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A B S T R A C T

The benchmarking of farm environmental sustainability and the monitoring of progress towards more sustain-
able farming systems is made difficult by the need to aggregate multiple indicators at the relevant spatial scales.
We present a novel framework for identifying alternative pathways to improve environmental sustainability in
farming systems that addresses this challenge by analysing the co-variance of indicators within a landscape
context. A set of sustainability indicators was analysed within the framework of a published set of Farm Man-
agement Archetypes (FMAs) that maps the distribution of farming systems in England based on combinations of
environmental and management variables. The archetype approach acknowledges that sustainability indicators
do not vary independently and that there are regional constraints to potential trajectories of change. Using Pareto
Optimisation, we identified optimal combinations of sustainability indicators (“Pareto nodes”) for each FMA
independently, and across all FMAs. The relative sustainability of the archetypes with respect to one another was
compared based on the proportion of Pareto nodes in each FMA. Potential for improvement in sustainability was
derived from distances to the nearest Pareto node (either within or across FMAs), incorporating the cost of
transitioning to another archetype based on the similarity of its environmental variables. The indicators with the
greatest potential to improve sustainability within archetypes (and, therefore, should have a greater emphasis in
guiding management decisions) varied between FMAs. Relatively unsustainable FMAs were identified that also
had limited potential to increase within archetype sustainability, indicating regions where more fundamental
system changes may be required. The FMA representing the most intensive system of arable production, although
relatively unsustainable when compared to all other archetypes, had the greatest internal potential for
improvement without transitioning to a different farming system. In contrast, the intensive horticulture FMA had
limited internal potential to improve sustainability. The FMAs with the greatest potential for system change as a
viable pathway to improved sustainability were dairy, beef and sheep, and rough grazing, moving towards more
mixed systems incorporating arable. Geographically, these transitions were concentrated in the west of England,
introducing diversity into otherwise homogenous landscapes. Our method allows for an assessment of the po-
tential to improve sustainability across spatial scales, is flexible relative to the choice of sustainability indicators,
and—being data-driven—avoids the subjectivity of indicator weightings. The results allow decision makers to
explore the opportunity space for beneficial change in a target landscape based on the indicators with most
potential to improve sustainability.

1. Introduction

Agriculture is a major driver of negative global environmental

change, contributing to biodiversity loss, water pollution and climate
change (Balmford et al., 2012; Foley et al., 2011; Keys and McConnell,
2005; Ramankutty et al., 2008). These unintended consequences of the

* Corresponding author at: Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK.
E-mail address: jonathan.storkey@rothamsted.ac.uk (J. Storkey).

1 Present address: University of Lausanne, Lausanne, Switzerland.

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

https://doi.org/10.1016/j.ecolind.2024.112433
Received 1 November 2023; Received in revised form 6 June 2024; Accepted 25 July 2024

mailto:jonathan.storkey@rothamsted.ac.uk
www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2024.112433
https://doi.org/10.1016/j.ecolind.2024.112433
https://doi.org/10.1016/j.ecolind.2024.112433
http://creativecommons.org/licenses/by/4.0/


Ecological Indicators 166 (2024) 112433

2

expansion and intensification of agriculture associated with the Green
Revolution (Pingali, 2012) mean that the benefits to society from
farming in terms of provisioning ecosystem services (ES, sensu the Mil-
lennium Ecosystem Assessment (Carpenter et al., 2009)) now need to be
balanced against its impact on associated regulating, supporting and
cultural ES. Achieving this balance will require alternative, sustainable
approaches to managing farming systems variously described as ‘sus-
tainable intensification’ (Rockstrom et al., 2017), ‘agroecological’
(Wezel et al., 2020) or ‘regenerative’ (Giller et al., 2021). These terms
generally capture guiding principles for change but lack strict defini-
tions and a set of universally agreed criteria (that may also depend on
local context) for classifying a farm as, for example, ‘regenerative’. It is
difficult, therefore, to quantify progress towards more sustainable
agriculture based purely on the level of transition to these alternative
systems. Rather, benchmarking farms and agricultural landscapes, and
monitoring progress towards a more sustainable future, will require an
assessment based on multiple environmental criteria (in addition to
productivity and profitability) that will vary continuously in space and /
or time. For the purposes of our argument, ‘sustainability’ is, here,
defined as “meeting the needs of the present without compromising the
ability of future generations to meet their own needs” (Brundtland,
1987) and is, hereafter, used to mean environmental sustainability
narrowly as opposed to general sustainability that includes social and
economic aspects.

While the development of more environmentally sustainable farming
systems has received a considerable amount of public attention and
research effort, conceptual frameworks for quantitatively benchmarking
farming systems and identifying beneficial trajectories of change are less
well developed. Research effort in this area has tended to focus on
identifying suites of indicators for monitoring multiple environmental
outcomes. There are now a number of reviews of these potential envi-
ronmental sustainability indicators and frameworks (Bockstaller et al.,
2008; Bonisoli et al., 2018; Gharsallah et al., 2021; Mahon et al., 2018;
Smith et al., 2017), which reflect the complex and multi-functional
nature of agricultural landscapes. These indicators of sustainability
range from single variables, such as the rate of fertiliser application per
unit of time and area, to complex composite indicators (e.g. the farmland
bird index (Gregory et al., 2005)) or outputs from process-based models
(e.g. carbon storage and nutrient runoff; (Latruffe et al., 2016; Mander
et al., 2000)). However, significant additional challenges remain before
these suites of indicators can be practically implemented to benchmark
farms, monitor progress and identify trajectories of change. These
include: 1) how to aggregate multiple indicators into an overall measure
of sustainability, 2) how to critically compare alternative trajectories of
change, and 3) how to account for regional variation in environmental
constraints. Addressing these challenges is the focus of this paper.

The most common approach to aggregating indicators is to apply
weights in summing the indicators’ relative importance (Gan et al.,
2017). This, however, ignores the potential complexity of interactions
(trade-offs and synergies between indicators) and is subjective due to its
reliance on expert or stakeholder opinion (Gan et al., 2017; Morse et al.,
2001). Additionally, indicators are often converted to the same unit of
measure − typically monetary cost − raising the issue of how to evaluate
non-market goods such as supporting ES (Gomez-Baggethun and Ruiz-
Perez, 2011). Here, we explore the alternative, data driven approach
of Pareto Optimisation (PO) to aggregate multiple, potentially con-
flicting, indicators of farm environmental sustainability. PO does not
require the user to quantify the preference for the objectives (in this
case, between sustainability indicators), therefore avoiding the subjec-
tive assignment of relative weights. Rather, once a set of objectives is
defined, based on an empirical, multidimensional dataset, PO algo-
rithms look for “Pareto-optimal” data points, for which none of the
objectives can be further improved without degrading some of the other
objectives. In the absence of a preference among the objectives, all
Pareto-optimal points represent equally well optimised combinations of
objectives, or in this case indicators. Relative sustainability of a farm or

landscape parcel can then be assessed in terms of distance from a Pareto-
optimal point within the reference dataset of which it is part.

The use of PO in landscape allocation problems and the optimisation
of farming practices is an established methodology in the literature.
Concerning the former, PO is typically used in conjunction with math-
ematical optimisation methods (e.g. evolutionary algorithms and
simulated annealing) to find the optimal distribution of land-cover
classes or farm management classes in a landscape; a comprehensive
review of allocation methodologies is provided by Kaim et al. (2018).
While at the farm scale, PO is used to optimise farming practices inter-
nally, based on inputs from farmers and mechanistic models of farm
management (eg. Groot et al., 2012). Here, we take the novel approach
of applying PO to national scale datasets of landscape and farm man-
agement metrics for England, within the context of an archetype
framework, described below.

Most analyses of agricultural sustainability have been carried out
either at the national or at the farm scale (Graymore et al., 2008; Mili
and Martinez-Vega, 2019). However, many ecological, social, and eco-
nomic processes interact and are regulated at intermediate “regional”
scales. Analytical tools aimed at this intermediate scale remain under-
developed (Graymore et al., 2010; Orenstein and Shach-Pinsley, 2017)
but are important in providing the context for benchmarking current
practice and identifying constraints on possible trajectories of change.
As a ‘farm system’ is a combination of fixed elements of the regional
landscape (for example, soil type and climate) and more flexible ele-
ments of management practices (for example, crop choice or fertilizer
inputs), management choices and opportunities for change will be
constrained to a greater or lesser degree by regional landscape factors.
Any assessment of sustainability needs to take account of this regional
context. One promising avenue to provide this contextualization is to
take an archetype approach that captures variation in both environ-
mental context and farm management.

Archetypes are recurring patterns of an intermediate level of
abstraction (Oberlack et al., 2019) and their utility lies in simplifying
and describing complex systems typically characterised by variability
across many dimensions. Recently, archetype analysis has been suc-
cessfully applied to sustainability research (Eisenack et al., 2021),
showing the potential to upscale and generalise sets of sustainability
indicators (Sietz et al., 2017). Here, we use pre-determined archetypes,
that have recently been published for the agricultural landscapes of
England and Wales (Goodwin et al., 2022), to interpret co-variation in a
suite of sustainability indicators and to analyse trajectories of change
within and between archetypes using England as a case study. The
archetype framework of Goodwin et al. (2022) is based on Self-
Organising Maps (SOMs) (Kohonen, 1990) and derived three tiers of
archetypes: Tier 1 characterised different landscapes at the coarse scale,
Tier 2 further differentiate between farmed landscapes where agricul-
ture is the dominant land use and Tier 3 between farm management
strategies – all at the spatial resolution of 1 km2.

Our assumption is that that it will be easier to implement beneficial
change within, as opposed to across, archetypes and that the Tiers
identified in Goodwin et al. (2022) represent a gradient of opportunity
for adaptation and intervention. The social, economic and environ-
mental barriers to change are assumed to become increasingly prohib-
itive in the following order: changes within the same Tier 3 archetype;
changes between Tier 3 archetypes but within the same Tier 2 arche-
type; changes to a different Tier 2 or Tier 1 archetype. The focus of our
analysis is on Tier 3, hereafter Farm Management Archetypes (FMAs),
that has the greatest potential for system change impacting environ-
mental sustainability. FMAs are also analysed in the context of Tier 2 to
capture regional constraints on trajectories of change.

In developing the framework, our focus was not on the selection of
sustainability indicators per se – a plausible set related to regulating
ecosystem services was chosen based on the literature and expert
knowledge to illustrate our approach – but on their implementation with
regards to aggregation, benchmarking and analysis of potential
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trajectories of change in a landscape context. The framework was
intended to (1) develop the capacity to handle multiple sustainability
indicators without using subjective weights, (2) have the flexibility to
use any set of sustainability indicators, and (3) be applicable across
multiple geographical locations and scales.

2. Material and methods

There were five steps in the development of our framework (Fig. 1):

1) To explore sustainability indicator variability and potential trajec-
tories of change within, as well as between FMAs, the supervised
training of a large SOM (i.e. a SOM with many more nodes than the
number of FMAs) was completed using the same input variables used
to characterise the archetypes in Goodwin et al (2022). This main-
tained the published archetype framework while identifying multi-
ple nodes within each FMA that could be explored using PO.

2) A subset of archetype variables that were predicted to impact envi-
ronmental sustainability (hereafter, sustainability indicators) was
selected to use as the objectives by which to define Pareto-optimal
SOM nodes within a PO algorithm.

3) Pareto-optimal SOM nodes (hereafter, Pareto nodes) based on the
sustainability indicators were identified either on an individual FMA
basis (‘Within Archetype (WA)’) or across the whole large SOM. The
analysis of Pareto nodes optimized using the whole SOM is hereafter
termed ‘Across Archetype Unrestricted (AAU)’ analysis.

4) To analyse the relative cost of transitioning to a different FMA to
improve sustainability, a similarity matrix of FMAs in terms of their
landscape setting was derived based on the relationship of FMAs to
the Tier 2 Farmed Landscape archetypes; the assumption being it is

easier to transition to an archetype that is more similar in terms of its
landscape context (as defined by Tier 2 archetypes).

5) The mean distance of each node to the nearest Pareto node (trajec-
tories of change) was then calculated based on the PO performed
within each individual FMA. Two separate analyses were done:
firstly, trajectories of change were only allowed within an archetype
(WA). Secondly, archetype transitions were permitted but restricted
by dissimilarity in landscape variables (hereafter, ‘Across Archetype
Restricted’ (AAR) analysis).

These steps are described below, all data analysis was carried out in
R (R Core Team, 2022) and the annotated code is made available in the
Appendices.

2.1. Large SOM training

The framework of Goodwin et al. (2022) identified data-driven,
spatially-explicit archetypes by clustering multiple descriptor variables
within an SOM – a simple neural network (the map), the neurones of
which (the SOM nodes) are programmed to migrate towards the regions
of the data space with the highest densities of points (Kohonen, 1990).
To facilitate a comparison of within vs. across archetype trajectories of
change, we greatly increased the number of nodes in a large SOM while
maintaining the FMA structure. The benefits and constraints of
increasing the size of the SOM are discussed in Supplementary Materials.
We reproduced the 12 Tier 3 FMAs for England from Goodwin et al
(2022) on a large SOM by supervised training on a rectangular grid using
R package “kohonen” (V3.0.10, (Wehrens and Kruisselbrink, 2018)).
Supervised training was achieved by providing the archetype member-
ship of each 1 km2 cell from Goodwin et al (2022) to the “xyf” function
together with the same set of input variables. The size and conformation

Fig. 1. Flow-chart of our framework integrating Self-organising Maps (SOM) with a three-level Pareto Optimization (PO). In the Archetypes Environmental Re-
quirements table EV stands for Environmental Variable and A stands for Archetype. Dots in the “Large Self-Organising Map” are the nodes, and colours represent the
archetypes. In “3 Levels of Analysis”, the SOM is simplified by showing only the Pareto nodes; arrows represent example distances to the nearest Pareto nodes (in
reality, each node would have an arrow to the nearest Pareto nodes, only a sample was shown for clarity).
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of the SOM grid were selected by an iterative process aimed at mini-
mising the mean distance of 1 km2 cell data values mapped to each SOM
node, maximising the spread across the grid of the number of cells
mapped to each node, and minimising the number of nodes with no cells
mapped to them (Wehrens and Buydens, 2007). In so doing, we created a
data structure for exploring within-archetype variability as well as
between-archetype variability. The batch SOM algorithm was used, and
the training dataset was re-presented to the algorithm 300 times. To
account for the stochasticity of random initialisation of the grid co-
ordinates we trained 50 replicates of the large SOM and proceeded with
the following steps of the analysis in parallel on these 50 replicate
threads.

2.2. Choice of sustainability indicators

Starting with the list of variables used to define the FMAs we selected
a subset that are we expected, based on the literature, to relate to
environmental sustainability as PO objectives (Table 1). These variables
are predicted to enhance sustainability mostly by increasing agro-
ecosystem resilience (Hooper et al., 2005; Loreau and de Mazancourt,
2013; Mori et al., 2013) through landscape diversity (Dauber et al.,
2003; Duelli, 1997; Tamburini et al., 2020; Weibull et al., 2000) and
supporting biodiversity (Benton, Vickery & Wilson, 2003; Tscharntke
et al., 2005; Storkey et al., 2024). Several are landscape metrics, which
have been shown to relate to landscape functions and ecosystem services
(ES), and biodiversity (Schindler et al., 2008; Schindler et al., 2013;
Walz and Syrbe, 2013), especially in the context of land use change
(Uuemaa et al., 2013). Although our set of input variables contains

several that are likely colinear, note that − unlike statistical models – PO
algorithms do not return results biased towards groups of correlated
variables. On the contrary, very highly correlated objectives become
equivalent to a single objective. The indicator Pesticide (“CEH land
cover plus: pesticides”) was found to be highly correlated with fertiliser
usage in England as expressed by the “CEH land cover plus: pesticides”
spatial layer (https://www.ceh.ac.uk/data/ukceh-land-cover-pl
us-fertilisers-and-pesticides). Because of this correlation and the fact
that the fertilisers layer was omitted from the FMA characterisation (that
also included Wales for which fertiliser data were not available) we
omitted fertiliser data from our analysis. However, note that indicator
Pesticide can be assumed to also indicate fertiliser usage and is therefore
an indicator of farming intensity.

2.3. Pareto Optimisation

PO was used to identify the SOM nodes that optimised the chosen
sustainability indicators. It was carried out with the R package “rPref”
(V1.3, (Roocks, 2016)). Each node on the trained SOMwas characterised
by a so-called “codebook vector”, which contains the coordinates of the
node in the multidimensional variables space. PO was carried out on a
so-called “codebook matrix” where each row is the codebook vector of a
SOM node (N x V matrix where N=number of nodes, and V=number of
variables). To reduce the number of Pareto nodes returned by the PO, we
prevented SOM nodes with values worse than an empirically selected
threshold from being considered Pareto nodes (further details and the
justification for reducing the number of Pareto nodes can be found in
supplementary materials, Threshold selection). A threshold at the 95th
percentile was selected as it was the highest one that still resulted in no
archetype being devoid of Pareto nodes.

The PO was repeated at two levels.

The “Within-Archetype” (WA) level optimised within the same FMA.
Here, Pareto nodes were found by constraining the search to the
nodes allocated to each FMA. This resulted in a set of Pareto nodes
representing the most sustainable “sub-archetypes” within each
archetype. Note that this measure is not a measure of archetype
“broadness”, where more varied FMAs necessarily have higher sus-
tainability values; instead, this is a true representation of the net
margin for sustainability improvement. This is because broader
FMAs may have improvements to some variables that are counter-
acted by coupled degradation in other variables resulting in a lack of
net change in sustainability.
The Across-Archetype, Unrestricted (AAU) level analysed the dis-
tribution of Pareto nodes throughout the SOM (across all FMAs), thus
resulting in their uneven distribution among FMAs. The archetype
hosting the highest proportion of Pareto nodes relative to the total
number of nodes allocated to that archetype, is assumed to be the
most optimised for sustainability.

2.4. Estimating the cost of transitioning between FMAs

For the Across Archetype Restricted (AAR) pathway analysis that
allowed transitions between FMAs (see “2.5. Pathways to Pareto nodes”)
we estimated the relative cost of transitioning to a neighbouring (i.e.,
neighbouring in terms of multi-dimensional variable space, not
geographically) FMA by calculating landscape similarity, so capturing
the resistance to management change associated with differences in
contextual landscape elements like soil type and climate. This involved
retrieving information on the similarity of landscapes for each archetype
pair. We obtained this measure from the spatial overlay analysis be-
tween the Tier 3 (FMAs) and Tier 2 archetypes carried out in Goodwin
et al. (2022), which returned the proportion of 1 km2 cells of each Tier 3
archetype that overlap with each Tier 2 archetype. A Euclidean distance
matrix for each pair of Tier 3 FMAs was then computed from the Tier 2
overlay values. These distance values were rescaled from zero to one,

Table 1
Variables on which Pareto Optimisation was performed (predicted to be in-
dicators of environmental sustainability). Direction of optimisation indicates
whether the Pareto Optimisation process attempted to maximise or minimise the
variable.

Name Description Aspect of
environmental
sustainability

Direction of
optimisation

Field Shape Standardised field edge
to area ratio

Field-margin
vegetation, edge
effects, landscape
diversity

Maximised

Diversity Crop diversity index Landscape diversity
and configurartion

Maximised
Evenness Crop evenness index Maximised
Isolation Mean nearest-

neighbour distance
between same-crop
patches (see A3)

Maximised

Edge
Contrast

Neighbouring crop
patches diversity proxy

Maximised

Subdivision Probability that any
two points in a 1 km2

cell do not fall within
the same patch

Maximised

Farm Size Mean farm area for
each 1 km2 cell

Minimised

Field Size Mean field size for each
1 km2 cell

Minimised

Patch Area Mean area of same-
crop patches

Minimised

Pesticide Pesticide application
rates

Farming intensity Minimised

AES Income from agri-
environmental
schemes

Represents several
practices that “supports
biodiversity, enhances
the landscape, and
improves the quality of
water, air and soil”

Maximised

Hedge Total hedge length Prevalence of natural
habitat, landscape
diversity

Maximised
Woodland Proportion of

woodland within farm
boundaries

Maximised
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relative to the observed maximum, and inverted to obtain a value of
similarity between all pairs of FMA landscapes. Here, the pairs that
differed the most were given a similarity value of zero, while identical
pairs were represented by the value one (i.e., the similarity of each FMA
to itself).

2.5. Pathways to Pareto nodes

At theWA and AAR levels, the mean distance from each SOM node to
its nearest Pareto node was computed for each FMA as a measure of its
sustainability potential (with and without permitting archetype transi-
tions for AAR and WA respectively). To compute distances on the SOM,
we first transformed it into a four-neighbours graph (i.e. a graph where
each vertex is connected to four other ones, since that was the topology
of the SOM) with the nodes as vertices and edges representing con-
ductance—the reciprocal of the inter-node distance. Distance values
were then obtained by computing least-cost path lengths on this graph
with the R package “gdistance” (V1.3–6, (van Etten, 2017)). Since SOMs
are not identical in all directions with respect to inter-node distances and
some regions are more stretched out than others, we corrected the mean
distance to the nearest Pareto node by the mean inter-node distance
within the archetype. The distance of each node to its nearest Pareto
node was also re-projected onto a map of England by attributing the
same value to all 1 km2 cells mapped to the same node.

The AAR level allows archetype changes, but restricts change by a
proxy for the transition difficulty or “cost”. Here, the optimisation
process was also carried out separately for each archetype, but the
search was expanded to all the nodes in the SOM. We quantified the
relative cost of transitioning to another FMA using information on the
degree of environmental similarity for each pair of FMAs (see 2.4). The
more dissimilar the environmental characteristics of the FMA pair, the
higher the cost of transition. Since similarity values reduced conduc-
tance (the graph’s edge values) proportionately to the difference in
environmental characteristics, transitions between the two most diver-
gent FMAs were excluded (the result of multiplying conductance for
similarity equal to zero). In addition to the distance to the nearest Pareto
node, at the AAR level we also recorded whether the nearest node was in
the same or a different FMA. This allowed us to compute the number of
transitions that occur for each FMA and the new geographical distri-
bution of FMAs after the transitions. As expected, raising the threshold
for the minimum acceptable values for each objective (see supplemen-
tary materials, ‘Threshold selection’) increased the number of archetype
transitions (Figure S1).

2.6. Synergies, trade-offs, and opportunity space

We explored synergies and trade-offs among sustainability indicators
by analysing their covariance at the Pareto front (i.e. the set of Pareto
nodes produced by PO). When considering the values of the Pareto
nodes for each pair of sustainability indicators, synergies are charac-
terized by a positive correlation among indicators, and trade-offs by a
negative correlation. We looked for synergies and trade-offs for each
FMA independently and for the study area as a whole. The former was
done by using the Pareto nodes obtained at the WA level; the latter using
the Pareto nodes obtained at the AA levels (both AAU and AAR share the
same PO analysis). For each FMA, we also computed the opportunity
space for improving each of the indicators as the average distance dif-
ference in the indicator value between all nodes and their nearest Pareto
node. This computation was carried out only at the WA level as it is
meant to provide insight over which indicators can be improved the
most for each FMAwithout fundamental changes to the farm system (i.e.
without changing FMA).

3. Results

3.1. Optimisation of the large SOM

The iterative process for establishing the grid conformation in the
large SOM resulted in a 70x70 nodes grid, which satisfied all criteria that
we attempted to optimise (Figure S2, see “2.1 Large SOM training” for
the criteria). A 95th percentile threshold was set for nodes to be included
in the PO process at the WA and AAU levels. This is the most conser-
vative value we tested, rejecting only 5 % of the 4900 nodes (Figure S3).

3.2. Comparison of environmental sustainability of archetypes and
potential for improvement without system change

At the WA level, the most marked difference in terms of the mean
distance to the nearest Pareto node, a measure of the internal potential
for improvement, was between two archetypes characterised by broad
acre cropping − “Broad acre arable with pigs and poultry” and “Broad
acre arable” − and all other FMAs (Fig. 2A). In contrast, at the AAU
level, the broad acre archetypes have a lower proportion of optimised
nodes, while the “mixed” archetypes have a higher proportion, and
therefore higher overall sustainability (Fig. 2B). This is likely due to the
inherent internal diversity of the mixed archetypes, which tend to be
associated with a diverse agricultural landscape.

When distances to the nearest Pareto nodes (mean across the 50
replicates) were mapped in geographical space (Fig. 3A) and compared
to the distribution of FMAs (Fig. 3B), FMAs with low to moderate mean
within-archetype distances to Pareto nodes (calculated using data from
across the entire study area) could still show large distances in localised
areas (e.g. northern “Beef and sheep” and “Beef and sheep with arable”).
Therefore, areas with high internal sustainability potential can also be
identified outside of the best performing archetypes (e.g. inside poorly
performing “Broad acre arable with pigs and poultry” and “Broad acre
arable”).

3.3. Landscape similarity of FMAs and potential for transitions

The results of the FMA landscape similarity analysis are presented in
the form of a hierarchical clustering dendrogram (Fig. 4A). The arche-
type pairs with the highest proportion of transitions across the 50 SOM
replicates were all close in the dendrogram of environmental re-
quirements (Fig. 4A). Those with the highest number of transitions were
“Dairy”, “Beef and sheep” and “Rough grazing” – all grassland arche-
types occurring in the West which ranked poorly at the AAU level. The
worst archetypes at the AAU level however, (“Broad acre arable” and
“Broad acre arable with pigs and poultry”) had high potential for
improving improvement (WA level), implying the presence of internal
regions with much higher sustainability (and consequently higher
number Pareto nodes), which likely allowed them to avoid transitioning.

By assigning the FMA transition results to each 1 km2 cell, potential
trajectories of land use change can be explored for a pre-defined region
and scale; this will be particularly relevant for regions dominated by
FMAs with a low internal sustainability potential. For example, the
proportion of predicted FMA transitions were higher around the large
semi-natural areas of the northwest and the east of the country (Fig. 3C).
The transition from “Beef and sheep” to “Rough grazing” or “Beef and
sheep with arable” accounted for the high values in the former region,
while transitions from “Broad acre arable with pigs and poultry” to
“Broad acre vegetables” accounted for the latter. Additionally, several
transitions occurred from “Dairy” to “Dairy with arable” in the west of
the country, representing a viable pathway to improved sustainability
for this FMA with an overall low sustainability (Fig. 2B).

3.4. Synergies, trade-offs, and opportunity space

Based on the analysis of Pareto nodes identified in the AAU analysis,
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we found synergies among all landscape-metrics indicators except
Isolation, where there was a trade-off with the other landscape metrics
(Fig. 5, “Whole SOM). This is a consequence of the nature of these in-
dicators; Diversity, Evenness, Edge Contrast and Subdivision are all
indicative of a diverse and interspersed landscape. The indicators
characterising intensive agriculture − Field Size and Pesticides, were
also positively correlated (i.e. in synergy) with the landscape metrics
(except Isolation). This is likely due to the landscape-metrics indicators
being based on crop diversity and not land-cover diversity. Crop Di-
versity, Evenness, Edge Contrast and Subdivision are low in the

extensive grassland-dominated regions (grassland is one of the crops
used to compute landscape metrics). These regions are also where
pesticide usage is low, and fields are smaller. However, the relationship
between crop diversity and intensity of pesticide use will also be
determined by idiosyncratic effects of specific crops (Metcalfe et al.,
2024) (i.e. whether or not additional crops have a higher or lower de-
mand for pesticides).

Constraining the selection of Pareto nodes to within an archetype
(WA) resulted in differences between the FMAs in terms of the trade-offs
and synergies between the indicators. Although the sign of the

Fig. 2. A) Pareto Optimisation at the archetype level showing the mean distance to nearest Pareto node within archetype (or ‘internal sustainability potential) and B)
at the country level showing the proportion of Pareto nodes for each archetype. Boxplots represent the variability of the 50 SOM replicates.

Fig. 3. A) FMA internal sustainability potential (WA) computed as distance to nearest Pareto node (average of 50 SOM replicates) mapped onto geographical space.
High values represent high potential for improving environmental sustainability without transitioning to another FMA, B) Spatial distribution of FMAs, C) Proportion
of FMA transitions after accounting for similarity of landscape context (AAR) across 50 SOM replicates, D) New distribution of FMAs (AAR, mode of 50 SOM
replicates), E) Enlargements of B and D for the two areas marked in panel B, showing details of the FMA transitions.
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correlations remains mostly unchanged, the strength of the relationships
varied between FMAs (Fig. 5, “Broad acre with pigs and poultry” and
“Beef and Sheep” shown as examples). As a result of the contrasting data
structures of different FMAs, the relative importance of each indicator in
explaining internal sustainability potential also varied between FMAs;
computations of the opportunity space for each indicator for each FMA
are shown in Fig. 6. For example, there was relatively high potential for

improving sustainability in Broad acre arable with pigs and poultry by
reducing farm size and patch area and increasing habitat subdivision
whereas in the Beef and sheep FMA, increasing hedge length and
woodland area had more potential. Farm size had a consistently large
distance to the nearest Pareto node across most archetypes but is the
indicator that is most difficult to change.

Fig. 4. A: Similarity of the Archetypes’ (FMA) environmental characteristics based on their association with Tier 2 archetypes that describe landscape context. The
main two groups divide arable (left branch) from grassland (right branch) archetypes. Arable archetypes are further divided in diverse and homogeneous (broad acre)
ones, while grassland archetypes divide into more and less intensive ones. B: Numbers of 1 km cells predicted to transition between FMAs to reach the nearest Pareto
node when accounting for transition cost (AAR; threshold value set at the 95th percentile), with source archetypes as columns and destination archetypes as rows. C:
example SOM (one of 50 replicates) with Pareto nodes calculated using the threshold value at 95th percentile. White circles are all Pareto nodes detected, black
circles are the nearest Pareto nodes to all nodes of “Broad acre arable with pigs and poultry”.

Fig. 5. Correlograms showing synergies (blue) and trade-offs (red) computed as the correlation among pairs of indicators for the Pareto front—numbers are Pearson
correlation coefficients. Shown for the whole SOM (i.e. AA level) and for two example FMA illustrating variance in the properties of the data between the FMAs that
explain contrasts in available opportunity space and the potential trajectories of change. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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4. Discussion

Defining a list of sustainability indicators that can be used to
benchmark farms is the subject of debate, and further efforts are
required to agree on criteria for their selection (de Olde et al., 2017).
Regardless of the chosen suite of sustainability indicators, however,
robust, generalizable methodologies are also required to equip practi-
tioners and policy makers with the tools to interpret these lists of indi-
cator variables at multiple scales in the context of implementing change
(Dittrich et al., 2017; Gan et al., 2017; Graymore et al., 2008). By using a
published archetype framework that captures regional variation in
environmental constraints as well as variation in farm management
systems, our novel framework addressed this problem using the agri-
cultural landscapes of England as a case study. In so doing, we help meet
the pressing need to critically assess alternative pathways to a future
that better balances productivity with environmental sustainability
(Cassman and Grassini, 2020).

Both PO and Archetype analysis are established methodologies for
optimising landscapes against multiple sustainability criteria. However,
by combining these approaches in a novel analysis of multivariate,
national-scale data we realised four additional benefits for identifying
potential trajectories of change. (1) While still providing suggestions on
the re-allocation of some FMAs in the study landscape, our analysis also
quantified the potential for beneficial trajectories of change internal to
the classes being allocated without fundamental changes to the pro-
duction system. (2) Many PO-based methodologies typically rely on the
exploration of multiple future theoretical scenarios (Kanter et al., 2018)
which entails both difficulties in generating the scenarios and uncer-
tainty in their practical implementation. Our approach constrained
future scenarios to currently observable farming management strategies,
ensuring that proposed solutions are viable (as they are currently in use
somewhere in the study area). Using archetypes also constrained the
allocation of future scenarios to the local environmental conditions, thus
avoiding changes to future scenarios that are not compatible with, e.g.,
the local pedo-climatic conditions. (3) Methodologies of re-allocation of
farming classes typically generate new landscapes with optimal alloca-
tion that may involve unrealistically radical change in a study region. In

contrast, our analysis started from the current landscape configuration
and suggested progressively less conservative changes, thus ensuring the
feasibility of the transformation; our analysis focussed on providing
suggestions on the most efficient changes rather than providing a single
solution involving the re-allocation the whole study landscape. Finally
(4) this is the first combination of PO and Archetype analysis, providing
a bridge to integrate work done in these two domains of sustainability
research. For instance, our example application relies on previously
published archetypes generated at the national scale that can be readily
used by other researchers, and for which additional information can be
published independently. Using the same archetypes in different
research projects facilitates the integration of results from multiple
authors.

Because every 1 km2 cell in England can be assigned an FMA, an
internal sustainability potential and a potential for archetype transition,
our results are useful for exploring alternative trajectories of change in
different regions and at multiple scales. In this regard, the potential
pathways to more sustainable farming systems we identified are
consistent with those proposed in the wider literature on farmland
biodiversity. The analysis at the AAU level showed that the “Broad acre”
FMAs have lower overall sustainability when compared to all the other
archetypes. However, among them “Broad acre arable” and “Broad acre
arable with pigs and poultry” have good potential to increase their
sustainability without transitioning to another FMA, which may involve
significant investment in infrastructure or a change in the business
model. The analysis of the opportunity space for these FMAs suggests
that, in regions dominated by these FMAs, action to reduce the size of
fields and patches of the same crop, as well as the redistribution of
patches of the same crop to avoid large monoculture areas (i.e. increase
of Subdivision) would be particularly beneficial for improving sustain-
ability. Historically, these are two of the farming systems have suffered
the largest post-war declines in farmland biodiversity and the ecosystem
services it delivers owing to loss of habitat and inputs of agrochemicals
(Firbank et al., 2008; Robinson and Sutherland, 2002). Our results
support the view that restoring this function can also be achieved
without fundamentally changing the farming system through targeted
habitat creation that takes account of the landscape context (Tscharntke

Fig. 6. Opportunity space for each indicator in each FMA as the mean distance to the indicator value at the nearest Pareto node. The overall, combined contribution
of all indicators to distance to nearest Pareto node is shown in Fig. 2A.
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et al., 2005) and through integrated pest management (Barzman et al.,
2015).

In contrast, in regions dominated by FMAs with a low internal sus-
tainability potential, for example “Broad acre vegetables”, a shift to
another archetype may be necessary to improve environmental sus-
tainability. Analysis at the AAR level shows that transitions to “Mixed
farming with pigs and poultry” are well suited for this purpose as these
systems co-exist in similar landscapes (are closely associated in Tier 2 of
the Goodwin et al. (2022) archetype framework). This transition would
reduce the proportion of intensive vegetable production and introduce
patches of grassland and grain-based farming and reflects the benefits of
more mixed farming systems (Baker et al., 2023). Although it should be
noted that while this will increase habitat diversity, there may be
negative trade-offs with emissions which are not directly accounted for
in our example because of the introduction of animals into the system.
Clearly, any archetype transition implies some change in the products
delivered in the study area. For example, a transition from “Broad acre
vegetables” towards “Mixed farming with pigs and poultry” would
potentially reduce vegetable production. Since changes in the business
model of a study system will likely have social and economic conse-
quences (which remained outside the scope of our case study), we
suggest that realising an archetype’s internal sustainability potential
should be prioritised over archetype replacements. Nonetheless,
weighing the costs and benefits of within-archetype interventions
against archetype transitions can offer useful insights not only on which
archetypes, but also in which regions, there may be potential for land
use change.

By accounting for environmental constraints of change, the analysis
at the AAR level detected the most efficient archetype transitions to
improve sustainability, and the geographical regions with the greatest
potential for these changes. For instance, the transition from “Broad acre
arable with pigs and poultry” to “Broad acre vegetables” is moderately
beneficial (intermediate number of transitions modelled at the AAR
level) and is likely a result of the added crop diversity resulting from the
introduction of vegetables. However, since “Broad acre arable with pigs
and poultry” also has the highest internal sustainability potential among
all archetypes (see above), it would be best to limit the exploration of
archetype transitions to the Cambridge area − where most transitions
are detected − and focus on internal improvements to this archetype (by
leveraging the opportunity space results mentioned above) elsewhere.
This illustrates the importance of considering landscape context when
exploring alternative pathways for improvement. A second example was
archetype transitions away from grassland-only archetypes “Dairy”,
“Beef and sheep”, and “Rough grazing” in the west of England. This is
likely due to the homogeneity of these landscapes; indeed, “Rough
grazing” areas transitioned towards the more diverse archetypes “Pad-
docks” and “Beef and sheep with arable”, while “Dairy” areas transi-
tioned to “Dairy with arable”. This reflects the fact that the loss of arable
habitats in areas dominated by livestock production has been an
important driver of the loss of farmland biodiversity in these regions
(Chamberlain et al., 2000) and, again, highlights the benefits of more
mixed systems (Baker et al., 2023). This notion is also agreement with
our interpretation of the synergies and trade-offs found in the study area,
whereby crop diversity and pesticide usage are both low in extensive
grassland-based areas, and both high in intensive cropland regions, thus
producing the unexpected synergy (positive correlation) among pesti-
cide and diversity indicators.

Overall, our analysis showed better sustainability for archetypes that
deliver multiple products. This can easily be linked to their inherently
high values for crop and landscape diversity-related sustainability in-
dicators. However, these archetypes also come with additional desirable
features like less intensive farming practices (e.g. lower pesticide use)
and greater occurrences of natural elements (e.g., “hedge”, “woodland”
or “AES”), which mattered equally during PO.

The example set of sustainability indicators we used to illustrate our
approach was selected from the input data used to derive the archetypes,

largely based on their association in the literature with one aspect of
environmental sustainability: farmland biodiversity and the regulating
and cultural ecosystem services it delivers. These services include
pollination and pest control (Pywell et al., 2015) and the support of
farmland birds (Henderson et al., 2012). As a consequence, our analysis
was weighted towards benchmarking FMAs in terms of landscape met-
rics, for example habitat diversity (Benton et al., 2003) and configura-
tion (Martin et al., 2019) that are known to relate to the level and
resilience of these services. However, the framework has the flexibility
to use alternative and additional sets of indicator variables already
included in the SOM archetype analysis that could be selected on the
basis of additional outcomes—for example, number of livestock units
and intensity of fertiliser use as indicators of emissions (de Vries and de
Boer, 2010), or proportions of different crops related to their calorific
value as a measure of productivity (Driscoll et al., 2022). It is also likely
that indicators not included in our analysis are implicitly accounted for
by the general nature of archetypes (i.e., by virtue of their possible
correlation with some of the many other variables used to define them).

A potential issue related to the combination of indicators and PO
used in our framework is that indicators are currently assumed to have a
monotonic relationship with sustainability. This is not always true, for
instance, while we maximised Isolation (the nearest neighbour distance
between patches of the same crop) to promote diverse landscapes, some
pollinators may benefit from having multiple patches of the species they
depend on within their home range. Although this issue is partly
compensated by the maximum nearest neighbour being less that 1.4 km
due to the 1 km pixels use in our analysis, similar non-monotonic re-
lationships among indicators and sustainability are neglected. A possible
solution to this would be to transform the indicator values according to
the expected or modelled relation with sustainability (e.g. polynomial
transformation to account for multinomial relationships) before per-
forming PO, but this requires a deeper numerical characterisation of the
indicators’ effects on sustainability than we had access to.

Finally, we have focussed solely on environmental sustainability and
have deliberately disregarded the socio-economic costs of transitions
and the interaction with additional external policy drivers (e.g. main-
taining food security). This allowed us to maintain consistency with the
Archetypes published in Goodwin et al (2022) but uncoupling socio-
economic aspects of sustainability from their environmental counter-
part may lead to impracticable and undesirable solutions. Secondly,
potential pathways of change are constrained by the data included in the
SOMs. An example in our study case is the use of the British Farm
Business Survey to derive data on farm management; although this is
representative of general trends, it does not capture as well less com-
mon, alternative practices (e.g. organic farming) potentially resulting in
an underestimation of the opportunity space.

These limitations aside, through using PO, our approach successfully
avoids the problem of attributing weights to very different indicators,
faced by alternative frameworks that use a combination of sustainability
indicators. Additionally, considering multiple levels of analysis (i.e.,
WA, AAU, AAR) provides multiple optima instead of a single solution,
which allows a more flexible exploration of sustainable development
and the acknowledgement of the role of policymakers in reconciling
conflicting demands on agriculture land. Multiple solutions are also
more realistic since complex, multivariate systems like agroecosystems
are likely to contain several pathways to maximising their sustainability.
Given the difficulty in retrieving sustainability indicators at meaningful
resolutions and for large extents, sustainability analyses are likely to rely
on incomplete sets of indicators, whereby multiple optima likely confer
higher safety levels (e.g. by bet-hedging) than single-solution methods.
Finally, since our approach is data-driven, no assumptions about theo-
retical optima are needed. Although highly sustainable farming system
that are not yet implemented or detected in available data are possible,
we have no means of telling which ones would be viable in reality. By
basing our approach on empirical data, we err towards the side of
caution, knowing results are most likely viable.
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5. Conclusion

The interpretation of our results has been at the national scale and
has highlighted specific case studies to illustrate the value of exploring
opportunity space within and between archetypes. However, we antic-
ipate that our framework would most likely be integrated into decision
making tools applied at the local level as part of local nature partner-
ships, catchment management or farm clusters. Defining the archetype
composition of a local, target landscape, benchmarking sustainability
and identifying indicators with the most potential to improve sustain-
ability could be used as valuable supporting evidence in making land
management decisions. In practice, this would be done alongside socio-
economic criteria including access to government subsidy schemes or
initiatives supported by private finance to identify the most appropriate
interventions to target.
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