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Abstract
Geophysical methods, such as electromagnetic induction (EMI), can be effective for

monitoring changes in soil moisture at the field scale, particularly in agricultural appli-

cations. The electrical conductivity (σ) inferred from EMI needs to be converted to

soil moisture content (θ) using an appropriate relationship. Typically, a single global

relationship is applied to an entire agricultural field; however, soil heterogeneity at

the field scale may limit the effectiveness of such an approach. One application area

that may suffer from such an effect is crop phenotyping. Selecting crop varieties based

on their root traits is important for crop breeding and maximizing yield. Hence, high-

throughput tools for phenotyping the root system architecture and activity at the field

scale are needed. Water uptake is a major root activity and, under appropriate con-

ditions, can be approximated by measuring changes in soil moisture from time-lapse

geophysical surveys. We examine here the effect of heterogeneity in the θ–σ relation-

ship using a crop phenotyping study for illustration. In this study, the θ–σ relationship

was found to vary substantially across a field site. To account for this, we propose a

range of local (plot specific) θ–σ models. We show that the large number of parame-

ters required for these models can be estimated from baseline σ and θ measurements.

Finally, we compare the use of global (field scale) and local (plot scale) models with

respect to ranking varieties based on the estimated soil moisture content change.

1 INTRODUCTION

Over the past two decades, there has been a growth in the

use of geophysical methods in agriculture (Allred, Daniels,

& Ehsani, 2008). This has been driven, in part, by the need

to assess variation in soil properties in a noninvasive man-

ner over relatively large scales. Geophysical methods in such

a context are a subset of proximal soil sensing approaches

Abbreviations: EMI, electromagnetic induction; ERT, electrical resistivity

tomography; HCP, horizontal coplanar mode; Rx, receiver; Tx, transmitter;

VCP, vertical coplanar mode.
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(Viscarra Rossel, Adamchuk, Sudduth, McKenzie, & Lobsey,

2011). Measurements of properties, such as electrical conduc-

tivity, are typically treated as a proxy for a soil property or

state of interest (e.g., soil texture, bulk density, or soil mois-

ture content). Such methods may also be used in a time-lapse

manner to examine changes in soil properties or states (e.g.,

changes in texture or soil density due to land management

practices). Typically, maps of a geophysical property are pre-

sented in a qualitative manner. Although this can be effec-

tive in some cases, the ability to estimate quantitatively the

property, or state, of interest offers greater scope for a

wider range of agricultural applications. To achieve such
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quantification, the relationship between the geophysical proxy

and the soil property or state is required. Such relationships

may be spatially variable, particularly over field scales typi-

cal in agricultural studies. Here, we assess such heterogeneity

in a wheat (Triticum aestivum L.) phenotyping study and pro-

pose practical methods to account for such variability.

1.1 Field-scale phenotyping bottleneck

Wheat is one of the main staple crops in the world. It has

been bred over centuries for specific traits, most of which

are aboveground characteristics. Given uncertain future cli-

matic conditions, there are demands for more resilient breeds.

A key component of such resilience lies in the root system of

the crop. Deeper root systems are correlated with higher yield

and higher resistance to drought (Wasson et al., 2012). Usu-

ally the root system of a crop is assessed in the laboratory or in

the greenhouse. However, field studies of the root system are

essential to understand more about how each variety adapts

to its environment. The typical approach of assessing the root

system of a crop in the field is by direct sampling (Wasson

et al., 2014). Such methods are destructive, labor-intensive,

and expensive in a conventional breeding program with a large

number of breeding lines. An alternative, less invasive, and

quicker approach is to consider the root activity rather than

the quantity of roots. Such methods rely on observing changes

in soil moisture to infer root activity (Beff, Günther, Van-

doorne, Couvreur, & Javaux, 2013; Garré et al., 2013; Michot

et al., 2003; Srayeddin & Doussan, 2009). Different meth-

ods to measure efficiently this change in soil moisture were

explored by Whalley et al. (2017) for different wheat geno-

types. Among them, geophysical methods, such as electrical

resistivity tomography (ERT) and electromagnetic induction

(EMI) appear promising as a means of measuring a proxy

to observe the dynamics of soil moisture of the subsurface

(Binley et al., 2015). Shanahan, Binley, Whalley, and Watts

(2015) illustrate the use of EMI for differentiating soil dry-

ing from different wheat genotypes in a phenotyping context.

In their study, the relationship between the observed proxy

(soil apparent electrical conductivity) and soil moisture con-

tent was assumed to be homogeneous across the study site.

Huang, Purushothaman, McBratney, and Bramley (2018) also

use EMI as a proxy for plot-scale crop water of different chick-

pea (Cicer arietinum L.) genotypes. Other examples of the use

of EMI in crop-related studies include Cassiani et al. (2012),

von Hebel et al. (2014), and Moghadas, Jadoon, and McCabe

(2017).

1.2 Electromagnetic induction

The EMI method measures the soil apparent electrical con-

ductivity (σa) in a noncontact or invasive manner. A standard

Core Ideas
• Field-scale relationships between θ and electrical

conductivity can be inappropriate.

• Pedophysical parameters can, in some cases, be

approximated using baseline data.

• The method is illustrated for application of EMI

mapping for phenotyping wheat crops.

EMI device is composed of a transmitter (Tx) coil and at least

one receiver (Rx) coil. The transmitter coil generates a tran-

sient electromagnetic field. This primary field induces eddy

currents in the ground; the magnitude of eddy currents gen-

erated is a function of the soil electrical conductivity, σ. The

eddy currents then induce a secondary electromagnetic field.

Both primary and secondary electromagnetic fields are mea-

sured by the receiver coils. The out-of-phase component of

their complex ratio is used to compute the apparent electrical

conductivity (σa) of the subsurface. Electromagnetic induc-

tion measurements can be made in vertical and horizontal

coplanar orientations, with different depth-sensitivity func-

tions. Several current instruments, such as the one used in

this study (Mini-Explorer from GF-Instruments), have mul-

tiple receiver coils.

The relationship between depth-specific σ and measured

σa, for a given coil orientation, and the distance between the

Tx and Rx, can be described using a simple function—the

“cumulative sensitivity function” (McNeill, 1980). A more

accurate, but more complex, method based on Maxwell’s

equations (Andrade, Fischer, & Valenta, 2016; von Hebel

et al., 2014) can also be used to describe such a relation-

ship. Using measurements made on a multi-coil device, depth-

specific σ can be determined from inverse modelling of the

σ–σa relationship. The inversion process seeks the best distri-

bution of depth-specific σ that is consistent with all observed

σa values for different coil spacings and orientations. A pre-

requisite, considered by some authors, for inversion is that

the apparent values given by the different EMI configurations

need to be calibrated with results from an ERT survey (Lavoué

et al., 2010). More details about EMI inversion can be found

in von Hebel et al. (2014).

Electromagnetic induction measurements have been exten-

sively used to map field heterogeneities and produce detailed

soil maps for the definition of management zones in preci-

sion agriculture (Brevik, Fenton, & Lazari, 2006; Corwin &

Lesch, 2003; King et al., 2005). More recently, multi-coil EMI

instruments have provided greater depth-specific information

in agricultural studies, allowing assessments of depth-specific

σ and its link to aboveground crop performance indicators

(Brogi et al., 2019; von Hebel et al., 2018).



BLANCHY ET AL. 3 of 17Vadose Zone Journal

1.3 Soil moisture content–electrical
conductivity relationships

The soil electrical conductivity is controlled by a number of

properties (soil texture, organic matter content) and states

(soil temperature, pore water electrical conductivity, bulk

density, and soil moisture content). The soil structural state

and its properties control σ through pore connectivity and

porosity. Such properties are also inherently linked to soil

moisture content (e.g., determining residual moisture con-

tent), which has a major effect on soil σ. Temperature effects

can be accounted for given local vertical soil temperature

profiles, which we assume to not vary spatially inside the

same field, although effects of daily or seasonal variation

in temperature may need to be accounted for. The electrical

conductivity of the pore water also contributes to the soil

σ. In temperate climates, the variation of the pore water

electrical conductivity should be minimal in rain-fed settings.

However, this has a greater impact in irrigated conditions,

as the irrigated water (e.g., groundwater sourced) is likely

to have a different ionic composition and temperature than

the pore water in the surface layers of soil. In semiarid

environments, pore water conductivity effects may be signif-

icant due to enhanced salinity arising from high evaporative

fluxes (Corwin & Lesch, 2005). Note that even in rain-fed

environments, increase in pore-water electrical conductivity

can occur due to fertilizer application.

Archie’s law (Archie, 1942), developed for oil reservoir

investigations, is a commonly used empirically derived model

that relates the soil condition to the bulk σ. Waxman and

Smits (1968) extended Archie’s law by accounting for the

effect of clay minerals (forming surface electrical conductiv-

ity). Several other approaches have been developed specif-

ically for soils (Rhoades, Raats, & Prather, 1976). Laloy,

Javaux, Vanclooster, Roisin, and Bielders (2011) compared a

range of models for soil electrical conductivity, adopting the

term “pedo-electrical” model to differentiate this from classi-

cal petrophysical approaches.

Following Laloy et al. (2011), the relationship between σ
and soil moisture content (θ) can be expressed as

σ = 𝑎θ𝑛 + 𝑏 (1)

where a, b, and n are empirical parameters that depend on soil

properties. Following Garré, Javaux, Vanderborght, Pagès,

and Vereecken (2011), a is influenced by the pore water con-

ductivity, soil texture, and porosity; b is influenced by the soil

surface conductivity; and n is controlled by the soil texture.

When the exponent n is close to 1, Equation 1 can be approx-

imated by a linear relationship.

The parameters of Equation 1 may be obtained from labo-

ratory measurements on field samples (Shanahan et al., 2015)

or directly in the field, for example using a trench and soil

moisture sensors (Beff et al., 2013; Garré et al., 2013; Michot

et al., 2003). Both methods provide information on a relatively

small volume that might not be representative of the entire

field. Indeed, from field-scale observations, the different soil

textural properties also affect the θ–σ relationships, either

when using σa (Stanley, Lamb, Falzon, & Schneider, 2014)

or with depth-specific σ (Jayawickreme, Van Dam, & Hynd-

man, 2010). Equation 1 is usually appropriate when the soil

moisture change is large and the soil heterogeneity is small.

However, if significant soil heterogeneity exists, the variation

in the parameters in Equation 1 may need to be accounted

for. This effect may be particularly important in phenotyping

studies (the determination of specific traits of crop varieties),

since the differences in soil moisture change between crop

lines (varieties) may be smaller compared with other studies

where different species are used. Whether depth-specific or

apparent values (like in this study) are considered, estimates

of small changes in soil moisture are likely to be affected by

heterogeneity in the θ–σ relationship (Equation 1).

Furthermore, in a phenotyping context, a better prediction

of the soil moisture or change in soil moisture from EMI is

important, as it can help to make the variety ranking similar

to the one obtained with direct soil moisture observations. Of

course, if direct soil moisture data are available, there is little

value in additional geophysical proxy measurements. How-

ever, in this study, the direct measurements allow us to deter-

mine what the maximum achievable information on soil mois-

ture content obtainable from EMI measurements might be.

Therefore, this study aims (a) to quantify the spatial hetero-

geneity of θ–σ relationships at the field scale, (b) to determine

its impact on the phenotype ranking of wheat lines, and (c) to

explore approaches to account for such effects using simpli-

fied but practical approaches. The investigation uses a dataset

of σ and θmeasurements collected during a winter wheat field

experiment.

2 MATERIAL AND METHODS

2.1 Field layout

Measurements were made during the 2016–2017 growing

season at the Warren Field experimental farm (Woburn,

UK; 52◦01′06.5“ N, 0◦35′29.0″ W) operated by Rothamsted

Research. The soil at the site is classified as a sandy clay

loam (Distric Cambisol with 54% sand, 20% silt. and 26%

clay, more details in Shanahan et al., 2015). The field was

sown with winter wheat at the end of 2016 and harvested in

August 2017 (Bai et al., 2019). In the experiment, 71 lines of

wheat and one fallow treatment (all with three replicates) were

randomly distributed in three blocks. An aerial photograph

showing the field experiment and the 216 plots is shown in

Figure 1. Out of the 216 plots (each 9 by 1.8 m), 12 plots (four
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F I G U R E 1 Aerial picture of the field showing the 216 plots (each

9 × 1.8 m) sown with winter wheat in 2016. Plots marked in red are

equipped with electrical resistivity tomography (ERT) arrays

varieties) were equipped with a 24-ERT array (0.25-m spac-

ing) placed along the middle of each plot. The ERT data were

used to calibrate EMI measurements following Lavoué et al.

(2010). All plots were equipped with a 1.5-m-long neutron

probe access tube positioned 1 m from the edge of the plot.

The ratio counts from the neutron probe were converted to soil

moisture content using a field calibration (±0.01 cm3 cm−3).

In the field, temperature sensors recorded soil temperature at

0.1-, 0.2-, 0.3-, 0.4-, 0.6-, and 1-m depths. They were used

to correct the electrical conductivity from the ERT and EMI

using the ratio model (Ma, McBratney, Whelan, Minasny, &

Short, 2011) with a 2% increase per degree Celsius.

2.2 Field measurements

Three sets of EMI measurements were collected on each plot

with a Mini-Explorer instrument (GF Instruments) according

to the guidelines provided in Shanahan et al. (2015). They

were then averaged to obtain a mean for each plot. Surveys

were conducted on dates: 8 Oct. 2016, 2 Mar. 2017, 16 Mar.

2017, 3 Apr. 2017, 27 Apr. 2017, 16 May 2017, and 1 June

2017. Data from some plots were discarded because of two

high voltage cables buried under the field. The filtering used

the standard deviation of the three sets of EMI data for each

plot.

The Mini-Explorer contains three receiver coils with sepa-

rations 0.32, 0.71, and 1.18 m from the transmitter coil. Mea-

surements in the two modes (horizontal coplanar mode [HCP]

and vertical coplanar mode [VCP]) were obtained. Therefore,

six measurements of apparent conductivity were made. The

normalized sensitivity pattern (McNeill, 1980) of each con-

figuration is shown in Figure 2a (note that in Figure 2a and

hereafter, the notation [e.g., HCP0.32] is used to identify coil

orientation and spacing [HCP with a 0.32 m coil spacing]).

F I G U R E 2 (a) Normalized local sensitivity pattern for the six

pairs of coil orientations and coil separations available on the

Mini-Explorer instrument. The triangles show the depth above which

there is 70% cumulative sensitivity (commonly referred to as the

effective depth of investigation). (b) Measured soil moisture content

profile by neutron probe. To build the apparent soil moisture content,

each depth-specific soil moisture content (θ) measurement is multiplied

by the integrated electromagnetic induction (EMI) sensitivity

corresponding to its depths (between the gray lines) and then summed

(see Section 3.1). HCP, horizontal coplanar mode; VCP, vertical

coplanar mode

Figure 2b shows example soil moisture data from the neutron

probe taken at seven depths. For each depth, the gray lines

denote the limits used to compute the local sensitivity weights

used in the computation of the apparent soil moisture content

(Section 3.1).

The ERT measurements were collected using a 48 Syscal

Pro (Iris Instrument) on similar dates to the EMI (2 Mar. 2017,

16 Mar. 2017, 3 Apr. 2017, 27 Apr. 2017, 16 May 2017, 1 June

2017, and 23 June 2017). Neutron probe measurements were

collected on 16 Mar. 2017, 5 Apr. 2017, 26 Apr. 2017, 18 May

2017, 23 June 2017. Nitrogen fertilizer (Nitram 37.5% N) was

applied on 10 Apr. 2017 and 25 Apr. 2017 as pellets. When-

ever possible, ERT and EMI measurements were collected on

the same day. Neutron probe datasets were collected as close

as possible to the ERT/EMI dataset, either on the same day or

before or after an interval of a few days, thus minimizing dis-

turbance from any rainfall events. Note that the neutron probe

dataset of mid-May was taken after a large overnight rainfall

event. This had an impact on the shallow measurements (0.15-

and 0.30-m depths) but did not influence the deeper mea-

surements. Note also that N fertilizer was applied just before

the measurement at the end of May. However, because of its
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F I G U R E 3 (a) Rainfall and potential soil moisture deficit (PSMD) with markers corresponding to the collection date of the electrical resistivity

tomography (ERT), electromagnetic induction (EMI), and neutron probe (NP) dataset. (b) Evolution of soil apparent electrical conductivity (σa) from

EMI. (c) Evolution of computed apparent soil moisture content (θa). (d) Evolution of the measured soil moisture content from neutron probe for

selected depths. Error bars are SEM (sometimes too small to be visible on the graph). Dotted lines are averages of the fallow plots, whereas solid

lines are averages of the cropped plots. HCP, horizontal coplanar mode; VCP, vertical coplanar mode

application as dry pellets and the lack of large rainfall events,

it is unlikely that it had fully dissolved into the soil at the time

of the end of May survey. This could have caused a signif-

icant increase in the pore water electrical conductivity, and

hence in our EMI and ERT measurement, no sharp increase

in observed electrical conductivity is apparent. At the end of

the field campaign, four different datasets of ERT, EMI, and

neutron probe measurements were available to derive pedo-

physical relationship for each plot. Despite the limited number

of time-lapse data collected on the same plot, the larger num-

ber of plots screened enables us to capture well the temporal

and spatial variability across the field.

3 RESULTS

3.1 Apparent soil moisture content

To allow comparison with observed apparent conductivity

measurements and to avoid any inversion artifacts that can

arise from EMI inversion, an “apparent” soil moisture was

computed based on the weights of the EMI cumulative sen-

sitivity function (Figure 2a) following the approach given by

Martini et al. (2017). The θ measurements of a given profile

(Figure 2b) were multiplied by their respective depth-specific

normalized local sensitivity and then summed to obtain an

apparent soil moisture content (θa). The shape of the normal-

ized sensitivity function is determined by the same parame-

ters as for the EMI: the coil orientation (HCP or VCP) and

the coil spacing (0.32, 0.71, or 1.18 m). Thus, for each pair of

coil orientation and coil spacing, a different θa was obtained,

for comparison with the observed σa from EMI. The apparent

soil moisture content θa is given by

θa = Σ𝑛

𝑖
θ𝑖𝑠𝑖 (2)

where θi is the measured soil moisture content of layer i, and

si is the sensitivity of the layer i derived by integrating the

cumulative sensitivity function between the top and the bot-

tom depths of the layer (Figure 2). Note that the sum of si for

the profile is equal to 1. n is the number of layers.

3.2 Evolution

Figure 3a shows the different collection times as well as

selected weather data during the experiment. Figures 3b, 3c,

and 3d show the evolution of the different observed and

computed belowground variables. Note the clear difference

between the averages of the fallow and cropped plots, demon-

strating a substantial effect of the crop in the soil moisture

changes over time (i.e., crop water uptake accounts for a sub-

stantial change in soil moisture). Note that the σa from EMI

shows a peak around 1 Mar. 2017 and 1 June 2017. This can be
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F I G U R E 4 Soil moisture content (θ)–electrical conductivity (σ) relationships between apparent θ and σ (θa and σa) collected in the field in

three example plots with the same variety expressed as: (a) absolute, (b) difference, and (c) relative change. σa
ref is the baseline apparent electrical

conductivity and θa
ref is the baseline apparent soil moisture content from which the changes are computed. Data for each plot are differentiated by a

different color symbol or line

explained by the large amount of rainfall on the previous day.

Note that no soil moisture content data were collected on 1

June 2017, hence the series does not show a similar increase.

The analysis uses the data from the four following dates for

which EMI, ERT, and neutron probe measurements were all

available: 16 Mar. 2017, 5 Apr. 2017, 26 Apr. 2017, and 18

May 2017.

3.3 Time-lapse approach

Time-lapse monitoring of σ allows the removal of stationary

effects of the soil (soil organic matter, soil texture) on the θ–σ
relationship (Robinson, Abdu, Lebron, & Jones, 2012; Shana-

han et al., 2015). This approach relies on the measurements of

a baseline (in this case, where no crop effect is present), which

is usually made at the beginning of the growth season when

the field is at or near field capacity. All subsequent surveys

can be compared with this baseline, consequently revealing

the main drying pattern mainly driven by root activity. For the

experiment presented here, the baseline data were measured

on 16 Mar. 2017.

There are two ways to compute changes from the base-

line conditions: (a) by computing the difference, or (b) by

computing the relative change. Assuming a linear relationship

between θ and σ (n = 1 in Equation 1), the equations below

can be written.

The difference is simply the difference between σ and

σref:

Δσ = σ − σref = (𝑎θ + 𝑏) −
(
𝑎θref + 𝑏

)
= 𝑎Δθ (3)

where σref and θref are the baseline σ and θ, respectively.

The relative change is the difference between σ1 and σref
normalized by the baseline σref (Equation 4). It is given by

Δσ
σref

= 𝑎Δθ
𝑎θref + 𝑏

(4)

Computing differences (Equation 3) removes the effect of

“offset” b but retains “slope” a, which may vary across the

site. In contrast, working with relative change (Equation 4)

retains the effects of a and b, unless b is relatively small. In

the latter case, Equation 4 can clearly be simplified to link

directly the relative change in σ with the relative change in θ
as

Δσ
σref

= Δθ
θref

(5)

The expressions above were used to explore ways in which

the variation of a and b within a site can be accounted for.

3.4 Observations

Figure 4 shows the different relationships between σa and θa

for three plots with the same variety in the field site. The vari-

ation between the three responses (expressed as absolute, dif-

ference, or relative change) reveals the effect of spatial vari-

ability across the site, highlighting the limitation of adopting

a single global relationship.

Figure 5 shows the distribution of θa and σa in April 2017

and their difference with respect to the baseline in March 2017

(16 Mar. 2017). From Figure 5, it can be seen that the patterns

for both absolute and differences are different. This illustrates

the effect of different θ–σ relationships observed in Figure 4.

Both patterns in σa and θa values remain consistent for the

different collection dates.

3.5 Development of local model

Typically, a few samples from the field are collected to build

a global unique relationship between θ and σ. We can express

this relationship as

σ = 𝑎gθ + 𝑏g (6)
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F I G U R E 5 General schematic layout of the random block experiment (not to scale) on 17 Apr. 2017. One rectangle represents one 9-m by

1.8-m plot. Plots marked with a red line were equipped with an electrical resistivity tomography (ERT) array. The soil apparent electrical

conductivity (σa) value for each plot is the average of three replicates. (a) Shows the distribution of σa (VCP0.71 with an effective depth of 0.5 m).

(b) Shows the corresponding apparent soil moisture content (θa) from neutron probe measurements. (c, d) Difference in σa and θa, respectively, from

the baseline measurement of 16 Mar. 2017. Spatial heterogeneity exists in both variables and even in their differences. Blank plots in the

electromagnetic induction (EMI) maps are plots affected by buried high-voltage cables. VCP, vertical coplanar mode

Δσ = 𝑎gΔθ (7)

where the global ag and bg parameters are identical for all the

plots.

However, for a heterogeneous field, using this global rela-

tionship may lead to substantial errors in the estimation of

soil moisture content changes. In order to overcome this, we

explored local models allowing the assignment of a unique

θ–σ relationship for each plot:

M1. Linear local model, based on Equation 1 assuming

n = 1. This model has two plot-specific parameters: i is the

plot number, the slope is ai, and the offset is bi:

σ = 𝑎𝑖θ + 𝑏𝑖 (8)

Figure 6 illustrates, using all measurements, how well the

linear global model and linear local model (M1) perform.

There is a clear (and expected) improvement of the predic-

tion of soil moisture content with the linear local model. Note

that an exponential model (not shown here) following Equa-

tion 1 was also fitted and has similar performance to the linear

model (R2 = .37 for the global exponential model; R2 = .82 for

the local exponential model). Consequently, the linear model

is adopted hereafter.

As seen in Figure 6, the local linear model outperforms the

global linear model but increases the number of parameters

needed. More importantly, a full set of monitored soil mois-

ture content values is needed, making the geophysical proxy

approach redundant. As a first step to reduce the number of

local parameters, we introduce two new models:

M2. Multi-offsets model: a linear model where each plot

has its own offset bi but share a common slope ag:

σ = 𝑎gθ + 𝑏𝑖 (9)

M3. Multi-slopes model: this model only applies to differ-

ences in values and is based on Equation 3, with each plot

having its own slope ai. This model has one parameter per

plot (slope):

Δσ = 𝑎𝑖Δθ (10)

Mathematically, the multi-offsets model (M2) produces a

set of parallel σ–θ relationships similar to Figure 4a, whereas

the multi-slopes model leads to a set of conical Δσ–Δθ rela-

tionships similar to Figure 4b. Both use fewer parameters than

the local linear model (M1). The rationale for these simpler

models is the need to reduce the number of parameters needed

and increase our ability to predict them using a set of baseline

measurements.

3.6 Development of predicted local (plocal)
models

All local models (M1–M3) require large amount of informa-

tion for each plot and have limited practical use in a field
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F I G U R E 6 Both graphs show the observed

apparent soil moisture content (θa) vs. the

predicted θa from (a) the global linear model

(Equation 6) and (b) the local linear model

(Equation 8)

phenotyping application. As stated above, if direct measure-

ments of soil water were available in a field experiment, there

would be no benefit or value in using alternative geophys-

ical proxy measurements. However, they allow us to deter-

mine what the maximum achievable information on soil mois-

ture content obtainable from EMI measurements might be. As

a more practical solution, we explore a range of alternative

approaches where the local θ–σ relationship is known for a

subset of plots and the geophysical data are used to predict

those local relationships for the other plots (plocal).

3.6.1 Predictors of the local parameters

The first step in developing predicted local (plocal) mod-

els is to identify the best estimates of the local parameters

among baseline measurements. Figure 7 shows the relation-

ship between the different local parameters from each model

(M1–M3) and the baseline σa and θa. It can be observed for

the linear local model (M1) that the local offsets (bi) are

well related to baseline θa
ref and that the slopes (ai) are more

related to σa
ref. The multi-offsets (M2) and multi-slopes (M3)

models aim to amplify those trends by reducing the number

of local parameters. Using multiple local offsets but a global

slope (Equation 9), the multi-offsets model (M2) displays a

stronger relationship with the baseline θa
ref (R2 = .86) than

the linear model (R2 = .40). Using multiple local slopes and

no offsets (Equation 10), the multi-slopes model (M3) dis-

plays a stronger relationship with the baseline σa
ref (R2 = .33)

than the linear model (R2 = .27).

Figure 7 allows the identification of the best predictor for

each local parameter. Given local parameters from a subset of

plots, a linear relationship between them and their best pre-

dictor is derived and used to predict the value of the local

F I G U R E 7 Relationships between the local parameters of the three local models (M1–M3) and the two baseline apparent electrical

conductivity (σa
ref) and baseline apparent soil moisture content (θa

ref) for VCP0.71. The first two columns on the left shows the local offsets bi and

the local slopes ai of the local linear model (M1) against the baseline measurements. The third column shows the local offsets bi of multi-offsets

model and the fourth column shows the local slopes ai of the multi-slopes model against the baseline measurements. The red line is the line of best fit

with its 95% confidence interval (red shaded region). VCP, vertical coplanar mode
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F I G U R E 8 Multi-offsets model fitted with apparent values (VCP0.71). The gray dots show all the data available on the 216 plots. They

represent the maximum number of information achievable if both electrical conductivity (σ) and soil moisture content (θ) are monitored on all the

plots. In a more practical situation, only a subset of plots (black dots) are monitored for both σ and θ. Subplot a shows the relationship fitted with the

multi-offsets model (local) as well as a global linear model, both fitted on the 216 plots. Subplot b shows the local offsets bi vs. the baseline apparent

soil moisture content (θa
ref). The black line corresponds to a linear relationship fitted on the subset of plots. This relationship is used to predict the

offsets for all the other plots. Subplot c shows the multi-offsets model using the predicted offsets (plocal) from Subplot b. In Subplots a and b, the

black dots and dashed lines are used to illustrate the behavior of some plots as plotting all lines will make the graph unreadable. VCP, vertical

coplanar mode

parameters for the other plots. Those predicted local parame-

ters are then used in one of the models (M1–M3). This pro-

cess and the results are shown below for the multi-offsets (M2)

and the multi-slopes (M3) models (M1 not shown). Hereafter,

the subset of plots is composed of the 12 plots equipped with

an ERT array as they are randomly distributed in the field.

The choice of plots is somewhat arbitrary: another set of plots

could have been selected, but they should span the largest pos-

sible range of σ and θ observed in the field.

3.6.2 Multi-offsets model

The multi-offsets (M2) model incorporates a local offset,

bi, but a global slope, ag (Equation 9). As an illustration,

Figure 8a compares, for a subset of plots (black line and dots),

the multi-offsets model with its corresponding global model

for VCP0.71. The global model compared here corresponds

to Equation 6 where both slope, ag, and offset, bg, are uni-

form across the field. The multi-offsets model improves the

accuracy of the predicted θa compared with the global model

(R2 = .92 vs. .37) due to the inclusion of the local parameters

bi (Figure 8a). Both models are fitted on all the plots avail-

able. In order to decrease the amount of data needed to obtain

these local offsets, a linear relationship between the local off-

sets bi and the baseline θa
ref is derived using the data from a

subset of plots (Figure 8b). This bi–θa
ref relationship is then

used to predict bi for all the plots. Finally, in Figure 8c, those

predicted offsets are used in the plocal multi-offsets model

to obtain θa. In this case, the R2 of the multi-offsets model

with the predicted parameters (.81) is better than for the global

fit (.37).

The multi-offsets model focuses on the absolute values and

not the differences. For the latter, the multi-slopes model is

adapted further.

3.6.3 Multi-slopes model

The multi-slopes model (M3) presented in Figure 9 tries to fit

a local model Δσa and Δθa (Equation 10). Figure 9a shows

a comparison of the multi-slopes model and its global equiv-

alent. In this case the global model contains a unique slope

for the whole field. Similar to Figure 8, the introduction of a

local parameter (slope ai) improves the strength of the rela-

tionship from R2 .71 to .86. In Figure 9b, a linear relationship

is derived between the local slopes ai and the baseline σa
ref

based on a subset of plots (R2 = .64). This ai–σa
ref relation-

ship is then used to predict the values of ai for all the other

plots. Finally, those predicted slopes are used in Figure 9c in

the multi-slopes model to predict Δθa for all plots. The multi-

slopes model with the predicted local parameters (plocal) has

a higher R2 (.68) than the global fit (.71).

3.7 Quality of the predicted local models

Figure 10 shows the quality of the prediction of M1, M2,

and M3 using the predicted local parameters (plocal). The

multi-offsets (M2) and multi-slopes (M3) models, which only

have one local parameter, show better R2 (M1: .16, M2: .53,

and M3: .60) and a lower RMSE (M1: 0.04, M2: 0.02, and

M3: 0.02) than the plocal linear model (M1), which has two

local parameters. That means that the predicted soil moisture



10 of 17 BLANCHY ET AL.Vadose Zone Journal

F I G U R E 9 Multi-slopes model fitted with differences in apparent values (VCP0.71). The gray dots show all the data available on the 216 plots.

They represent the maximum number of information achievable if both electrical conductivity (σ) and soil moisture content (θ) are monitored on all

the plots. In a more practical situation, only a subset of plots (black dots) are monitored for both σ and θ. Subplot a shows the multi-slopes model as

well as a global relationship with a unique slope for all 216 plots (global). Subplot b shows the local slopes according to the baseline apparent soil

electrical conductivity (σa
ref). The black line corresponds to a linear relationship fitted on a subset of plots. This relationship is used to predict the

local slopes for all the other plots. Subplot c shows the multi-slopes model using the predicted slopes from Subplot b (plocal). In Subplot a and b, the

black dots and dashed lines are used to illustrate the behavior of some plots, as plotting all lines will make the graph unreadable. VCP, vertical

coplanar mode

F I G U R E 10 Quality of the predicted apparent soil moisture content (θa) vs. the observed θa from (a) linear, (b) multi-offsets, and

(c) multi-slopes models with predicted local parameters. The red line is the line of best fit with its 95% confidence interval (red shaded region). Both

multi-offsets and multi-slopes models have one local parameter, whereas the linear model has two

content from the multi-offsets (M2) or multi-slopes (M3)

models is more accurate than from the linear model (M1).

3.8 Choice of the size of the subset of plots for
plocal models

The size of the subset of plots needed for the plocal models

needs to be chosen carefully. Figure 11 shows the effect of the

number of selected plots on the RMSE of the prediction for

the multi-offsets (M2) and the multi-slopes (M3) models. In

this case, the RMSE does not change much if >10 plots are

included in the subset.

3.9 Effect on the variety ranking

In a phenotyping context, we expect similarity in the rank of

varieties whether observed (from neutron probe) or predicted

(from EMI) soil moisture values are used. To assess the rank-

ing improvement the predicted values of the global, local, and

plocal models are averaged by variety. Then, the Spearman’s

rank correlation is computed between the observed and the

predicted θa (orΔθa). The Spearman’s rank correlation has the

advantage of being directly related to the ranking of the vari-

ety, which is a commonly used metric in crop breeding. A high

value for this coefficient means, in our case, that higher pre-

dicted θa is associated with higher observed θa or that larger

predicted θa differences are associated with larger observed

θa differences, from examining absolute values or differences,

respectively.

Figure 12a shows the Spearman’s rank correlations for the

multi-offsets (M2) model using the baseline θa
ref as predic-

tor of the local offsets. Figure 12b shows the Spearman’s rank

correlations for the multi-slopes (M3) model using the base-

line σa
ref as predictor of the local slopes.

Using the data in this study, the global models offer

poor correlation compared to the local models, due to the
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F I G U R E 11 Effect of the size of the subset of plots on the predictions of the plocal (a) multi-offsets and (b) multi-slopes. After sorting the plots

according to the baseline soil apparent electrical conductivity (σa), a subset of a given number of plots is selected at regular interval on the whole

range of baseline values. θobs and θpred are observed and predicted soil moisture content. HCP, horizontal coplanar mode; VCP, vertical coplanar

mode

F I G U R E 12 Improvement in variety ranking in terms of the Spearman’s rank correlation coefficient for (a) the multi-offsets and (b) the

multi-slopes models. Each row of the table corresponds to a coil configuration. The columns are grouped by dates and subdivided into global, local

and plocal models. The global models use field-specific parameters, and the local models use plot-specific parameters estimated using all the data

available. The plocal model use the predicted plot-specific parameters estimated from baseline measurements (as in Figure 8b and Figure 9b). Bold

numbers denote a significant correlation (p < .05). HCP, horizontal coplanar mode; VCP, vertical coplanar mode; θa, apparent soil moisture content

heterogeneity of the σ–θ relationship. This is true for all

coil configurations. The plocal models (i.e., the models using

the predicted local parameters) show higher correlation com-

pared to their global equivalent. For the multi-offsets model,

the improvement between global and the plocal is substan-

tial (Figure 12a). When considering changes in soil mois-

ture content (Figure 12b), the correlation with the global

model is sometimes negative. This is a concern, as it means

that an increase in σa can be associated with a decrease in

θa after application of the global model. The local multi-

slopes models increases this correlation substantially, espe-

cially for later dates. However, the plocal multi-slopes model

shows relatively poor correlation even if it can compensate

for the negative correlation observed in the global model in

some cases.

4 DISCUSSION

4.1 Methodological limitations

The approach presented in this manuscript relies on apparent

and not depth-specific electrical conductivity measurements

to avoid the uncertainty arising from EMI inversion. Hence,

we converted soil moisture content to apparent values using

the practical cumulative sensitivity function (McNeill, 1980).

However, the latter can have limitations especially on hetero-

geneous conductive soils. To estimate the errors that can arise

from using the cumulative sensitivity function, Maxwell’s

equations can be used to reconstruct sensitivity functions

based on a synthetic two-layer profile comparable with what

is observed in the field (Callegary, Ferré, & Groom, 2007).
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Both sensitivity functions are then used to compute the appar-

ent soil moisture content. The maximum discrepancy between

the two approaches is 0.01 cm3 cm−3, which is similar to the

neutron probe accuracy (0.01 cm3 cm−3). Given the magni-

tude of the errors, this probably has a more important impact

on the changes in soil moisture content than on the absolute

values. This might explain why the multi-slopes model works

less well than the multi-offsets model in this study.

The dynamics of the soil moisture are complex, and iso-

lating the effect of root activity is challenging. Whenever

possible, measurements were collected at increasing potential

soil moisture deficit and away from significant rainfall events

(Figure 3). The drying observed in cropped plots compared

with fallow plots suggests a substantial effect of the root activ-

ity (Figure 3). However, the proposed approach does not aim

at univocally measuring root water uptake, but rather at com-

paring soil moisture variation mainly induced by root activity

for the different varieties.

The models described in the manuscript are simple linear

models. More complex relationships can be used to relate soil

moisture to electrical conductivity. For example, an exponen-

tial model was initially tested and showed similar performance

to the linear model (see Section 3.5), hence the simplest model

is chosen. In the linear models presented, the slope can be

related to the soil surface conductivity, while the offset is more

a function of the pore water conductivity. Both are functions

of the soil texture and porosity (Garré et al., 2011). We do not

have the information to investigate further the impact of these

soil properties on the pedophysical parameters we derived for

this field.

This study assumes that the samples taken on each plot

(EMI, NP) are representative of the entire plot and that no sub-

stantial heterogeneity exists within the plot itself. Although

we have no data to assess that this assumption is fulfilled for

all the plots, the inverted ERT sections, which span 5.75 out

of the 9 m of the plot length, suggest that this is the case.

One can question if the plot is the appropriate scale at

which to investigate the variability of the θ–σ relationships.

The use of variogram analysis can certainly help to determine

the appropriate length scale at which the heterogeneity occurs.

However, this method was not explored in this study, as our

approach relies on the plot scale for practical reasons and to

be consistent with additional phenotyping measurements at

the site.

Finally, it has been assumed that the root system of the crop

itself did not significantly contribute to the soil bulk apparent

conductivity. Although there is evidence that suggests that

coarser roots can affect the soil bulk electrical conductivity

(Amato et al., 2008; Mary et al., 2017), finer herbaceous

roots have been found to have a signal in magnitude similar

to the effect of grain size or soil moisture content (Amato

et al., 2009). Nevertheless, recent studies were able to

isolate the electrical signature of roots themselves (Tsukanov

& Schwartz, 2020). This could have great potential for

phenotyping applications.

4.2 Ranking performance

Fitting a global model with field-specific parameters to all the

data can lead to a satisfactory prediction of the soil moisture

content, particularly if the differences expected between the

treatments are large, such as for different types of vegetation

(Jayawickreme et al., 2010), between fallow and cropped plots

or between different soil types. However, when comparing a

large number of similar varieties, this global model may be

limited (Figure 12). In a phenotyping application, as here,

using such a relationship may lead to false ranking of variates

when using geophysical data (Figure 12). As observed by

Farahani, Buchleiter, and Brodahl (2005) for nonsaline soil,

higher σa is not always associated with greater soil moisture.

Taking into account differences, it can also be seen that a

large reduction in σa is also not always associated with a

large reduction in θa. The negative correlations sometimes

observed are of concern, as they lead to very different vari-

eties ranking whether we consider σa or θa (Figure 12). The

use of local parameters in the σ–θ relationship increases the

Spearman’s rank correlation for later dates as the soil moisture

differences from the baseline become larger. The large num-

ber of parameters needed to fit the local models (linear, multi-

offsets, or multi-slopes) can be reasonably reduced using a

relationship between the local parameters and the baseline σa

or θa fitted on a subset of plots. The resulting plocal models

that use those predicted parameters increase the accuracy

of the prediction compared with global models (Figure 10).

The R2 value is often similar to or higher than those of the

corresponding global models, but the ranking assessed (using

the Spearman’s rank correlation) is usually better (Figure 12).

Note that the R2 achieved are all below .6, which is relatively

poor compared with what could potentially be achieved with

a local relationship for all the plots (Figure 6b). Indeed,

this improvement is mainly limited by the quality of the

relationship between the local parameters and the predictors

(Figures 8b and 9b). Hence, there is a need to select plots that

span a wide range of conductivities to be monitored for both

σ and θ (see Section 4.4) in order to have a more robust fit

that is representative of the entire field.

4.3 Local models and parameters
predictability

As seen in Figure 7, the offsets of the linear or multi-offsets

models are mainly related to the baseline θa. There is also a

slight positive trend between the baseline σa and the offsets

of the linear model, but it is relatively weak compared with

θa, and it completely vanishes in the multi-offsets model. The
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F I G U R E 13 Differences in (a) soil apparent electrical conductivity (σa) and (b) apparent soil moisture content (θa) for VCP0.71 plotted against

their respective baseline measurements for the different survey dates (different colors). There is larger decrease in σa for higher baseline soil apparent

conductivity (σa
ref) in Subplot a, whereas such a downward trend cannot be seen in θa for larger apparent soil moisture (θa

ref) in Subplot b. VCP,

vertical coplanar mode

simplification of the linear model to a multi-offsets model

amplifies this dependence on the baseline θa. Wetter plots tend

to stay wetter compared with other plots surveyed at the same

time. This can be seen on Figure 4a, where each plot follows

its own increasing line. This strong offset effect also explains

why the relative change approach described earlier does not

work well in this case. Given Equation 3, the offset is not neg-

ligible and so the equation cannot be simplified to Equation 4.

That is why differences (Figure 4b) and relative changes

(Figure 4c) are similar. If the offsets were negligible, Figure 4c

would show a single line.

The local slopes of the local linear model are well corre-

lated with the baseline σa. Considering differences, the multi-

slopes model also shows good correlation between the local

slopes and the baseline σa. The conical shape of the data

shown in Figure 4b and Figure 9a for the differences illus-

trates how different plots have different slopes. Stanley et al.

(2014) show how the slopes of the σ–θ relationships vary

between two sites with contrasting textures: sites with higher

clay content, for example, result in greater values than those

from sandier locations.

The multi-offsets and multi-slopes models have one con-

trasting assumption. The former assumes a unique slope for

the entire field, whereas the latter uses plot-specific slopes.

Having both plot-specific offsets and slopes leads to the local

linear model, but its local parameters are difficult to predict

using baseline measurement (Figure 7) and hence leads to

poor estimates (Figure 10). As the relationship between σa–

θa is largely offset dominated, we decided to fix the slope in

the multi-offsets model to reduce the number of local param-

eters. For the differences, the effect of the offsets disappeared

(Equation 3) and only the effect of the slopes has an impact

on the relationship. This leads to the multi-slopes model

(Equation 10).

As seen in Figure 13, the differences in observed σa are

well correlated with the baseline readings. Larger reductions

in σa are seen on plots with higher baseline σa (Figure 13a).

Note that such a trend is not observed for θa (Figure 13b). The

fact that the σa differences are still functions of the baseline

reveals that the baseline σa contains some information on how

the σa is likely to change: larger reductions are expected in

areas of higher baseline σa. This behavior explains why the

starting σa could be a good predictor of the slopes in the multi-

slopes and linear models. Indeed, as the plots with higher

baseline σa show a larger increase in σa with time for the

same increase in θa, they need to have a smaller slope to com-

pensate. Smaller slopes are then found for higher baseline σa

(Figures 9b and 7). We believe this is related to the hetero-

geneity of the soil texture of the field where some areas are

richer in clay than others.

Plots with higher baseline σa tend also to have smaller

offsets as well (Figure 7), but this relationship is not strong

enough to be used for parameter prediction and θa is pre-

ferred as the predictor (Figure 8b). Also, the prediction of the

local parameters using the baseline readings is much better

in the multi-offsets model (Figure 8b, R2 = .82) than in the

multi-slope model (Figure 9b R2 = .64). This can explain why

the multi-slopes model using predicted local parameters show

only a slight improvement in variety ranking compared with

the multi-offsets model (Figure 12).

The multi-offsets and multi-slopes models are simplified

ways to account for the variability due to the spatial hetero-

geneity of the θ–σ relationship. By reducing the number of

local parameters compared with a local linear model, the local

parameters are more correlated with baseline measurements

and are thus easier to predict based on a subset of plots. In

that way, they increase the ranking of the varieties and the

accuracy of the predicted θa compared with global models.

4.4 Improvement of the time-lapse approach

A key bottleneck in using the local models (M1–M3) is the

predictability of the large number of local parameters they
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F I G U R E 14 Kernel density estimate (KDE) of the residuals for the (a) multi-offsets and (b) multi-slopes models for VCP0.71. For each, the

global model represent a global (field-scale) linear relationship, whereas the local models use plot-specific parameters. The plocal model is the local

model with the plot-specific parameters predicted from baseline apparent soil moisture content (θa) or soil apparent electrical conductivity (σa). VCP,

vertical coplanar mode

require. In this study, an approach was chosen where both

variables (θa and σa) are recorded on a subset of plots. In this

case, the same 12 plots that served for the ERT calibration

of the EMI data were arbitrarily chosen, as they are well dis-

tributed across the field and span the whole range of observed

baseline values. In our case, a sample of 12 was large enough

to reach the minimum RMSE achievable (Figure 11). Given

the local parameters found on the selected plots, a relation-

ship can be derived using the baseline σa or θa. This rela-

tionship can then be used to predict the values of the local

parameters for the other plots. We believe that geostatisti-

cal tools can also be used to determine the number of sam-

pling locations. However, we have not tested these in this

paper.

Considering the above, we propose an improvement to the

time-lapse approach described earlier to monitor the changes

in soil moisture for large crop breeding experiment. After

the first baseline EMI survey, plots with contrasting σa are

selected and equipped with soil moisture sensors (such as neu-

tron probe access tube). The data collected on those plots

will allow the estimation of the parameters for the multi-

offsets and multi-slopes models. Those parameters can then

be expanded to the other plots using the baseline measure-

ments (Figure 8b and Figure 9b).

The new approach is as follows:

1. Baseline survey on all the plots to acquire σa
ref and θa

ref:

• multi-slopes: EMI with all configurations (σa
ref)

• multi-offsets: soil moisture measurements for all depths

available to build an apparent soil moisture content mea-

surements (θa
ref)

2. Selection of plots with contrasting σa to be equipped with

θ sensors

3. Time-lapse EMI on all the plots and time-lapse θ on the

selected plots: collection of multiple σa–θa datasets

4. Fit the multi-slopes (Equation 10) and multi-offsets (Equa-

tion 9) models on the selected plots to obtain the value of

the local parameters: slope ai for multi-slopes and offset bi
for multi-offset

5. Fit of linear relationship between those local parameters

and the baseline value of the selected plots as in Figure 8b

and Figure 9b: ai∼σa
ref and bi∼θa

ref

6. Those linear relationships are then used to predict the local

parameters ai and bi on the other plots using their respec-

tive baseline measurements σa
ref/θa

ref

This new approach offers a tradeoff between equipping all

the plots with soil moisture sensors in order to fit a local mod-

els and using a unique global relationship for the entire field.

Note that if a multi-offsets model is to be derived, baseline θ
data are still needed, as they are the best predictors of the local

offsets.

4.5 Analysis of the residuals

An increase in residuals can arise due the large number of

local parameters. However, as Figure 14 shows, there is no

substantial increase in the distribution of those residuals for

the predicted local models compared with the global and local

models. We can also see from Figure 8b and Figure 9b that

even if the relationship is not perfectly fitted, the predicted
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parameters tend to stay in a reasonable range, avoiding the

generation of outliers. Note that the residuals for the multi-

slopes model are smaller than the residuals for the multi-

offsets, as the range of Δθa (0 to −0.07) is smaller than the

range of θa (0.15 to 0.35).

5 CONCLUSIONS

High-throughput geophysical tools, in this case time-lapse

EMI, offer great potential as a proxy measurement of soil

moisture differences. When measurements are collected over

increasing soil drying during crop growth, they may be linked

to root activity in nonirrigated crop breeding field trials. The

usual time-lapse approach is useful for removing the static

effects of soil electrical conductivity but can be limited for

ranking a large number of similar varieties in a heterogeneous

environment. The spatial heterogeneity of the σ–θ relation-

ship at the field scale has an impact on the ranking of the

varieties and using a field-specific global relationship can

lead to misleading interpretation. The proposed multi-offsets

and multi-slopes models try to account for this heterogeneity

by using plot-specific parameters that can be estimated from

the baseline measurements. This improves the variety ranking

between EMI and neutron probe data. A practical approach

is proposed for such studies in which a baseline EMI sur-

vey is used to target sites for soil moisture monitoring, thus

enhancing the ability to formulate predictions of the local σ–

θ relationships. Although all the processing presented here

was done with apparent conductivity measurements, the same

process can be applied to depth-specific (inverted) measure-

ments.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGMENTS
G.B. is supported by a Lancaster University–Rothamsted

Research–CEH Graduate School for Environment Ph.D. stu-

dentship. The field experiment described in the paper was

funded by Syngenta, whereas the additional geophysical

measurements were funded by the Lancaster University–

Rothamsted Research–CEH Graduate School. M.J.H and

W.R.W. at Rothamsted Research are supported by the Design-

ing Future Wheat Programme by the UK Biotechnology and

Biological Sciences Research Council (BB/P016855/1). We

are grateful to associate editor Ute Wollschläger, reviewer

Sarah Garré, and an anonymous reviewer for their comments

on an earlier version of the manuscript.

ORCID
Guillaume Blanchy
https://orcid.org/0000-0001-6341-5826

Christopher W. Watts
https://orcid.org/0000-0002-7223-1444

R E F E R E N C E S
Allred, B. J., Daniels J. J., & Ehsani M. R., editors. (2008). Handbook of

agricultural geophysics. Boca Raton: CRC Press.

Amato, M., Basso, B., Celano, G., Bitella, G., Morelli, G., & Rossi,

R. (2008). In situ detection of tree root distribution and biomass by

multi-electrode resistivity imaging. Tree Physiology, 28, 1441–1448.

https://doi.org/10.1093/treephys/28.10.1441

Amato, M., Bitella, G., Rossi, R., Gómez, J. A., Lovelli, S., & Ferreira

Gomes, J. J. (2009). Multi-electrode 3D resistivity imaging of alfalfa

root zone. European Journal of Agronomy, 31, 213–222. https://doi.

org/10.1016/j.eja.2009.08.005

Andrade, F. C. M., Fischer, T., & Valenta, J. (2016). Study of errors

in conductivity meters using the low induction number approxima-

tion and how to overcome them. In Proceedings of Near Surface
Geoscience 2016: 22nd European Meeting of Environmental and
Engineering Geophysics. Barcelona, Spain: EAGE. https://doi.org/

10.3997/2214-4609.201602080

Archie, G. E.(1942) The electrical resistivity log as an aid in determin-

ing some reservoir characteristics. Transactions of the AIME, 146,

54–62.

Bai, C., Ge, Y., Ashton, R. W., Evans, J., Milne, A., Hawkesford, M.

J., … Bartsch, M. (2019). The relationships between seedling root

screens, root growth in the field and grain yield for wheat. Plant and
Soil, 440, 311–326. https://doi.org/10.1007/s11104-019-04088-9

Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013).

Three-dimensional monitoring of soil water content in a maize field

using electrical resistivity tomography. Hydrology and Earth System
Sciences, 17, 595–609. https://doi.org/10.5194/hess-17-595-2013

Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson,

D. A., Singha, K., & Slater, L. D. (2015). The emergence of

hydrogeophysics for improved understanding of subsurface pro-

cesses over multiple scales: The emergence of hydrogeophysics.

Water Resources Research, 51, 3837–3866. https://doi.org/10.1002/

2015WR017016

Brevik, E. C., Fenton, T. E., & Lazari, A. (2006). Soil electrical con-

ductivity as a function of soil water content and implications for soil

mapping. Precision Agriculture, 7, 393–404. https://doi.org/10.1007/

s11119-006-9021-x

Brogi, C., Huisman, J. A., Pätzold, S., von Hebel, C., Weihermüller,

L., Kaufmann, M. S., van der Kruk, J., & Vereecken, H. (2019).

Large-scale soil mapping using multi-configuration EMI and super-

vised image classification. Geoderma, 335, 133–148. https://doi.org/

10.1016/j.geoderma.2018.08.001

Callegary, J. B., Ferré, T. P. A., & Groom, R. W. (2007). Vertical

spatial sensitivity and exploration depth of low-induction-number

electromagnetic-induction instruments. Vadose Zone Journal, 6,

158–167. https://doi.org/10.2136/vzj2006.0120

Cassiani, G., Ursino, N., Deiana, R., Vignoli, G., Boaga, J., Rossi,

M., … Werban, U. (2012). Noninvasive monitoring of soil static

characteristics and dynamic states: A Case study highlighting veg-

etation effects on agricultural land. Vadose Zone Journal, 11(3).

https://doi.org/10.2136/vzj2011.0195

Corwin, D. L., & Lesch, S. M. (2003). Application of soil electri-

cal conductivity to precision agriculture: Theory, Principles, and

guidelines. Agronomy Journal, 95, 455–471. https://doi.org/10.2134/

agronj2003.4550

https://orcid.org/0000-0001-6341-5826
https://orcid.org/0000-0001-6341-5826
https://orcid.org/0000-0002-7223-1444
https://orcid.org/0000-0002-7223-1444
https://doi.org/10.1093/treephys/28.10.1441
https://doi.org/10.1016/j.eja.2009.08.005
https://doi.org/10.1016/j.eja.2009.08.005
https://doi.org/10.3997/2214-4609.201602080
https://doi.org/10.3997/2214-4609.201602080
https://doi.org/10.1007/s11104-019-04088-9
https://doi.org/10.5194/hess-17-595-2013
https://doi.org/10.1002/2015WR017016
https://doi.org/10.1002/2015WR017016
https://doi.org/10.1007/s11119-006-9021-x
https://doi.org/10.1007/s11119-006-9021-x
https://doi.org/10.1016/j.geoderma.2018.08.001
https://doi.org/10.1016/j.geoderma.2018.08.001
https://doi.org/10.2136/vzj2006.0120
https://doi.org/10.2136/vzj2011.0195
https://doi.org/10.2134/agronj2003.4550
https://doi.org/10.2134/agronj2003.4550


16 of 17 BLANCHY ET AL.Vadose Zone Journal

Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductiv-

ity measurements in agriculture. Computers and Electronics in Agri-
culture, 46, 11–43. https://doi.org/10.1016/j.compag.2004.10.005

Farahani, H. J., Buchleiter, G. W., & Brodahl, M. K. (2005). Characteri-

zation of apparent soil electrical conductivity variability in irrigated

sandy and non-saline fields in Colorado. Transactions of the Ameri-
can Society of Agricultural Engineers, 48, 155–168. https://doi.org/

10.13031/2013.17959

Garré, S., Coteur, I., Wongleecharoen, C., Kongkaew, T., Diels, J.,

& Vanderborght, J. (2013). Noninvasive monitoring of soil water

dynamics in mixed cropping systems: A case study in Ratchaburi

Province, Thailand. Vadose Zone Journal, 12(2). https://doi.org/10.

2136/vzj2012.0129

Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H.

(2011). Three-dimensional electrical resistivity tomography to mon-

itor root zone water dynamics. Vadose Zone Journal, 10, 412–424.

https://doi.org/10.2136/vzj2010.0079

Huang, J., Purushothaman, R., McBratney, A., & Bramley, H. (2018).

Soil water extraction monitored per plot across a field experiment

using repeated electromagnetic induction surveys. Soil Systems, 2(1).

https://doi.org/10.3390/soilsystems2010011

Jayawickreme, D. H., Van Dam, R. L., & Hyndman, D. W. (2010).

Hydrological consequences of land-cover change: Quantifying the

influence of plants on soil moisture with time-lapse electrical

resistivity. Geophysics, 75, WA43–WA50. https://doi.org/10.1190/1.

3464760

King, J. A., Dampney, P. M. R., Lark, R. M., Wheeler, H. C., Bradley,

R. I., & Mayr, T. R. (2005). Mapping potential crop management

zones within fields: Use of yield-map series and patterns of soil

physical properties identified by electromagnetic induction sensing.

Precision Agriculture, 6, 167–181. https://doi.org/10.1007/s11119-

005-1033-4

Laloy, E., Javaux, M., Vanclooster, M., Roisin, C., & Bielders, C. L.

(2011). Electrical resistivity in a loamy soil: Identification of the

appropriate pedo-electrical model. Vadose Zone Journal, 10, 1023–

1033. https://doi.org/10.2136/vzj2010.0095

Lavoué, F., Van Der Kruk, J., Rings, J., André, F., Moghadas, D., Huis-

man, J. A., … Vereecken, H. (2010). Electromagnetic induction cal-

ibration using apparent electrical conductivity modelling based on

electrical resistivity tomography. Near Surface Geophysics, 8, 553–

561. https://doi.org/10.3997/1873-0604.2010037

Ma, R., McBratney, A., Whelan, B., Minasny, B., & Short, M. (2011).

Comparing temperature correction models for soil electrical conduc-

tivity measurement. Precision Agriculture, 12, 55–66. https://doi.org/

10.1007/s11119-009-9156-7

Martini, E., Werban, U., Zacharias, S., Pohle, M., Dietrich, P., &

Wollschläger, U. (2017). Repeated electromagnetic induction mea-

surements for mapping soil moisture at the field scale: Validation

with data from a wireless soil moisture monitoring network. Hydrol-
ogy and Earth System Sciences, 21, 495–513. https://doi.org/10.

5194/hess-21-495-2017

Mary, B., Abdulsamad, F., Saracco, G., Peyras, L., Vennetier, M., Méri-

aux, P., & Camerlynck, C. (2017). Improvement of coarse root detec-

tion using time and frequency induced polarization: From laboratory

to field experiments. Plant and Soil, 417, 243–259. https://doi.org/

10.1007/s11104-017-3255-4

McNeill, J. D. (1980). Electromagnetic terrain conductivity measure-
ment at low induction numbers. Mississauga, ON, Canada: Geonics

Limited.

Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., &

Tabbagh, A. (2003). Spatial and temporal monitoring of soil water

content with an irrigated corn crop cover using surface electri-

cal resistivity tomography: Soil water study using electrical resis-

tivity. Water Resources Research, 39(5). https://doi.org/10.1029/

2002WR001581

Moghadas, D., Jadoon, K. Z., & McCabe, M. F. (2017). Spatiotemporal

monitoring of soil water content profiles in an irrigated field using

probabilistic inversion of time-lapse EMI data. Advances in Water
Resources, 110, 238–248. https://doi.org/10.1016/j.advwatres.2017.

10.019

Rhoades, J. D., Raats, P. A. C., & Prather, R. J. (1976). Effects of

liquid-phase electrical conductivity, water content, and surface con-

ductivity on bulk soil electrical conductivity. Soil Science Society
of America Journal, 40, 651–655. https://doi.org/10.2136/sssaj1976.

03615995004000050017x

Robinson, D. A., Abdu, H., Lebron, I., & Jones, S. B. (2012). Imag-

ing of hill-slope soil moisture wetting patterns in a semi-arid oak

savanna catchment using time-lapse electromagnetic induction. Jour-
nal of Hydrology, 416–417, 39–49. https://doi.org/10.1016/j.jhydrol.

2011.11.034

Shanahan, P. W., Binley, A., Whalley, W. R., & Watts, C. W. (2015). The

use of electromagnetic induction to monitor changes in soil mois-

ture profiles beneath different wheat genotypes. Soil Science Society
of America Journal, 79, 459–466. https://doi.org/10.2136/sssaj2014.

09.0360

Srayeddin, I., & Doussan, C. (2009). Estimation of the spatial variabil-

ity of root water uptake of maize and sorghum at the field scale

by electrical resistivity tomography. Plant and Soil, 319, 185–207.

https://doi.org/10.1007/s11104-008-9860-5

Stanley, J. N., Lamb, D. W., Falzon, G., & Schneider, D. A. (2014).

Apparent electrical conductivity (ECa) as a surrogate for neutron

probe counts to measure soil moisture content in heavy clay soils

(Vertosols). Soil Research, 52, 373–378. https://doi.org/10.1071/

SR13142

Tsukanov, K., & Schwartz, N. (2020). Relationship between wheat root

properties and its electrical signature using the spectral induced

polarization method. Vadose Zone Journal, 19(1). https://doi.org/10.

1002/vzj2.20014

Viscarra Rossel, R. A., Adamchuk, V. I., Sudduth, K. A., McKenzie,

N. J., & Lobsey, C. (2011). Proximal soil sensing: An effective

approach for soil measurements in space and time. In D. L. Sparks

(Ed.), Advances in agronomy (pp. 243–291). London: Academic

Press.

von Hebel, C., Matveeva, M., Verweij, E., Rademske, P., Kaufmann, M.

S., Brogi, C.,… van der Kruk, J. (2018). Understanding soil and plant

interaction by combining ground-based quantitative electromagnetic

induction and airborne hyperspectral data. Geophysical Research
Letters, 45, 7571–7579. https://doi.org/10.1029/2018GL078658

von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P.,

Vereecken, H., & van der Kruk, J. (2014). Three-dimensional imag-

ing of subsurface structural patterns using quantitative large-scale

multiconfiguration electromagnetic induction data. Water Resources
Research, 50, 2732–2748. https://doi.org/10.1002/2013WR014864

Wasson, A. P., Rebetzke, G. J., Kirkegaard, J. A., Christopher, J.,

Richards, R. A. & Watt, M. (2014). Soil coring at multiple field envi-

ronments can directly quantify variation in deep root traits to select

wheat genotypes for breeding. Journal of Experimental Botany, 65,

6231–6249. https://doi.org/10.1093/jxb/eru250

https://doi.org/10.1016/j.compag.2004.10.005
https://doi.org/10.13031/2013.17959
https://doi.org/10.13031/2013.17959
https://doi.org/10.2136/vzj2012.0129
https://doi.org/10.2136/vzj2012.0129
https://doi.org/10.2136/vzj2010.0079
https://doi.org/10.3390/soilsystems2010011
https://doi.org/10.1190/1.3464760
https://doi.org/10.1190/1.3464760
https://doi.org/10.1007/s11119-005-1033-4
https://doi.org/10.1007/s11119-005-1033-4
https://doi.org/10.2136/vzj2010.0095
https://doi.org/10.3997/1873-0604.2010037
https://doi.org/10.1007/s11119-009-9156-7
https://doi.org/10.1007/s11119-009-9156-7
https://doi.org/10.5194/hess-21-495-2017
https://doi.org/10.5194/hess-21-495-2017
https://doi.org/10.1007/s11104-017-3255-4
https://doi.org/10.1007/s11104-017-3255-4
https://doi.org/10.1029/2002WR001581
https://doi.org/10.1029/2002WR001581
https://doi.org/10.1016/j.advwatres.2017.10.019
https://doi.org/10.1016/j.advwatres.2017.10.019
https://doi.org/10.2136/sssaj1976.03615995004000050017x
https://doi.org/10.2136/sssaj1976.03615995004000050017x
https://doi.org/10.1016/j.jhydrol.2011.11.034
https://doi.org/10.1016/j.jhydrol.2011.11.034
https://doi.org/10.2136/sssaj2014.09.0360
https://doi.org/10.2136/sssaj2014.09.0360
https://doi.org/10.1007/s11104-008-9860-5
https://doi.org/10.1071/SR13142
https://doi.org/10.1071/SR13142
https://doi.org/10.1002/vzj2.20014
https://doi.org/10.1002/vzj2.20014
https://doi.org/10.1029/2018GL078658
https://doi.org/10.1002/2013WR014864
https://doi.org/10.1093/jxb/eru250


BLANCHY ET AL. 17 of 17Vadose Zone Journal

Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S.,

Rebetzke, G. J., … Watt, M. (2012). Traits and selection strategies to

improve root systems and water uptake in water-limited wheat crops.

Journal of Experimental Botany, 63, 3485–3498. https://doi.org/10.

1093/jxb/ers111.

Waxman, M. H., & Smits, L. J. M. (1968). Electrical conductivities in

oil-bearing shaly sands. Society of Petroleum Engineers Journal, 8,

107–122. https://doi.org/10.2118/1863-A

Whalley, W. R., Binley, A., Watts, C. W., Shanahan, P., Dodd, I. C., Ober,

E. S., … Hawkesford, M. J. (2017). Methods to estimate changes in

soil water for phenotyping root activity in the field. Plant and Soil,
415, 407–422. https://doi.org/10.1007/s11104-016-3161-1

How to cite this article: Blanchy G, Watts CW,

Ashton RW, et al. Accounting for heterogeneity in the

θ–σ relationship: Application to wheat phenotyping

using EMI. Vadose Zone J. 2020;19:e20037.

https://doi.org/10.1002/vzj2.20037

https://doi.org/10.1093/jxb/ers111
https://doi.org/10.1093/jxb/ers111
https://doi.org/10.2118/1863-A
https://doi.org/10.1007/s11104-016-3161-1
https://doi.org/10.1002/vzj2.20037

