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Transmission rates and adaptive evolution of
pathogens in sympatric heterogeneous
plant populations
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Diversification in agricultural cropping patterns is widely practised to delay the build-up of virulent races

that can overcome host resistance in pathogen populations. This can lead to balanced polymorphism, but

the long-term consequences of this strategy for the evolution of crop pathogen populations are still unclear.

The widespread occurrence of sibling species and reproductively isolated sub-species among fungal and

oomycete plant pathogens suggests that evolutionary divergence is common.

This paper develops a mathematical model of host–pathogen interactions using a simple framework of

two hosts to analyse the influences of sympatric host heterogeneity on the long-term evolutionary behaviour

of plant pathogens. Using adaptive dynamics, which assumes that sequential mutations induce small

changes in pathogen fitness, we show that evolutionary outcomes strongly depend on the shape of

the trade-off curve between pathogen transmission on sympatric hosts. In particular, we determine the

conditions under which the evolutionary branching of a monomorphic into a dimorphic population occurs,

as well as the conditions that lead to the evolution of specialist (single host range) or generalist (multiple host

range) pathogen populations.

Keywords: pathogen evolution; transmission rates; host heterogeneity; trade-offs; adaptive dynamics;

sibling species

1. INTRODUCTION
It has long been recognized that monocultures of

genetically uniform crops impose strong selection pressures

on pathogens to overcome host resistance to infection

(Leonard 1977). This has led to an agricultural strategy of

diversification, involving spatial and temporal hetero-

geneity in cropping patterns to delay the build-up of viru-

lence races in pathogen populations that can overcome

host resistance. Although this is known to promote

balanced polymorphism in pathogens where there is a sim-

ple gene-for-gene interaction with the host (Frank 1993),

the long-term consequences of diversifying cropping pat-

terns for the evolution of crop pathogen populations are

still unclear. We do not know how introducing host diver-

sity into the landscape affects evolutionary divergence

towards specialist or generalist pathogens, or even to a

switch from pathogenicity on one host to another. The

widespread occurrence of sibling species and reproduc-

tively isolated sub-species amongst fungal and oomycete

plant pathogens (Brasier 1987) suggests that evolutionary

divergence is common. Many of these species are listed in

Brasier (1987): they include many common and widely dis-

tributed, economically important plant pathogens with

host-specific formae speciales, including powdery mildews,

rusts and species of Fusarium and Phytophthora; they also

include pathogens with host-specific anastomosis groups

such as the ubiquitous damping-off fungus, Rhizoctonia

solani. Some of these have frequent sexual phases, notably

the powdery mildew fungus Blumeria graminis f. sp. tritici

and B. graminis f. sp. hordei, which are specialized respect-

ively on wheat and barley. Others, typified by yellow rust

Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei,

have no known sexual stage. Because the above pairs are

morphologically indistinguishable, it is very likely that they

have evolved from a common ancestor. Moreover, it is poss-

ible that agricultural practices such as crop diversification

could lead to the emergence of new pathogen species,

but also to a host range expansion of an existing pathogen.

Given that many plant pathogens have relatively short

generation times, allowing sometimes more than 20–30

generations in a season, these evolutionary changes may

occur in the order of decades rather than centuries.

Understanding the mechanisms that govern pathogen

evolution is therefore an important practical problem in

assessing the sustainability of disease control.

Here, we develop an epidemiological model to study the

effect of sympatric host populations, characterized by the

agricultural mosaic of fields containing different crop

varieties, on the evolution of plant pathogen populations.

For simplicity we consider two sympatric host species;

however, similar studies could be conducted for the

systems with higher degrees of host heterogeneity. The

model, in which we consider the fitness of successive

mutant strains to invade a succession of resident strains, is

based upon adaptive dynamics (Metz et al. 1996;

Dieckmann 1997; Geritz et al. 1998; Doebeli & Dieck-

mann 2000; Nowak & Sigmund 2004). We use the model
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to show how the trade-off in pathogen transmission

between the two hosts affects the outcome of evolutionary

change in the pathogen population. The transmission rate

encompasses spore production, dispersal and infection that

collectively influence secondary infection from infected to

susceptible hosts.

Previous theoretical studies on the role of host hetero-

geneity in plant pathogen diversity have focused on models

for gene frequency that ignore population and epidemio-

logical dynamics (Leonard 1997), or on models that focus

on competing pathogen strains that differ markedly in viru-

lence (Leonard 1997). These models analyse changes in

allele frequency, representing two pathogen strains (viru-

lent and avirulent) in a population of hosts that differ in

susceptibility. Studies on the role of host heterogeneity in

the diversity of human and animal pathogens have also

focused on competition between virulent and avirulent

strains that affect transmission (Gupta & Hill 1995), or on

contemporary exposure of two hosts to multiple strains that

differ in virulence (Regoes et al. 2000). These, together

with the plant models, show how genetic and epidemio-

logical mechanisms can maintain polymorphisms for

pathogen strains when there is differential host suscepti-

bility. Strikingly, Regoes et al. (2000) showed competitive

exclusion with the strain with the highest basic repro-

ductive number, weighted for the two hosts, outcompeting

all other strains. Coexistence occurred only when differ-

ences in transmission rates were correlated with differences

in virulence (Regoes et al. 2000). All of these studies, how-

ever, omit the evolutionary time-scale in considering con-

temporary occurrence of strains. Consequently, the course

of evolution cannot be observed over time and the evolving

populations can only be described at an evolutionary end-

point.

The adaptive dynamics approach (Metz et al. 1996;

Dieckmann 1997; Geritz et al. 1998; Doebeli & Dieck-

mann 2000) used here adopts an epidemiological frame-

work that takes account of the density of infected and

susceptible hosts and sets it in an evolutionary framework.

The epidemiological processes are represented by host–

pathogen interactions, whereas the evolutionary process is

represented by a sequence of mutations from clonal repro-

duction that successively challenge the resident pathogen

population. This approach assumes that mutations have

relatively small effects on the phenotype and occur suffi-

ciently infrequently that the population has reached a

steady state before a new mutation occurs. This allows us

to incorporate an ‘environmental’ feedback, whereby the

ability of a mutant to invade the resident population

depends on the conditions set out by the resident. The fate

of the mutant is analysed using pairwise invasibility plots

(PIPs) (Dieckmann 2002). If the mutant manages to

replace the resident, it becomes the new resident and in

turn sets out new conditions for invasibility of new

mutants, forming a feedback loop. The evolutionary

dynamics are governed by a trade-off relationship, where

an increase in the pathogen transmission on host 1 leads to

a decrease in the pathogen transmission on host 2. We

address the following questions regarding the trade-off in

pathogen transmission on two hosts: (i) what are the con-

ditions for the occurrence of evolutionary branching and

the divergence of pathogen populations, and (ii) what are

the conditions for the evolution of specialist (single-host

range) or generalist (two-host range) pathogen popula-

tions?

2. THEMODEL
In the modelling procedure we separate the ecological and

the evolutionary time-scales and assume that the popu-

lation dynamics occur on an ecological time-scale that is

much faster than the evolutionary time-scale (Rough-

garden 1983).

(a) The host–pathogen dynamics

We consider a system of two plant hosts and a resident

pathogen species, assuming that the pathogen is a micro-

parasite pathogen numbers are therefore not represented

explicitly; Anderson & May (1981). We assume that the

two hosts are grown on non-overlapping agricultural fields

and therefore that there is no between-host competition.

Depending on the site of pathogen activity, the host

population can be defined relative to small units such as

roots, stems, leaves or other organs (Gilligan et al. 1997).

Using the whole plant as the unit of measurement is not

appropriate in this case because the majority of activities

between hosts and pathogens occurs within the plant.

Consequently, the disease impact on the agricultural yield

is closely linked to the amount of tissue lost because of dis-

ease, whereas the number of plants within fields is not

usually affected.

Owing to complexities associated with combining eco-

logical and evolutionary processes, multiple infections are

not included in this study. This assumption makes the prob-

lem more tractable for analysis, but also allows results to be

clearly interpreted in terms of the underlying mechanisms.

Therefore, we consider a model with state variables Hi,

representing the density of healthy tissue of host i (with

i ¼ 1, 2), and P, representing the density of infected plant

tissue from both hosts. We assume that the rate at which

host tissue becomes infective is proportional to the density

of infected tissue and that there is no recovery from infec-

tion.

Hence, the dynamics of two hosts interacting with the

resident pathogen is formulated as follows:

dH1

dt
¼ r1 � lH1 � x1PH1,

dH2

dt
¼ r2 � lH2 � f (x1)PH2,

dP

dt
¼ x1PH1 þ f (x1)PH2 � CP, (2:1)

where ri denotes the planting rate of the host population i

with i¼ 1, 2. This term has been chosen to reflect planting

in agricultural systems, where the planting is controlled

manually and is not a function of the plant density. Note

that a similar form can be found in the model of experi-

mental epidemiology in Anderson & May (1979), where

the host species is introduced into the system manually at a

constant rate, and more recently in Bonhoeffer & Nowak

(1994). The parameter l represents the harvest rate, while

the mortality rate of infected hosts, C, incorporates both

the harvest rate and disease-induced mortality. Because of

the nature of system (2.1), if the mortality rate of

the infected hosts is sufficiently large the density of the

infected plant tissue decreases to zero, which in turn leads
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to an extinction of the healthy population. Therefore, to

study the evolution of pathogens, we assume, throughout

the paper, that C is sufficiently small for a disease-mediated

non-trivial coexistence steady state of system (2.1) to be

possible. The parameter x1 represents the pathogen trans-

mission rate on host 1, while f (x1) represents the pathogen

transmission rate on host 2. These transmission rates

encompass spore production, dispersal and infection that

collectively influence secondary infection from infected to

susceptible hosts. We assume a trade-off relationship

described by the function f, as shown in figure 1, where an

increase in transmission on host 1 carries a cost in terms of

reduced transmission on host 2. Note that all parameter

values in system (2.1) are positive and their choice has been

motivated by parameter estimates in Van den Bosch et al.

(1988), Campbell &Madden (1990), Gilligan et al. (1997)

andGubbins &Gilligan (1997).

Because there will be a biologically feasible maximum to

any transmission rate, we denote, by xmax and f (0), the

maximal pathogen transmission rates on hosts 1 and 2,

respectively.

(b) The evolutionary dynamics

Let x denote an element of X ¼ (0, xmax), which repre-

sents a one-dimensional phenotypic trait space. We choose

pathogen transmission on host 1 to be the evolving trait,

noting that the evolution of pathogen transmission on host

2 follows from the trade-off relationship (see figure 1). At

x ¼ 0, the pathogen is completely specialized to host 2 with

transmission rate f (0) 6¼ 0, while at x ¼ xmax the pathogen

is completely specialized to host 1 with transmission rate

xmax 6¼ 0.

We consider the effect of adding a mutant pathogen

Pm, with phenotypic characteristic x2 2 X, into the resident

pathogen population P, with phenotypic characteristic

x1 2 X, in the mutation-free system (2.1). We assume

that system (2.1) has a locally stable steady state at

which the two hosts coexist with the resident pathogen

(H�
1(x1), H�

2(x1), P�). The equations for the new

(mutated) system are given by:

dH1

dt
¼ r1 � lH1 � x1PH1 � x2PmH1, (2:2a)

dH2

dt
¼ r2 � lH2 � f (x1)PH2 � f (x2)PmH2, (2:2b)

dP

dt
¼ x1PH1 þ f (x1)PH2 � CP, (2:2c)

dPm

dt
¼ x2PmH1 þ f (x2)PmH2 � CPm: (2:2d)

The fitness of the invader is the largest eigenvalue of

equations (2.2) at the steady state (H�
1(x1), H�

2(x1), P�, 0)
(see Rand et al. (1994)), and is denoted by kx1 (x2) which
takes the following form:

kx1 (x2) ¼ x2H
�
1(x1)þ f (x2)H

�
2(x1)� C: (2:3)

For a discussion of the notion of fitness see Metz et al.

(1996). The invader’s success will depend on its fitness in

the following way: an invader with phenotypic character-

istic x2 when initially rare will be able to invade the resident

population with phenotypic characteristic x1 if kx1 (x2) > 0.

Alternatively, if kx1 (x2) < 0, the invading population will

die out.

A phenotypic value for which the local fitness gradient is

zero is called an ‘evolutionarily singular strategy’ (Metz et

al. 1996). According to Metz et al. (1996) and Geritz et al.

(1998), at a singular strategy several evolutionary outcomes

are possible. A singular strategy can: lack convergence

stability and therefore act as an evolutionary repeller; be

both evolutionarily and convergence stable and therefore

be the final outcome of the evolution (also called ‘continu-

ously stable strategy’); and, finally, be convergence stable

but not evolutionarily stable, in which case it is called a

‘branching point’.

These classifications are based on the assumption that,

away from a singular strategy, the principle of mutual

exclusion holds so that, after a successful invasion, the

nearby invading population takes over and replaces the

resident population. However, in a small neighbourhood of

a singular strategy, the successful invasion by a nearby

mutant can, under certain conditions, result in the coexist-

ence of the invader and of the resident type populations

(Geritz et al. 1998).

3. MODELOUTCOMES
The outcomes of the evolution of a pathogen population is

investigated graphically using PIPs (Metz et al. 1996;

Dieckmann 1997; Geritz et al. 1998). In this paper, the PIP

is a graphical representation of the sign of the fitness of an

invader population, with the phenotypic characteristic x2 in

a locally stable coexistence between two hosts and the

pathogen population, with the resident phenotypic charac-

teristic x1, for a fixed set of model parameters. The

mutant’s fitness and its sign are plotted as a function of x1
and x2 (figure 2). Identical calculations have been carried

out for a wide range of parameter values and trade-off

curves, and the results obtained were of the same nature as

those described in this section. For ease of interpretation

and illustration, we also include numerical simulations of

evolutionary trajectories over time (see figure 3).

f (0)

f (x)

0 x xmax

concave

linear

convex

sigmoidal

Figure 1. Shapes of the trade-off curves: pathogen
transmission on host 1, denoted by x, against pathogen
transmission on host 2, denoted by f (x).
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A singular point, x�, is an evolutionary stable strategy

(ESS) if @2kx1 (x2)=@x
2
2 < 0 at x1 ¼ x2 ¼ x� (Metz et al.

1996), and from equation (2.3) it follows that the sign of

f 00(x�) determines whether a singular strategy x� is an ESS.

Therefore, for different shapes of the trade-off curve—for

example, f 00(x) ¼ 0 (linear trade-off), f 00(x) < 0 (concave

trade-off) and f 00(x) > 0 (convex trade-off)—different evol-

utionary outcomes can be expected.

In the case of a linear trade-off (figure 1), the PIP shows

that the singular strategy x� is convergent stable but not an
ESS (figure 2a). Furthermore, the singular strategy is evo-

lutionarily attainable, in other words it can invade other

strategies when initially rare. Once the singular strategy has

been established, all mutations are neutral and although

mutual invasibility near the strategy is possible, the branch-

ing does not occur (Geritz et al. 1998).

In the case of a concave trade-off (figure 1), the PIP

shows that the singular strategy x� is an ESS, is conver-

gence stable and that a pathogen with the phenotypic strat-

egy x� can invade nearby strategies when rare itself (figure

2b). Therefore, x� is an evolutionary endpoint and is not

invadable by any other mutant strategies. In this case an

initially monomorphic pathogen population will stay

monomorphic, evolving until the transmission on host 1

reaches x�. This outcome is illustrated in figure 3a using

numerical simulations described in Gudelj et al. (2004).

In the case of a convex trade-off (figure 1), the PIP shows

that two different evolutionary outcomes are possible. If,

for small values of x, f 00(x) is sufficiently large (steep
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Figure 2. A PIP. The resident andmutant strategies are denoted by x1 and x2, respectively. The shaded areas indicate the
combinations of x1 and x2 for which the fitness of the mutant, kx1 (x2), is positive. The singular strategy is denoted by x�.
(a) Linear trade-off, f (x) ¼ 0:1� x; (b) concave trade-off, f (x) ¼ 0:12(x� 0:1)=(x� 0:12); (c) steep convex trade-off,
f (x) ¼ �0:00004(x� 0:1)=(xþ 0:00004); and (d) shallow convex trade-off, f (x) ¼ �0:04(x� 0:1)=(xþ 0:04).Model
parameters: r1 ¼ 1, r2 ¼ 1:5, l ¼ 0:001 and C ¼ 0:5.
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Figure 3. Simulations of the evolutionary dynamics of the
transmission rate on host 1. (a) Concave trade-off,
f (x) ¼ 0:12(x� 0:1)=(x� 0:12); (b) steep convex trade-off,
f (x) ¼ �0:00004(x� 0:1)=(xþ 0:000 04); and (c) shallow
convex trade-off, f (x) ¼ �0:04(x� 0:1)=(xþ 0:04).Model
parameters: r1 ¼ 1, r2 ¼ 1, l ¼ 0:001 and C ¼ 0:1.
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convex) the singular point x� is not an ESS, is not conver-

gence stable and therefore acts as an evolutionary repeller

(figure 2c). Therefore, depending on the value of the initial

resident phenotypic trait, the evolutionary outcome will be

a monomorphic population of pathogens only infective to

host 1 or only infective to host 2 (figure 3b).

However, if, for small small values of x, f 00(x) is suffi-

ciently small (shallow convex), the singular point x� is not
an ESS but is convergence stable, and in the vicinity of x� a
dimorphism can occur: such x� is termed an evolutionary

branching point (figure 2d). In this case an initially mono-

morphic population will approach the singular point and

will undergo disruptive selection, becoming dimorphic and

comprising two closely related resident phenotypic traits

(see numerical simulations in figure 3c). We can show ana-

lytically (see Appendix A) that, through a series of small

evolutionary steps, the two resident phenotypic traits will

grow apart until they reach the boundary of the phenotypic

domain X. On the boundary the two resident pathogen

groups are completely host specialized, one infecting only

host 1 and the other infecting only host 2. In this case we

can also show (Appendix A) that if a dimorphic pathogen

population consists of phenotypic traits that are completely

host specialized, no mutant with non-zero transmission on

both hosts is able to invade. The direction of evolution of

each of the two residents is illustrated in figure 4. The sha-

ded area represents a set of strategy pairs (x1, x2) that

coexist in a protected dimorphism. Horizontal arrows rep-

resent the evolutionary direction of x1, while vertical arrows

represent the evolutionary direction of x2. The final resting

point of the dimorphic population is at the boundary of the

phenotypic space, with each resident becoming host spe-

cialized and therefore present on only one host.

In the case of a sigmoidal (convex–concave) curve (see

figure 1), the following two outcomes are possible. If f 00(x)
is sufficiently small for small x (shallow convex–concave),

essentially the same results are found as with the concave

function (figure 2b). However, if f 00(x) is sufficiently large

for small x (steep convex–concave), the PIP shows that two

singular strategies, an evolutionary repeller, x�1, and a con-

tinuously stable strategy, x�2, are present (figure 5). There-

fore, depending on the value of the initial resident

phenotypic trait, an initially monomorphic population will,

through a series of small evolutionary steps, become either

completely specialized on host 2 or infective to both hosts

with transmission rates x�2 and f (x�2) on host 1 and host 2,

respectively (see figure 6a for an illustration). Note that

qualitatively similar results hold for sigmoidal (concave–

convex) curves.

4. DISCUSSION
This paper considers the evolution of a pathogen popu-

lation exposed to two different hosts and demonstrates that

the outcomes strongly depend on the shape of the trade-off

curve for the transmission rates on the different hosts.

Evolutionary branching does not occur for linear, concave,

steep convex and sigmoidal trade-off curves. In these cases,

an initially monomorphic pathogen population remains

monomorphic and its host range depends on the shape of

the trade-off in the following ways. A generalist population

occurs for both linear and concave trade-offs (see figure

2a,b). A steep convex trade-off leads to a specialist popu-

lation (see figure 2c), whereas a sigmoidal trade-off leads to

0.1

x2

0 x*
x1

0.1

Figure 4. Evolution in a dimorphic population. The shaded
area denotes sets of pairs (x1, x2), denoting pathogen
transmission on host 1 and host 2, respectively, coexisting in a
protected dimorphism. The singular strategy is denoted by x�,
while themodel parameters are: r1 ¼ 1, r2 ¼ 1:5, l ¼ 0:001
and C ¼ 0:5.
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Figure 5. A PIP. The resident and mutant strategies are
denoted by x1 and x2, respectively. The shaded areas indicate
the combinations of x1 and x2 for which the fitness of the
mutant, kx1 (x2), is positive. The singular strategy is denoted
by x� and the model parameters are r1 ¼ 1, r2 ¼ 1:5,
l ¼ 0:001 and C ¼ 0:5. The trade-off curve is sigmoidal: for

0 6 x 6 0:04, f (x) ¼ 0:0397þ 0:120610�4=(xþ 0:0002)

and for 0:04 6 x 6 0:1, f (x) ¼ 0:04045þ 0:275810�4=
(x� 0:1007).
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either a generalist or a specialist population, depending on

the value of the initial phenotypic trait (see figure 5).

We also found that the evolutionary branching of a

monomorphic into a dimorphic population occurs only for

a shallow convex trade-off curve (see figure 2d ). In this

case, the evolutionary outcome is a pathogen population

consisting of two groups, each of which is specialized on

one of the hosts. Examples of such divergent groups can be

found in the Blumeria genus (Hiura 1978) where B. grami-

nis f. sp. hordei is specialized on barley whereas B. graminis

f. sp. tritici is specialized on wheat, and in the Phytophthora

genus where P. medicaginis and P. trifolii are specialized on

chickpea and clover, respectively.

Owing to its importance in epidemics, the pathogen

transmission was chosen as the evolving trait and a trade-

off relationship between the transmissions on different

hosts was imposed. Regoes et al. (2000) considered the

evolution of pathogen virulence using the community

dynamics approach, in which the authors found that the

presence of a trade-off relationship between the virulence

on different hosts was not sufficient for multiple strain

coexistence, even though two different host types were

present in the system. Coexistence was possible only when

virulence was correlated with transmission, and we con-

clude that transmission is crucial for the coexistence of

multiple strains.

In this study the analysis rests on the use of the adaptive

dynamics method. One shortcoming of this approach is

that it assumes that mutations from clonal reproduction

induce only small phenotypic changes (local mutations).

This is somewhat simplistic because experimental studies

demonstrate that the offspring of a plant pathogen can

sometimes be phenotypically very different from its parent

(global mutations). However, the results of computer simulations

(Gudelj et al. 2004) show that the evolutionary outcomes

do not qualitatively change when both global and local

mutations are taken into account. Global mutations are

expected to influence the outcome only in the sigmoidal

(steep convex–concave) case where the following is antici-

pated. Instead of a monomorphic generalist or a monomor-

phic specialist population (see figure 5), a dimorphism of

the two cases where a generalist and a specialist population

coexist can be observed. This is possible because global

mutations will eventually give rise to a phenotype that is

situated on the opposite side of the repeller x�1 (figure 5) to
the resident phenotype. For an illustration of this outcome

see figure 6b. Examples of such pathogen groups can be

found within the Botrytis genus (Holliday 1989) where

B. cinerea is a generalist whereas B. fabae is a specialist. It is

important to note, however, that without the analytical

advantages of the adaptive dynamics which clearly identify

the importance of the trade-off shape, the computational

study in Gudelj et al. (2004) lacks generality.

Classical evolutionary ecology (see Levins 1968) has also

observed that convexity and concavity of trade-offs are

important in determining the outcome of evolution. Con-

trary to the adaptive dynamics, the classical approach does

not include environmental feedback and is based on a

rather simplified view of the evolutionary processes, which

rests on the assumption that the result of evolution is to

realize an optimum strategy, a quantity that is maximized

during the course of evolution. For example, the outcome

of pathogen evolution is often predicted by maximizing the

basic reproductive ratio, R0, of that pathogen (Anderson &

May 1982). Comparing the results presented in this paper

with the predictions of the R0 maximization we find that

when the trade-off is concave, both approaches predict the

evolution of a monomorphic generalist pathogen popu-

lation. However, the differences arise when the trade-off is

convex, and in this case the R0 maximization predicts the

evolution of a monomorphic specialist pathogen population

specializing on the host with the highest value of r. Contrary

to this, the adaptive dynamics method indicates that the

presence of a dimorphic pathogen population consisting of

two specialized groups is also possible. Note that the out-

comes of the adaptive dynamics and the R0 maximization

approaches are in complete agreement only when r1 ¼ r2.

There is an increasing number of theoretical studies indi-

cating that trade-offs are an important component of those

mechanisms that govern the evolution of not only pathogen

but also host populations. While this paper demonstrates

the importance of trade-offs in the evolution of pathogen

populations, the results in Boots & Haraguchi (1999) and

Bowers & Hodgkinson (2001) demonstrate similar trends

in the evolution of host populations. Both Boots &

Haraguchi (1999) and Bowers & Hodgkinson (2001) con-

sidered the evolution of host resistance to microparasitic

infection, assuming a trade-off between host resistance to a

pathogen and host intrinsic growth rate.

Formulation and implementation of experiments which

could determine the shape of a particular trade-off relation-

ship is a complex process, and although there have been

some attempts to measure various trade-off relationships in

host–pathogen systems for invertebrate and vertebrate host

species (Anderson &May 1982; Boots &Haraguchi 1999),
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Figure 6. Simulations of the evolutionary dynamics of the
transmission rate on host 1 for the sigmoidal trade-off

f ¼ 50(0:001� (2x� 0:1)3). (a) Local mutations and
(b) global mutations.Model parameters are r1 ¼ 1, r2 ¼ 1,
l ¼ 0:001 and C ¼ 0:1.
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there has been very little attempt to estimate trade-off

relationships within plant–pathogen systems.

Understanding infection mechanisms of a particular

plant–pathogen systemmay help to infer the shape of a trade-

off curve. For example, mechanisms that increase the patho-

gen transmission on a particular host with very little initial

cost but which become more costly as the pathogen trans-

mission increases, would lead to progressive diminution of

transmission costs (a concave trade-off ). These mechanisms

could be associated with changes in plant–pathogen relation-

ships that have additive gene action.

Similarly, mechanisms that increase the pathogen trans-

mission on a particular host and are costly to produce, but,

once produced, increase the transmission over a large range

at little additional cost, would lead to progressive dimin-

ution of transmission costs (a convex trade-off ). For

example, such a mechanism could relate to the changes in

plant–pathogen gene-for-gene relationships (Crute 1994).

Therefore recent advances in molecular techniques

(Idnurm & Howlett 2001; Van’t Slot & Knogge 2002)

could soon improve our understanding of biochemical pro-

cesses that underline plant–pathogen trade-off relation-

ships. In turn, this can aid the development of resistant

crops that minimize evolutionary pressures on the patho-

gen to adapt to the resistant cultivar, or to adapt through

evolutionary branching (emergence of new resistant

strains). In the long term, such advances will help the

development of sustainable agricultural systems.

Rothamsted Research receives grant-aided support from the
Biotechnology and Biological Sciences Research Council.

APPENDIX A
(a) Dimorphic populations

Suppose that an evolutionary branching near the singular

point has occurred and that the pathogen population is in

the new resident system

dH1

dt
¼ r1 � lH1 � x1P1H1 � x2P2H1,

dH2

dt
¼ r2 � lH2 � f (x1)P1H2 � f (x2)P2H2,

dPi

dt
¼ xiPiH1 þ f (xi)PiH2 � CPi, (A 1)

with phenotypic characteristics xi, where i ¼ 1, 2. Without

loss of generality, we assume that x1 < x2. The above sys-

tem (A 1), has a non-trivial coexistence steady state

(H
y
1, H

y
2,P

y
1, P

y
2), of the form

C( f (x2)� f (x1))

f (x2)x1 � x2 f (x1)
,

C(x1 � x2)

f (x2)x1 � x2 f (x1)
,P

y
1, P

y
2

� �
: (A 2)

A mutant pathogen with the phenotypic characteristic x3 is

introduced in a small neighbourhood of the resident

phenotypic traits x1 or x2, and its fitness is denoted by

kx1, x2 (x3) ¼ x3H
y
1(x1, x2)þ f (x3)H

y
2(x1, x2): (A 3)

We distinguish between the following two cases. The first

case assumes that the phenotypic characteristic x3, of the

mutant pathogen is a small perturbation of the resident

characteristic x1, whereas the second case assumes that x3
is a small perturbation of x2.

(i) Case I

The mutant’s phenotypic characteristic is of the form

x3 ¼ x1 ^ e, for some small e > 0. In this case using the

standard Taylor’s expansion, the mutant fitness, equation

(A 3) becomes

kx1, x2 (x1 ^ e) ¼ ^e(Hy
1 þ f 0(x1)H

y
2),

for small e.

(ii) Case II

The mutant’s phenotypic characteristic is of the form

x3 ¼ x2 ^ e, for some small e > 0. Again, using the stan-

dard Taylor’s expansion, the mutant fitness, equation

(A 3) becomes

kx1, x2 (x2 ^ e) ¼ ^e(Hy
1 þ f 0(x2)H

y
2),

for small e.
Therefore, for i ¼ 1, 2,

H
y
1 þ f 0(xi)H

y
2 ¼

C( f (x2)� f (x1)þ f 0(xi)(x1 � x2))

f (x2)x1 � x2 f (x1)
, (A 4)

and using the mean value theorem there exits h 2 (x1, x2)

such that

f (x2)� f (x1)

x2 � x1
¼ f 0(h): (A 5)

Recalling our assumptions that x1 < x2 and f is monotone

decreasing function ð f 0 6 0), we can conclude that

f (x2)x1 � x2 f (x1) < 0: (A 6)

Because f 00 > 0, it follows that f 0 is a monotone increas-

ing function, in other words because x1 < h < x2 it follows

that f 0(x1) < f 0(h) < f 0(x2), which when combined with

equation (A 5) gives

f 0(x1) < f 0(h) ¼ f (x2)� f (x1)

x2 � x1
< f 0(x2):

The above inequality together with equations (A 4) and

(A 6) give

H
y
1 þ f 0(x1)H

y
2 < 0 < H

y
1 þ f 0(x2)H

y
2,

which is used to conclude that

kx1, x2 (x1 � e) > 0 and kx1, x2 (x1 þ e) < 0, (A 7)

and similarly,

kx1, x2 (x2 � e) < 0 and kx1, x2 (x2 þ e) > 0: (A 8)

(b) The case of host specialization

Consider the host specialized system where xmax > 0

denotes the transmission rate of a pathogen completely

specialized to host 1, while f (0) denotes the transmission

rate of a pathogen completely specialized to host 2. In this

case the resident system equation (A 1), with x1 ¼ xmax,

f (x1) ¼ 0, x2 ¼ 0, f (x2) ¼ f (0), has a non-trivial locally

stable steady state of the form (C=xmax, C=f (0), P�
1, P

�
2). If

a small mutant population that has a non-zero transmission

rate on both hosts is introduced into the resident system, its

fitness function will be

k(x) ¼ x
C

xmax

þ f (x)
C

f (0)
� C:

Because f 00(x) < 0, it follows that f (x) < f (0)� f (0)
xmax

x and

hence k(x) < 0.
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