fruit should be minimised, and third, limiting the presence of dense 
clusters by having space between fruits. The DeepCanola, however, no 
longer requires careful arrangement of pods and tolerates disorder quite 
well. Generally, in situations of perpendicular overlap, DeepCanola 
confidently and correctly detects and segments both overlapping pods. 
However, when there are multiple pods overlapping one another in 
close proximity and with large areas obfuscated, the model tends to 
confuse each instance of a pod, returning some poor segmentations and 
detections. A simple approach to counter this effect, without manual 
arrangement of samples, is to limit the number of objects within a 
given image to reduce the chances of overlap. The relationship between 
object density and accuracy is also observed in commercial cereal grain-
scanning systems, such as MARVIN, and has inspired the development 
of sophisticated grain-by-grain analysis systems such as C-grain Ev-
ershed et al. (2024). Being able to quantify the level of obfuscation 
within an image may also assist with understanding the limitations of 
deep learning models in dense scenes. A simple approach would be to 
quantify the number of fruits per square unit of area, calculating the 
relative density of fruits. Another measure could be the obfuscated area, 
quantifying the area of fruit within the image that is obfuscated; this 
would be difficult to measure for real-world images, however, for semi-
synthetic images it could be found programmatically. Understanding 
how variation in these metrics affects outputted measurements, such 
as length, would help practitioners understand the degree of disorder 
that can be tolerated by deep learning models.

Deep learning models that use box-based non-max suppression 
(NMS), can perform poorly in dense scenes. However, some alternative 
algorithm choices may improve results. Bodla et al. (2017) extended 
the NMS algorithm to decay, instead of suppress, surrounding boxes. 
Named Soft-NMS, the algorithm decays the overlapping boxes’ confi-
dence scores instead of removing them outright. Decaying instead of 
suppressing boxes has the effect of allowing overlapping boxes with 
true high-confidence scores to remain, while removing other lower 
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quality detections. This small change to the NMS algorithm has im-
proved results in situations of overlapping objects in the COCO dataset. 
Similarly, Shepley et al. (2020) created Confluence, an alternative to 
NMS that uses the Manhattan distance between corners of boxes to 
decide which boxes in a set are likely to represent the same object. 
These alternative algorithms may assist with object detection in dense 
scenes. However, their utility must be assessed with the type of datasets 
we present in this work. Furthermore, using non-NMS-based deep 
learning models may improve results. For example, Liu et al. (2025) 
developed a Transformer-based model that could successfully detect 
green apples on the tree, including in situations where they were partly 
occluded by other fruit or by leaves and branches. Transformer-based 
segmentation models such as Mask2Former (Fu et al., 2019) may yield 
improved results. However, such models may introduce other forms of 
error when dealing with the task of dense object segmentation.

Deep learning models, ideally, should be robust to background 
and lighting variation, as this extends their utility. While consistent 
imaging conditions are easily implemented within a given laboratory, 
transfer between different sites often presents challenges, especially to 
real world situations. Re-training DeepCanola to be robust to back-
ground variation should be possible using our semi-synthetic data 
generation system. Novel natural backgrounds could be added to the 
background pool with negative samples, such as stripped (podless) 
stem material, placed within the image. This approach could be very 
useful for in-field studies where backgrounds are not easily controlled. 
Introducing a range of lighting conditions (i.e. directional illumina-
tion, variable shadows) could be more challenging in semi-synthetic 
setups. Gamma values can be augmented to vary the lighting intensity 
through post-processing, such as what was introduced for the back-
ground augmentation in the fourth round of training. However, gamma 
value augmentation changes can only mimic changes in intensity, not 
directionality of lighting. Generative AI systems can transfer lighting 
conditions from a target image to a source image (Xing et al., 2024). 
Such a system could be adapted to augment the lighting of a real or a 
generated image, allowing a model to become robust to diverse lighting 
conditions.

Handling high-density occlusions and variable imaging conditions 
in 2D image-based phenotyping remains a significant challenge. To 
ensure the quality of phenotypic measurements, statistical phenotypic 
metrics and post-processing techniques can help filter out problematic 
masks, thereby improving segmentation accuracy (Atkins et al., 2024). 
A potential extension of our approach is to enhance the pod detection 
models by incorporating an additional prediction head to estimate total 
fruit sizes in the image. Training the enhanced model would lever-
age our semi-synthetic data generation system to mitigate distortions 
caused by occlusions, varying shooting angles, and diverse phenotyping 
conditions.

4.5. Architecture selection

Mask R-CNN was selected as the architecture for our instance seg-
mentation model due to its proven track record in creating quality 
outputs for non-real-time applications. The current state-of-the-art for 
instance segmentation on the COCO dataset is a large vision model 
based on Cascade Mask R-CNN (Fang et al., 2022). Cascade Mask 
R-CNN is an improvement over Mask R-CNN using a cascading archi-
tecture (Cai and Vasconcelos, 2021). The concept of cascade revolves 
around iterative cascading improvements from coarse to fine quality 
levels and is a well-tested system for creating quality segmentations. 
However, the main limitation of the DeepCanola model is object confu-
sion in dense disordered scenes. This confusion can, at least partially, 
be attributed to non-max suppression (NMS) collapsing detections of 
multiple objects into a single output, and Cascade Mask R-CNN still 
relies upon NMS for its post-processing. Therefore, using the improved 
architecture would not address DeepCanola’s primary limitation. Some 
transformer architectures, such as DETR (Carion et al., 2020) and its 
relatives, do not rely upon NMS for post-processing and potentially 
could handle dense scenes. However,  transformer architectures require 
11 
much more training data than their CNN counterparts (Gu et al., 2022) 
and are much more computationally complex than our proposed model, 
requiring more memory and computing to be able to train effectively.

5. Conclusion

This study proposes an active learning and semi-synthetic data 
generation system, training deep learning models to detect the yield-
relevant valve region of brassica pods in both ordered and disordered 
scenes. The final model, named DeepCanola, shows good performance 
in segmenting pod valves, with the derived length phenotypic data 
showing a strong correlation with hand-collected data in both ordered 
(𝑅2 = 0.9930 and 0.9966) and disordered (𝑅2 = 0.9597) scenes. This 
indicates that high-quality phenotyping models can be created using 
semi-synthetic training data. We also demonstrate that applying simple 
mathematical transformations to the fruits assists the model’s general-
isation performance towards different cultivars, to related species and 
even to attached fruits in more complex scenarios.
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Fig. A.1. Typical DeepCanola Outputs — Typical examples from DeepCanola on both ordered and disordered images from both datasets BR9 and BR17 (rows 1 & 2), alongside 
a dataset of Brassica napus supplied by Rothamsted Research (row 3), which was collected on a distant site and not for the purpose of being used as a validation example for 
this system. Colours are for visualisation purposes only, representing each instance of a pod valve detected by the model, and is used for both the instance’s bounding box and 
segmentation. Note that colours are cycled through and reused for multiple instances.
Table A.1
Model hyperparameters used for training.
 Hyperparameters Values  
 Backbone ResNet-50-FPN  
 Input size (2631 x 1914 x 3) 
 Learning rate 0.005  
 Momentum 0.9  
 Weight decay 0.0005  
 LR scheduler gamma 0.1  
 LR scheduler epoch steps 8, 11  
 Total training epochs 12  
12 
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Fig. A.2. Extra active learning progression examples — Example patch of test image from disordered BR9 dataset showing results from each of the step of the active learning 
process, expanding on Fig.  3. Colours are for visualisation purposes only, representing each instance of a pod valve detected by the model, and is used for both the instance’s 
bounding box and segmentation. Note that colours are cycled through and reused for multiple instances.

Fig. A.3. Example DeepCanola outputs on Brassica stem material — Visualised outputs of DeepCanola on example image of Brassica napus stem material with pods attached 
illustrating both generalisation and limitations of DeepCanola. Colours are for visualisation purposes only, representing each instance of a pod valve detected by the model, and 
is used for both the instance’s bounding box and segmentation. Note that colours are cycled through and reused for multiple instances.

Computers and Electronics in Agriculture 237 (2025) 110470 
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Fig. A.4. Example DeepCanola outputs on Lunaraia annua stem material — Visualised outputs of DeepCanola on example image of Lunaraia annua stem material with its highly 
morphologically diverse pods attached showing illustrating both generalisation and limitations of DeepCanola. Colours are for visualisation purposes only. Colours are for visualisation 
purposes only, representing each instance of a pod valve detected by the model, and is used for both the instance’s bounding box and segmentation. Note that colours are cycled 
through and reused for multiple instances.

Fig. A.5. DeepCanola valve length results on BR9 dataset for ordered and disordered images — Scatter plot showing the calculated valve length from ground-truth masks against 
calculated valve length from DeepCanola. Shown for both ordered and disordered pods. 𝑅2 value is shown in the upper right corner, along with a linear regression line. Ordered 
images are shown in green, and disordered images are shown in blue.

Computers and Electronics in Agriculture 237 (2025) 110470 
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Fig. A.6. Manual and DeepCanola valve length measurements on BR17 — The results for the manually measured data (green — left box in group) and the predicted data (blue 
— right box in group) for treatment 1 (upper) and treatment 2 (lower) and cultivar in the BR17 dataset.
Fig. A.7. Image-level t-SNE visualisation of the feature maps produced by the model backbone on all test images from each dataset. Colours represent different datasets, dot 
style represents ordering of the pods within the image. Feature map extracted from the third (final) layer of the FPN subnetwork attached to the CNN backbone. t-SNE reduced 
256-dimension feature map to 2-dimension output (Dim 1 & Dim 2). Here, Generated dataset is Dataset 4, the test-split of the dataset used to train DeepCanola. Parameters: 
perplexity = 30, iterations = 1000. Note that the overall shape and clustering shown in this figure was consistent for perplexity 10–50, and with higher perplexities we observed 
the real and generated disordered clusters begin to combine.
Data availability

Model weights, training and inference scripts, along with dataset 
generation code are available at https://github.com/kieranatkins/de
epcanola.Pod image pool, valve annotation pool, background pool, 
15 
generated training and testing datasets at each step of the active learn-
ing process, along with valve measurements on the BR17 dataset are 
provided under DOI: 10.5281/zenodo.14235543. Note that (iNaturalist 
community, 2023) is a public dataset and images used are not included 
in DOI.
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Fig. A.8. Object-level t-SNE visualisation of the feature maps produced by the model backbone on all test images from each dataset. Feature map extracted from cropped features 
inputted to box head of the Mask R-CNN network. t-SNE reduced 256-dimension feature map to 2-dimension output (Dim 1 & Dim 2). All sub-figures are from the same t-SNE 
embedding, however dataset and pod ordering types have been split for visibility. Colours/columns represent different datasets, rows represent different pod ordering. Here,
Generated dataset is Dataset 4, the test-split of the dataset used to train DeepCanola. Parameters: perplexity = 30, iterations = 1000. Note that the overall shape and clustering 
shown within these figures was consistent for higher perplexity and iteration values.
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