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PHI-Nets: A network resource for Ascomycete fungal pathogens to 1 

annotate and identify putative virulence interacting proteins and 2 
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Abstract 18 

Interactions between proteins underlie all aspects of complex biological mechanisms. Therefore, 19 

methodologies based on complex network analyses can facilitate identification of promising 20 

candidate genes involved in phenotypes of interest and put this information into appropriate contexts. 21 

To facilitate discovery and gain additional insights into globally important pathogenic fungi, we have 22 

reconstructed computationally inferred interactomes using an interolog and domain-based approach 23 

for 15 diverse Ascomycete fungal species, across nine orders, specifically Aspergillus fumigatus, 24 

Bipolaris sorokiniana, Blumeria graminis f.sp. hordei, Botrytis cinerea, Colletotrichum 25 

gloeosporioides, Colletotrichum graminicola, Fusarium graminearum, Fusarium oxysporum f. sp. 26 

lycopersici, Fusarium verticillioides, Leptosphaeria maculans, Magnaporthe oryzae, Saccharomyces 27 

cerevisiae, Sclerotinia sclerotiorum, Verticillium dahliae, and Zymoseptoria tritici. Network 28 

cartography analysis was associated with functional patterns of annotated genes linked to disease-29 

causing ability of each pathogen. In addition, for the best annotated organism, namely F. 30 

graminearum, the distribution of annotated genes with respect to network structure was profiled 31 

using a random walk with restart algorithm, which suggested possible co-location of virulence-32 

related genes in the protein-protein interaction network. 33 

In a second ‘use case’ study involving two networks, namely Botrytis cinerea and Fusarium 34 

graminearum, previously identified small silencing plant RNAs were mapped to their targets.   35 

The F. graminearum phenotypic network analysis implicates eight B. cinerea targets and 35 F. 36 

graminearum predicted interacting proteins as prime candidate virulence genes for further testing. All 37 
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15 networks have been made accessible for download at www.phi-base.org providing a rich resource 38 

for major crop plant pathogens. 39 

 40 

1 Introduction 41 

Global food security is threatened by numerous plant disease-causing fungal pathogens, which infect 42 

agricultural and horticultural crops. New control mechanisms are urgently needed as pathogens (i) 43 

evolve resistance to the ever-narrowing range of available site specific and broad-spectrum 44 

fungicides, and (ii) regularly overcome the various disease resistance genes introduced by plant 45 

breeders. Due to their economic and societal importance, plant pathogens are intensively studied 46 

using molecular biology and molecular genetic research tools and approaches. In addition, over the 47 

past 15 years, whole genome information has become available for the most problematic plant 48 

pathogenic species and more recently such datasets have been augmented with genomes from 49 

additional individual strains possessing a range of different biological properties. The 'Top 10' fungal 50 

pathogens identified based on their scientific and economic importance include fungi with a wide 51 

diversity of lifestyles (Dean et al., 2012). For example, the necrotrophic Botrytis cinerea kills 52 

infected plant cells outright, whereas hemibiotrophic fungi such as Magnaporthe oryzae, Fusarium 53 

graminearum, Fusarium oxysporum, Colletotrichum spp., and Zymoseptoria tritici invade initially 54 

living host tissue until host cell death occurs. Biotrophic fungi, such as Blumeria graminis, keep host 55 

plants alive throughout the disease formation process. In addition, some pathogens (Colletotrichum 56 

spp.) can either infect a wide range of crop species or are specialists that infect just a single crop 57 

species (B. graminis f. sp. hordei). Differences in gene content of filamentous fungal pathogens can 58 

be attributed to the action of repetitive elements, transposons and genome rearrangements in several 59 

lineages (Raffaele and Kamoun, 2012). 60 

Development of effective and resilient control strategies for infectious diseases caused by pathogenic 61 

fungi relies on an in-depth understanding of the underlying biological processes and knowledge of 62 

potential points where these processes can be disrupted. This type of data is commonly collected 63 

experimentally using targeted gene modification and/or gene-silencing experiments, where observed 64 

phenotypes relate specifically to changes in key points during virulence and pathogenicity. One of the 65 

resources curating phenotypic disease outcomes of gene modification experiments with a particular 66 

emphasis on plant pathogenic fungi of agricultural and horticultural significance is the Pathogen-Host 67 

Interactions database (PHI-base, www.PHI-base.org) (Urban et al., 2016). Importantly, PHI-base 68 

collects data from both positive- and negative-experimental outcomes. However, to understand the 69 

underlying mechanisms of observed phenotypes, and to identify proteins contributing to virulence it 70 

is important to consider them in the context of networks of molecular interactions, where proteins of 71 

unknown function can be targeted. Even in the well-studied, non-pathogenic filamentous fungal 72 

model species Neurospora crassa, only ~60% of proteins are annotated (Ellison et al., 2014). 73 

Therefore, scope exists for knowledge transfer from model species to less studied species, where 74 

extensive molecular interaction information is available (such as the yeasts S. cerevisiae and S. 75 

pombe, the worm C. elegans, fruit-fly D. melanogaster and the mouse M. musculus). 76 

 77 

The potential to use protein-protein interaction network analysis to decipher pathogenicity and 78 

virulence mechanisms as well as identify candidate genes has been a topic of active research during 79 
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the last decade (reviewed in (Cairns et al., 2016)). In these applications, a biological network is 80 

usually constructed by linking together biological entities that either interact physically (e.g. protein-81 

protein interaction, enzyme binding a substrate) or are shown to be associated with a more abstract 82 

experimentally derived common property (e.g. co-expression or co-localisation). When insufficient 83 

experimental data is available to construct a network, inference from other related data types may be 84 

used instead. Two common computational methods to infer protein-protein interaction (PPI) 85 

networks are (i) the interolog approach relying on sequence similarity between proteins from 86 

different species and (ii) the domain-based approach with a focus on conserved Pfam domains (Li 87 

and Zhang, 2016). 88 

The approaches for identifying promising candidates in pathogenic fungi using biological networks 89 

so far have primarily focused on exploiting the 'guilt-by-association' principle, most often by 90 

employing either a 'direct neighbourhood' or a community structure detection strategy. The direct 91 

neighbourhood approach considers a set of nodes directly connected to each potential target and 92 

prioritisation is based on a score related to the number of known annotations among them. This score 93 

may be further adjusted by applying a weight to incorporate additional factors like confidence in 94 

links or expression patterns. In a community structure detection approach the network is partitioned 95 

into distinct communities, modules or clusters according to its pairwise links that define the network 96 

topological structure. Then, distribution of annotated nodes in those modules is explored further by 97 

methods of enrichment analysis and prioritisation of genes is based on module membership and 98 

overall score of the module. 99 

For filamentous fungi, predicted protein-protein interactions were previously explored for several 100 

non-pathogenic and pathogenic species. Networks exist for Neurospora crassa (Wang et al., 2011) 101 

and human-infecting fungi Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans 102 

(Kim et al., 2015a; Remmele et al., 2015). Additional networks are available for a few plant 103 

pathogenic species including Magnaporthe grisea (He et al., 2008), Phomopsis longicolla (Li et al., 104 

2018), Rhizoctonia solani (Lei et al., 2014), Fusarium verticillioides (Kim et al., 2015b), and F. 105 

graminearum (Zhao et al., 2009; Liu et al., 2010; Bennett et al., 2012; Lysenko et al., 2013). 106 

However, the approaches used differed across studies and do not allow comparative network 107 

investigation. In addition, early genome assemblies were used, i.e. F. graminearum, that now require 108 

rebuilding of the underlying interactomes.  109 

Studies during the last decade on plant-pathogen interactions identified a novel host defence-110 

mechanism in animals and plants, called cross-kingdom/organism RNA interference (RNAi) 111 

(Weiberg et al., 2013; Weiberg and Jin, 2015; Cai et al., 2018). Mobile small silencing RNAs 112 

(siRNAs) produced by the hosts are transferred to the pathogen during the invasion process and 113 

attenuate virulence. For the Arabidopsis-Botrytis cinerea pathosystem, 42 Arabidopsis siRNAs were 114 

detected in B. cinerea protoplasts generated from infected Arabidopsis plants. These siRNAs 115 

implicated 21 putative targets in B. cinerea targeting several global biological processes including 116 

vesicle transport, transcription and signal transduction. However, most of the putative targets have no 117 

associated phenotype, and their function and potential protein interaction partners are unknown due 118 

to the lack of published functional gene tests in B. cinerea. In contrast, for Fusarium graminearum 119 

which causes disease on many cereal species, a wealth of phenotype information exists. Here initial 120 

studies suggest that wheat plants also utilise host RNAi suppression of genes within the attacking 121 

pathogen (Chen et al., 2016; Jiao and Peng, 2018).  122 
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To further advance mechanistic understanding of fungal virulence and pathogenicity for plants, 123 

increasingly comparative analyses are performed using selected groups of pathogenic species with 124 

similar or contrasting lifestyle strategies or host ranges. For network-based analyses to become an 125 

effective part of these comparative studies, the availability of networks for multiple species built in 126 

the same way is urgently required. Similarly, since the recent identification of two-way cross-127 

kingdom siRNA trafficking as a potential new route for communication and manipulation in host-128 

fungal interactions, the sequences targeted by siRNA also need to be formally recognised and 129 

displayed within these networks. 130 

The main aims of this study were therefore three-fold. Firstly, we built a series of protein domain-131 

domain networks for pathogenic ascomycete fungi of global importance to agriculture and 132 

horticulture. Within each network, all phenotypic and ontology information for the 10s to 1000+ 133 

nodes formally tested for a role in virulence would be placed. Free access to this suite of network 134 

datasets would permit specialists and non-specialists alike to develop a multitude of interdisciplinary 135 

approaches to investigate virulence and pathogenicity processes in a network context. Second, we 136 

elucidated the relationship between the well-studied proteins and metabolites linked to virulence and 137 

pathogenicity, and the newly emerging field of small interfering RNAs modulating the outcome of 138 

host-pathogen interactions. Third, we used two exemplar species, a highly studied pathogen and a 139 

less-studied pathogen, to illustrate how such network resources can facilitate the identification of key 140 

interactions and possible candidate virulence and pathogenicity genes with hitherto minimal to no 141 

formal annotation. 142 

 143 

2 Materials and Methods 144 

2.1 Construction of predicted protein-protein interaction networks 145 

The predicted interactomes were constructed using an interolog and domain-domain interaction 146 

approach (Figure 1). The interolog approach works under the assumption that if a pair of proteins in 147 

one species are experimentally confirmed to interact, this protein-protein interaction is also likely to 148 

be conserved for their orthologs in another species. Therefore, this method requires reference 149 

interactome(s) and orthologous sequences mappings that could link them to a species of interest. We 150 

have chosen non-pathogenic Ascomycetes Saccharomyces cerevisiae and Schizosaccharomyces 151 

pombe as two reference interactome species, because both species have some of the best-profiled, 152 

experimentally verified interactomes.  Our data for these two species was taken from the EBI IntAct 153 

database (May 2016 release) (Orchard et al., 2014) and was combined with orthologs retrieved from 154 

Ensembl Fungi (May 2016 release) (Kersey et al., 2016), which were originally derived using 155 

Ensembl Compara pipeline (Herrero et al., 2016). 156 

The domain-domain interaction (DDI) approach operates under the premise that some of the 157 

interactions are mediated by specific protein domains and can therefore be assumed to also occur 158 

between proteins that possess these domain pairs. Several public databases identify such interacting 159 

domain pairs using protein 3D structure analysis and statistical approaches. To obtain the most 160 

complete set we have integrated the data from three domain-domain interaction databases: KBDOCK  161 

(Ghoorah et al., 2014), DOMINE (Yellaboina et al., 2011) and 3did (Stein et al., 2005). Compu-162 

tational scripts were made available at https://github.com/PHI-base/phi-nets/. 163 
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Complete genomes for the 15 fungi explored in this study were obtained from Ensembl Fungi version 164 

31 (ftp://ftp.ensemblgenomes/pub/fungi) (Supplementary Table S1). The domain repertoire for each 165 

species proteome was identified using the HMMER algorithm which is based on biosequence 166 

analysis using profile hidden Markov models (Eddy, 2009), implemented on TimeLogic® HMM 167 

(Hidden Markov Models) version 8.7 and domain models from Pfam database (version 29.0) (Finn et 168 

al., 2016). For each of the 15 proteomes, additional processing of the raw HMMER output was 169 

performed using a custom python script to resolve overlapping domain issues. The general rule for 170 

solving the domain overlapping problem was adopted from previous work (Seidl et al., 2011) as 171 

follows: for non-overlapping domains in the given protein the score of -1 was assigned and the 172 

domain remained in the protein. In complex situations where multiple domains overlapped, the set of 173 

overlapping domains was represented as an adjacency matrix, where the scores were assigned as per 174 

application of the rules. Specifically, a score of 1 was assigned to the row of predicted domain if the 175 

rules pointed towards this domain as better, compared to the domain in the column, and a 0 if the 176 

situation was the other way around. The domain with the score equal to 1 remained in the protein, 177 

whereas the domain with the score equal to 0 was removed from the protein sequence. Although, this 178 

approach resolved the overlap in most cases, there were proteins where the overlaps had to be 179 

resolved manually (Supplementary Information 1). This non-redundant dataset was then used to 180 

infer interactions for each pair of proteins containing interacting domains included in at least one of 181 

the three DDI databases.  182 

2.2 Quality evaluation of predicted interactomes 183 

To verify the quality of predicted interactions we have calculated summary statistics for the number 184 

of predicted interacting partners found in the same cellular compartment and functional similarity 185 

according to the Gene Ontology (GO) annotation in biological process (GO-BP) and molecular 186 

function (GO-MF) (Ashburner et al., 2000) (release May 2016)). In all these cases we have used 187 

gene-level annotation from the Ensembl Fungi BioMarts (Kinsella et al., 2011). These annotations 188 

were compared to two reference sets: random control where the same number of random annotated 189 

gene pairs were created for each of the 15 species, and an experimentally verified set of interactions 190 

for S. cerevisiae. The estimated correctness of inferred interactions was evaluated using two metrics: 191 

major cellular compartment co-localisation and similarity of biological process annotations. For the 192 

former, a pair of proteins was considered co-localised if both predicted proteins were annotated with 193 

one of the following eight major compartment terms (or its subclass descendants): 'extracellular 194 

region', 'cytoplasm', 'nucleus', 'mitochondrion', 'endoplasmic reticulum', 'Golgi apparatus', 'fungal-195 

type vacuole' and 'fungal-type cell wall' they were considered to be co-located - and therefore that 196 

there was evidence that an interaction was physically possible in theory. For the latter, the similarity 197 

of GO annotations was measured using a semantic similarity approach, which uses mutual 198 

information content of the most informative common ancestor GO annotation term (Lord et al., 199 

2003). 200 

2.3 Integration of PHI-base annotation 201 

PHI-base is a unique database that focuses on genes involved in pathogen-host interactions, and gene 202 

functions that are experimentally verified. Annotations are supported by strong experimental 203 

evidence (gene disruption, gene silencing or other alteration experiments). PHI-base version 4.6 (Nov 204 

2018 release) was used to annotate the predicted proteins in the 15 Ascomycete networks. In general, 205 

nine high level phenotyping terms are used to describe the phenotype outcome for one interaction in 206 

PHI-base: loss of pathogenicity, reduced virulence, unaffected pathogenicity, increased virulence, 207 
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effector gene (plant avirulence determinant), lethal, enhanced antagonism, resistant to chemical, 208 

sensitive to chemical (Urban et al., 2015). In our analysis we summarised these terms in three groups 209 

of phenotyping terms, namely ‘pathogenicity-related’, ‘pathogenicity-unrelated’ and ‘mixed 210 

outcome’. The ‘pathogenicity-related’ annotation consists of ‘loss of pathogenicity’, ‘reduced 211 

virulence’, and ‘increased virulence’ phenotyping terms, whereas ‘unaffected pathogenicity’ 212 

phenotype represents a pathogenicity-unrelated set. In PHI-base one or more interactions with a host 213 

species can be assigned to a given gene. This creates situations where a gene is linked to several 214 

contrasting phenotypic outcomes. In this study we classified such phenotype as ‘mixed outcome’. 215 

Other PHI-base phenotyping terms were not useful in our analysis. The term ‘lethal’ is not supported 216 

with experimental evidence in PHI-base.  217 

2.4 Topological proximity to proteins with characterised phenotypes 218 

We have used a random walk with restart (RWR) (Köhler et al., 2008) method to identify likely 219 

candidate genes within the ‘pathogenicity related’ group. Random walk with restart calculates the 220 

probability of a node in the network being visited by a random walker which starts with equal 221 

probability from any of the nodes in a seed set. At each step the walker also has a defined probability 222 

of restarting the walk from one of the seed nodes. This method has been demonstrated to be very 223 

successful for prioritisation of disease-associated genes in human protein-protein interaction 224 

networks. However, to the best of our knowledge this is the first time it has been used to predict a 225 

pathogenicity phenotype in pathogenic fungi. The advantage of this method is that it can be used to 226 

produce a score for protein nodes without direct connections to proteins with characterised 227 

phenotypes. The method also considers a wider neighbourhood of a node, like overall distribution of 228 

nodes in the neighbourhood, as well as degrees and edge densities of the surrounding nodes. For this 229 

study we have calculated an exact solution, e.g. the set of probabilities to which it will converge to 230 

after an infinite number of iterations, calculated according to the formula from (Smedley et al., 2014). 231 

In each case, two sets of RWR scores were computed, using either genes in the known pathogenicity-232 

related/unrelated categories as the seeds. Inference potential of these results was evaluated using 233 

standard area under the receiver-operator curve (ROC-AUC). Briefly, the ROC-AUC analysis is used 234 

in machine learning to evaluate the performance of a binary classifier, its ability to correctly order 235 

'true' and 'false' results with some score (e.g. a probability returned by classifier for an instance to be 236 

of 'true' class). The ROC-AUC value of 0.5 would indicate that the prediction quality is the same as 237 

random chance, whereas 1.0 would mean a perfect prediction. 238 

2.5 Modularity and functional cartography analysis 239 

The modular structure of all networks was profiled using the Louvain graph clustering algorithm 240 

(Blondel et al., 2008). As biological networks are known to be organised into communities that may 241 

also exhibit hierarchical structure, cluster assignments at different levels of granularity are potentially 242 

informative. To explore and optimise cluster granularity, we have applied the Louvain algorithm 243 

recursively to further break down larger clusters above a certain size threshold and which are not 244 

fully connected cliques. To optimise this threshold, we have performed a scan across a 5-200 size 245 

range and examined the trade-off between purity (defined as proportion of nodes with the same 246 

annotation with respect to virulence) and the Shannon entropy of the resulting modules (relative to 247 

splitting of each virulence annotation category into smaller subsets) with respect to pathogenicity-248 

related genes of the 15 species. According to this analysis, the size of 50 was found to be at the best 249 

trade-off point between these two metrics.  250 
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The functional cartography analysis characterises nodes according to their roles in a given 251 

community (Guimera and Nunes Amaral, 2005). Here, the analysis was performed for the largest 252 

connected component of each network. Prior to the cartography analysis, the Louvain clustering 253 

algorithm was used to detect communities within the largest connected component of the given 254 

network. The cartography analysis primarily considered the following two properties: within-module 255 

connectivity (z-normalised within module degree) and participation coefficient (proportion of links a 256 

node has to members of other modules). Based on the region in a parameter space of z-score and 257 

participation coefficient, nodes were categorised as hubs and non-hubs and the seven following 258 

categories were identified within each of the networks in this study: R1 - ultra-peripheral node, R2 – 259 

peripheral node, R3 - non-hub connector node, R4 – non-hub kinless node, R5 – provincial hub, R6 – 260 

connector hub and R7 – global kinless hub (Supplementary information 2). The role of the nodes 261 

was determined using GIANT version 1.0 plugin for Cytoscape version 3.7.1. Following the 262 

identification of the nodes’ role within the first connected component of each network, the 263 

association of the node role (position) with fungi lifestyle was tested with the aid of a chi-square test. 264 

2.6 Analysis of B. cinerea RNA silencing targets in F. graminearum and B. cinerea networks 265 

using Cytoscape 266 

Web-based BLAST provided by Ensembl Fungi (http://fungi.ensembl.org) was used to map the 33 267 

siRNA target genes identified in B. cinerea strain B05.10 (Cai et al., 2018) to the latest B. cinerea 268 

genome assembly GCA_00143535.4. Orthologs between B. cinerea and F. graminearum strain PH-1 269 

were identified using BIOMART (Kersey et al., 2018). B. cinerea and F. graminearum networks 270 

were additionally annotated using phenotypes provided by PHI-base release version 4.6. For F. 271 

graminearum, gene names for the subnetworks were taken from FusariumMutantDb (Baldwin et al., 272 

2018). Complexity in B. cinerea and F. graminearum networks was reduced by dividing them first 273 

into Louvain modules. Next, genes of interest (B. cinerea targets/orthologues and genes with PHI-274 

base annotation) and their first-neighbours were selected using list-selection in Cytoscape. 275 

3 Results 276 

3.1 Inferred interactomes of pathogenic fungi  277 

In total 15 globally important Ascomycete fungal species across 9 taxonomic orders were selected for 278 

network analysis. Of these, 13 are serious plant pathogenic species with different in planta lifestyles 279 

and host ranges, one is a serious human pathogen with a prominent saprophytic phase in multiple 280 

environments and the last is the model species S. cerevisiae (Table 1). For each species the 281 

percentage of proteins in the predicted proteomes with one or multiple domains was predicted (Table 282 

2). The protein-protein interactions were inferred using domain-domain interaction and interolog 283 

approaches. The sets of domain-domain interactions (DDI) were taken from KBDOCK, DOMINE 284 

and 3did interacting domains databases. The interologs where inferred by taking experimentally 285 

established interacting orthologous protein pairs in Saccharomyces cerevisiae and 286 

Schizosaccharomyces pombe and combining them with experimental interaction data from the IntAct 287 

database (Orchard et al., 2014). The overall number of edges inferred from each of these resources is 288 

shown in Table 3. Across all 15 species explored, the DDI-inferred interactions had the highest 289 

overall coverage (from ~70 to 100%), with contributions from KBDOCK and 3did being particularly 290 

prominent (Table 4). The coverage by the interolog-inferred interactions was considerably lower 291 

within the range 7.92-32.59% of all predicted interactions.  292 
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There was considerable variation in the sizes of the reconstructed networks (Table 3, Raw data in 293 

Supplementary Table S2). The largest reconstructed network was for F. oxysporum f. sp. 294 

lycopersici (8,292 nodes and 45,2631 edges), which reflects the far larger number of genes predicted 295 

for this species as well as the 2nd largest number of proteins with at least one domain predicted 296 

(Table 2). At the other extreme the two smallest reconstructed networks were for S. sclerotiorum 297 

(3,803 nodes and 118,987 edges) and B. graminis f. sp. hordei (3,816 nodes and 154,218 edges). S. 298 

sclerotiorum had the lowest percentage of the exome with a predicted domain (~45%), whereas the 299 

obligate biotroph B. graminis f. sp. hordei is known to have a very restricted exome compared to 300 

numerous non-biotrophic plant pathogenic species (Spanu et al., 2010). The remaining species 301 

corresponded to networks of a broadly similar size. The brassica-infecting L. maculans and S. 302 

sclerotiorum had a low percentage of the exome with a predicted domain in the reconstructed 303 

network (Table 2), as well as a low number of proteins with at least one domain predicted.  304 

To explore the locations of the PHI-base genes in each of the networks, the total gene list 305 

downloaded from PHI-base 4.6 with the original curator annotation was partitioned into three logical 306 

categories, namely (a) pathogenicity / virulence required, termed 'pathogenicity - related' (b) 307 

pathogenicity /virulence not required, termed 'pathogenicity-unrelated' and (c) pathogenicity context 308 

dependent, i.e. only required for the infection of certain plant host species and / or tissue types, 309 

termed 'mixed outcome'. As expected, the number of PHI-base annotated proteins found in each of 310 

the 15 reconstructed networks was generally proportional to the number of original annotations 311 

available for that species (Table 1). In total, of the 1,461 PHI-base annotated genes with phenotypes, 312 

1,362 (93%) were included in one or more of the 15 inferred interactome networks, of which 569 313 

were required for pathogenicity/virulence, 726 were not required for pathogenicity / virulence and 67 314 

had a pathogenicity context specific phenotype. For 6 species (A. fumigatus, B. cinerea, F. 315 

graminearum, F. oxysporum, F. verticillioides and M. oryzae) context-specific pathogenicity nodes 316 

were present within the network. For the other networks, only a single type of bioassay had been 317 

used by the international community, for example only a wheat leaf bioassay is used to explore Z. 318 

tritici virulence requirements, or that the gene sequence involved lacked either a domain or a domain 319 

interaction. The four most populated inferred interactome networks, in decreasing order of 320 

abundance, were F. graminearum, M. oryzae, A. fumigatus and B. cinerea. These four species have 321 

the highest PHI-base annotation of the 15 species selected, again in decreasing order of abundance. 322 

3.2 Quality evaluation of predicted interactomes 323 

To evaluate the quality of the different sources of inferred interactions, we have explored the 324 

numbers of co-localised interaction partners and the semantic similarity of their functional 325 

annotations in biological process (BP) and molecular function (MF) aspects of the Gene Ontology 326 

(GO). This analysis was performed on all the 15 reconstructed networks and used respective GO 327 

annotation for each of the species from Ensembl Fungi database (Kersey et al., 2018). The expected 328 

pattern is that true positive interactors would be found in the same compartment and be functionally 329 

similar. The distributions of edges from each source were compared to the set of randomly drawn 330 

pairs and experimentally confirmed interactions from Saccharomyces cerevisiae (Figure 2). As 331 

expected, the random control had on average substantially lower semantic similarity and the lowest 332 

proportion of co-localised interaction partners. The subsets generated from the three DDI resources 333 

were quite similar in terms of semantic similarity for both BP and MF aspects. Interestingly, these 334 

subsets had a much higher proportion of co-localised interactors and MF similarity compared to 335 

experimental interactions from S. cerevisiae. This is likely due to the substantial number of high-336 

throughput interaction studies included in the latter experimental data set, which may yield 337 
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substantial numbers of false-positive interactions. The S. cerevisiae orthology-inferred subset of 338 

interactions appears to follow the same pattern as the experimental one, though S. pombe-inferred 339 

subsets appear to score much higher with respect to both co-localisation and BP semantic similarity. 340 

The quality of interaction networks can therefore be validated by comparing an average functional 341 

similarity score of predicted links to an average of a randomly drawn set of a similar size. 342 

3.3 Random walk with restart analysis 343 

Previous studies have shown that network propagation approaches can be highly promising for 344 

prioritisation of human disease (genetic disorder) genes (Köhler et al., 2008) and profiling of cancer 345 

mutation patterns (Leiserson et al., 2015). However, until now applications of these methods were 346 

focused in biomedical domains and potential applications for pathogenic species of agricultural 347 

interest has not been widely explored. In this study we have investigated the performance of the 348 

random walk with restart (RWR) algorithm for prioritisation of genes likely to produce a 349 

pathogenicity-related phenotype in gene deletion or gene silencing experiments. Only the most 350 

populated inferred interactome network with a total of 676 PHI-base gene entries was selected for 351 

this type of analysis, namely F. graminearum. With regards to the predictive power of the method, 352 

the receiver-operator curve (ROC) showed an area under the curve (AUC) of 0.76 (Figure 3), which 353 

indicates acceptable prediction. This metric can be compared to other similar RWR studies, for 354 

example in the human disease gene prediction study (Koehler 2008) a ROC-AUC score of 0.981 was 355 

obtained using the RWR method, whilst for the cancer mutation study successfully identified 356 

significant clusters of somatic mutations used a variant of the heat diffusion approach. The obtained 357 

result indicates that there may be some evidence of co-location of pathogenicity-related proteins in 358 

the PPI networks. However, we have also found that substantial experiment-specific biases were a 359 

very prominent factor affecting the distribution of gene annotations in the network. Therefore, we 360 

conclude that many more gene annotations will be needed before this or similar approaches can 361 

reliably suggest candidates without the need of substantial expert input and follow-up curation. Out 362 

of the top 10 genes highlighted as likely important for pathogenicity using RWR approach eight at 363 

present have not been adequately annotated. However, the remaining two genes have been annotated 364 

as an aspartokinase (FGRAMPH1_01T24779, top 4th prediction) and acetolactate synthase 365 

(FGRAMPH1_01T02707, top 6th prediction). Both genes have been previously identified as 366 

promising targets for antifungal agents in two earlier studies  (Richie et al., 2013; Kaltdorf et al., 367 

2016), respectively. 368 

3.4 Functional cartography and annotated PHI-base phenotypes 369 

In an effort to describe the topological nature of the nodes that lie within the community structure 370 

detected in the first connected component of each network, a node classification scheme proposed by 371 

Guimera and Nunes Amaral (2005) has been employed. Here we concentrate only on the first 372 

connected component of each network because it comprises the majority of the nodes of a given 373 

network and PHI-base annotated nodes mainly lie in the largest connected component of each 374 

network. The distribution of the node role types is recorded in Table 5. Overall, the majority of 375 

nodes within the community structure, calculated for the first connected component, are defined as 376 

non-hub peripheral nodes (R2) with most links within the community. Exception here is Bipolaris 377 

sorokiniana for which ultra-peripheral nodes (R1) account for the higher number within detected 378 

communities. On the other hand, hub-nodes (R5, R6 and R7) represent a very small percentage of the 379 

nodes across all networks.  380 
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Whilst comparing the node associated phenotype to the node role, we identified 539 pathogenicity-381 

related, 700 pathogenicity-unrelated and 67 with pathogenicity context specific phenotype nodes 382 

across first connected components of all networks (Figure 4). Pathogenicity-related nodes appeared 383 

to be highly represented by non-hub nodes, mainly peripheral nodes (R2) with the most links within 384 

the community. Although we observed connector hub nodes only associated with pathogenicity-385 

related phenotype, the number is too small (2 nodes: FGRAMPH1_01T04861 and Sc YPL240C) to 386 

associate the R6 type nodes with pathogenicity. Unfortunately, the PHI-base annotation is not 387 

available for any of global kinless hub nodes (R7). In total 28 nodes of this type were detected within 388 

the largest connected component of 13 PPI networks, whereas in B. sorokiniana and S. cerevisiae 389 

networks R7 nodes were not identified.  390 

Furthermore, chi-square test of association confirmed initial findings that pathogenicity-related nodes 391 

are located outside the dense core of the network. Null hypothesis stating that there is no association 392 

between the node position in the network and its effect on the pathogenic lifestyle was rejected (2 = 393 

127.97, critical value = 9.49, p-value = 1.0556E-26). Inspection of the frequency table 394 

(Supplementary information 2) reveals that there is a positive correlation between node types R2, 395 

R3, and R4 and pathogenicity-related phenotypes. On the other hand, a significant positive 396 

correlation was observed between ultra-peripheral (R1) and pathogenicity-unrelated nodes.  397 

Taken together, hub node genes were found in the majority to be unrelated to pathogenicity, while 398 

pathogenicity genes were overrepresented outside the core communities. In these peripheral regions 399 

the pathogenicity related genes link to one or more other communities. We also noted that 400 

pathogenicity related genes were not found in ultra-peripheral positions. Collectively these 401 

unexpected findings suggest that pathogenicity nodes join protein communities with diverse 402 

functions. 403 

 404 

3.5 Analysis of small interfering RNA targets in networks for Botrytis cinerea and Fusarium 405 

graminearum 406 

To obtain additional information about the targeted proteins, protein complexes and metabolic 407 

pathways and to determine the effectiveness of using the Guilt-by-Association principle (Petsko, 408 

2009) in identifying associated candidate virulence genes, we investigated the protein-protein 409 

interaction neighbours of the 42 published siRNA target sites (Cai et al., 2018) identified in Botrytis 410 

cinerea through wet biology/ next generation sequencing analysis of the in planta interaction.  411 

Both B. cinerea and F. graminearum are fungal Ascomycetes and many conserved orthologous genes 412 

exist in both species important for virulence on their respective hosts (Van De Wouw and Howlett, 413 

2011). For F. graminearum a rich dataset of genes with phenotypic annotation exists, while for B. 414 

cinerea only a comparatively small number of genes have been formally tested in gene modification 415 

experiments and phenotypically assayed (Urban et al., 2016; Li et al., 2018). We reasoned that by 416 

surveying the predicted interactome of the siRNA target orthologs in F. graminearum additional 417 

information could be obtained to pinpoint siRNA targets to more specific protein complexes and 418 

metabolic networks, to provide further annotation to the interacting partners and to identify novel 419 

candidate genes with a potential function in virulence. 420 

We first mapped the siRNA targets identified in B. cinerea (Cai et al., 2018) to the B. cinerea and F. 421 

graminearum genomes using BLAST. This approach identified a total of 33 targets in the most recent 422 
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B. cinerea genome assembly and 17 orthologs in F. graminearum (Table S3). SiRNA target genes, 423 

the predicted interacting proteins and the phenotype annotation provided by PHI-base were then 424 

investigated using Cytoscape. Subnetworks of siRNA target genes and their first neighbours were 425 

created and visually inspected. In an attempt to keep functional annotation and the number of 426 

predicted candidate virulence genes small and meaningful, we set a stringent cut-off criterion 427 

requiring at least one in ten genes to have a virulence associated annotation in the PHI-base database. 428 

Due to the lack of B. cinerea genes tested in gene function experiments, no B. cinerea target 429 

subnetwork fulfilled this stringent criterion. However, a B. cinerea subnetwork with one PHI-base 430 

virulence annotation in 13 genes exists and this is targeted by the small RNA TaAS1c-siR483 431 

(Figure 5). The associated F. graminearum gene FG_22771 encodes the end-binding protein 1 432 

(FgEb1) regulating microtubule dynamics. A deletion mutant of this gene shows increased hyphal 433 

branching and highly reduced sesquiterpene deoxynivalenol (DON) mycotoxin biosynthesis (Liu et 434 

al., 2017). 435 

 436 

In contrast, eight subnetworks in F. graminearum were identified that fulfilled the stringent cut-off 437 

criterion. The identified subnetworks have 4 to 89 node genes. We further excluded the largest 438 

subnetwork with 89 genes as this subnetwork includes many of the well-studied MAP kinase 439 

signalling related genes i.e. GPMK1, HOG1, MGV1 required for the virulence of F. graminearum 440 

and other fungal pathogens (Zhao et al., 2007). Subnetworks sharing first-neighbour genes were 441 

merged further (Supplementary information 3). The candidate gene list includes seven B. cinerea 442 

target gene orthologs: FG_10451 is linked to Cdc42 implicated in cell division  (Zhang et al., 2013); 443 

FG_03955 and FG_23275 are both linked to Hsp90 and Mgv1 with functions in heat shock and cell-444 

wall integrity (Hou et al., 2002; Bui et al., 2016); FG_01625 is linked to the Top1 topoisomerase 445 

gene important for  DNA unwinding and transcriptional regulation (Baldwin et al., 2010); FG_23313 446 

is linked to two ATP driven efflux pumps Abc1 and Abc3 implicated in secretion of xenobiotics or to 447 

protect the fungus from host-derived defence compounds (Abou Ammar et al., 2013; Gardiner et al., 448 

2013) ; FG_21253 and FG_21113 are linked to cytochrome P450 genes including  cyp51 genes 449 

essential for ergosterol production required to maintain fungal plasma membrane integrity (Fan et al., 450 

2013) and three cytochrome P450 monooxygenases involved in trichothecene mycotoxin production 451 

(Tri1, Tri4, Tri11) (Chen et al., 2019). An expected result was the linking of siRNA target homologs 452 

to genes involved in microtubule organisation, stress adaptation, cell-wall integrity, DNA replication 453 

and ATP driven efflux pumps because pathogens need to adapt to the many potentially hostile 454 

environments encountered during successful entry, colonisation and reproduction whilst exposed to 455 

the host’s defence responses.  However, the identification of an additional subnetwork that included 456 

three ergosterol biosynthesis pathway genes (CYP51) as well as the secondary metabolism genes 457 

required for trichothecene mycotoxin production (TRI1, TRI4, TRI11) (Figure 6) was not expected.  458 

In various pathway databases, for example KEGG and MetaCyc, these pathways are displayed 459 

separately. This merged subnetwork included three target orthologs as first-neighbours and an 460 

additional single wheat siRNA target named FG_12063 reported to have an unknown molecular 461 

function, that was recently shown to be required for virulence (Jiao and Peng, 2018). For the 462 

subnetworks there are between one to six Pfam domains present in each protein forming the 463 

interactions. For example, the cytochrome P450 monooxygenase Tri1 has only one Pfam domain 464 

PF00067, whereas the polyketide synthase Pks1 has eight unique Pfam domains. 465 

In summary for F. graminearum, the seven subnetworks obtained using this novel approach are 466 

formed by 69 genes, of which 36 have annotations provided by PHI-base or FusariumMutantDb. 467 

Thirty-five genes have not been experimentally analysed previously in F. graminearum and have 468 
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now been implicated as potential virulence factors. Our analysis suggests that many of these F. 469 

graminearum genes are involved in promoting stress adaptation, and that the corresponding B. 470 

cinerea genes may be involved in related metabolic functions. The potential link between the 471 

ergosterol biosynthesis pathway essential for fungal membrane formation and the secondary 472 

metabolism genes required for trichothecene mycotoxin production is a novel and unexpected 473 

finding.  474 

 475 

3.6 Network availability 476 

To facilitate access to these 15 interactomes, which we have called PHI-Nets, we have made them all 477 

available for download (www.phi-base.org). The use case example networks for Fusarium 478 

graminearum and Botrytis cinerea were also uploaded to NDEx (www.ndexbio.org) with accession 479 

numbers https://doi.org/10.18119/N9259J and https://doi.org/10.18119/N9XG68, respectively. 480 

Subnetworks can be found on NDEx using search term: PHI-Nets. 481 

  482 

4 Discussion 483 

To fully understand biological mechanisms underlying complex processes such as fungal 484 

virulence and host invasion, functions of individual genes need to be considered in an appropriate 485 

context that can capture both their relationships to other biological entities and relevant system states. 486 

Biological networks have emerged as an important tool that enables large volumes of available 487 

information to be integrated and mined for such patterns. In this study we have created high-quality 488 

reconstructed interactomes for 14 species of pathogenic fungi and one model saprotroph across nine 489 

taxonomic orders within the Ascomycetes. Then by focusing on two exemplar species, we have 490 

illustrated how such resources can facilitate the identification of key interactions, reveal unexpected 491 

relationships in subnetworks annotated with PHI-base phenotype information and pinpoint possible 492 

candidate virulence genes with hitherto minimal to no formal annotation. 493 

Unlike previous similar studies (Szklarczyk et al., 2019), a substantial component of our predicted 494 

networks was derived using domain-domain interaction (DDI) data, which can potentially allow the 495 

prediction of interactions even in cases where direct homology to known interacting proteins in other 496 

species cannot be established. Therefore, this approach may potentially offer more insights 497 

specifically for pathogenic fungal species where at present there are still very few experimentally 498 

confirmed interactions. The closest model organisms with well-profiled interactomes are the budding 499 

and fission yeasts (S. cerevisiae and S. pombe), which are not principally pathogenic and therefore 500 

are expected to be lacking many of the key genes and processes linked to virulence. Our evaluation 501 

of the interactome quality with respect to Gene Ontology function and cellular compartment 502 

annotations has shown that DDI-predicted edges are of comparable quality to interolog ones, and, 503 

likewise, are substantially better than random predictions. It should be noted that only 50% or less of 504 

the predicted exome can be captured within the protein-protein interaction network. Therefore, it was 505 

necessary to include interolog data to provide the more complete networks used in these analyses.  506 

Notably, due to the differences in protein domain composition of the exomes some of the 507 

networks have considerable size differences despite having similar numbers of proteins. Though at 508 

present differences in the quality of the genome annotation cannot be fully discounted as a 509 

http://www.phi-base.org/
http://www.ndexbio.org/
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contributing factor, this may also hint at possible differences in organisational complexity of these 510 

organisms, as a greater number of interactions can accommodate a much larger range of emergent 511 

behaviours. Previous work has shown that the number of genes by itself does not correlate with an 512 

organism's complexity, a phenomenon commonly referred to as 'G-value paradox' (Hahn and Wray, 513 

2002). On the contrary, interactome size was shown to be one of the important determinants (Schad 514 

et al., 2011). Although this observation has not been further analysed in detail in this study, the 515 

created resources may allow for future investigation of these patterns in pathogenic fungi. Similarly, 516 

although in each network the annotation for each node includes the predicted eight major cellular 517 

compartments, this information has not been explored beyond confirming co-localisation of 518 

interacting partners.  519 

We have investigated cartography analysis as a topological property in the network in the 520 

context of pathogenicity related and unrelated gene sets in fifteen different fungal species. This 521 

analysis showed that genes important for pathogenicity appear to be located at the periphery of the 522 

densely connected network core, and in a relatively sparse area (lower within-community degree) 523 

compared to pathogenicity-unrelated genes.   At the same time, genes important for pathogenicity 524 

were found to have higher participation coefficients. These two results were unexpected but are of 525 

considerable interest. These findings suggest their importance in mediating information flow through 526 

the network. In addition, 2 out of 10 genes highlighted in RWR analysis as ‘likely required for 527 

pathogenicity’ were found in peripheral region (R2) of the F. graminearum network indicating their 528 

non-hub like properties and links to other communities. Both genes were previously found to be 529 

required for virulence in a plant and a human pathogen and have been suggested as possible 530 

antifungal targets (Richie et al., 2013; Kaltdorf et al., 2016). Collectively, this outcome also suggests 531 

that as more phenotyping annotations become available via the PHI-base route, the knowledge 532 

available for these peripheral connected parts of the network, i.e. nodes located outside the dense 533 

core of the network, may disproportionately increase.  Overtime this should reduce the length of 534 

candidate gene lists selected for follow-up functional analyses. 535 

      The main measurements of the topological properties of a network are node degree, betweenness 536 

centrality, average shortest path length and clustering coefficient.  Studying these properties has been 537 

postponed until the PHI-annotations in the networks increase.  Instead we have focussed on node 538 

position in the network. In the protein-protein interaction network there is a topology where nodes 539 

with low degree (node with small number of edges connected to it) coexist with nodes with large 540 

degree (node with large number of edges connected to it). This also applies to the edge distributions 541 

in PPI networks where the density of edges within particular groups of nodes is higher than the 542 

average edge density in the whole network. Such groups of nodes with a high density of edges within 543 

them are defined as community structures (also known as modules or clusters). Each community 544 

consists of nodes that share similar properties or play a similar function in the graph. Thus, in 545 

protein-protein interaction networks, proteins that are within the same community are likely to share 546 

the same specific role within the cell (Fortunato, 2010).  In our study, we identified pathogenicity-547 

related nodes as non-hub peripheral nodes that have more links within the community (modules) they 548 

are part of. This indicates they share similar functions or even a similar pathogenic biological 549 

process. However, these nodes also have some link to other functional modules (communities) which 550 

makes them important nodes in the network in mediating the information flow between different 551 

functional communities within the network. Thus, pathogenicity genes appear not to act alone but as 552 

a part of synergistic connections with other functional communities.  553 

  554 

 555 
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 556 

In contrast to the results by (Liu et al., 2010) that compared pathogenicity-related genes to the 557 

rest of the network, our comparison was done with an experimentally confirmed pathogenicity-558 

unrelated control gene set. The lower degree and location outside the dense core of the network are 559 

consistent with the expectation created by the currently adopted definition of pathogenicity-related 560 

genes (Idnurm and Howlett, 2001) as the ones that are only present in pathogenic species. 561 

Specifically, the core of the network would be composed of evolutionary older genes common to a 562 

much wider range of different species (Hahn and Wray, 2002). Additionally, gene deletion of vital 563 

core and high-degree genes are likely to be lethal to the organism and therefore would not produce an 564 

observable pathogenicity-related phenotype. 565 

      Although we have shown that properties of genes identified in this work appear to be predictive 566 

and therefore can be used to identify promising pathogenicity-related genes in diverse fungal species, 567 

limitations to this approach exist, in particular, the current availability of experimental phenotype 568 

data. As our approach relies on analysis of PPI networks to estimate the likely importance of genes 569 

both coverage and quality of such networks can be a limiting factor. At present and consistent with 570 

many previous studies our networks cover about half of all the genes in each species. Some important 571 

classes of infection-related proteins like effectors are unlikely to form interactions within the fungal 572 

cell. However, a further important factor is likely to be the current lack of experimentally determined 573 

interactions specific to pathogenic fungi. We estimate that once ~33% of all genes for a single 574 

pathogenic species have been functionally characterised this will provide the ‘tipping point’ for this 575 

type of in-depth analysis via topological properties. Other potentially informative data sources we 576 

have not considered here are transcriptomics data and metabolic pathway networks. Transcriptomics 577 

has already been demonstrated to be informative in several previous studies but is often not available 578 

in sufficient quantities for some of the key fungal phytopathogenic species. In terms of the metabolic 579 

pathway networks, although they are unlikely to substantially improve coverage (as relatively few 580 

genes are enzymes), metabolic links between pathogen and host are of great importance and 581 

understanding these processes can help to identify promising candidate genes (Scharf et al., 2014; 582 

Dühring et al., 2015). Similarly, modelling of cross-species interactions between other types of host 583 

and pathogen networks is becoming an area of active research (Remmele et al., 2015; Guthke et al., 584 

2016) that is likely to yield yet more insights to complement the inter-species interactomes 585 

constructed for this study. And lastly, as pathogenicity-related processes are highly context-specific, 586 

we expect that our results would be primarily useful in prioritisation of promising candidates in 587 

combination with other gene lists that can provide appropriate context (for example, differential 588 

expression gene lists or relevant functional gene groups or chromosomal position). 589 

Cross kingdom RNAi interference is an evolutionary conserved pathway in eukaryotes and 590 

plants. It can be utilised in crop protection strategies such as host-induced gene silencing and external 591 

small RNA applications to silence pathogen genes during infection (Majumdar et al., 2017; Mitter et 592 

al., 2017; Machado et al., 2018). In the two globally import pathosystems B. cinerea-tomato and F. 593 

graminearum-wheat several studies demonstrated that both pathogen and host utilise RNA 594 

interference as part of pathogen virulence and host resistance mechanisms (Cai et al., 2018; Jiao and 595 

Peng, 2018). The presence of host-induced silencing mechanisms in wheat was previously 596 

demonstrated by expressing RNAi constructs targeting F. graminearum that resulted in attenuated 597 

virulence of the attacking Fusarium species (Chen et al., 2016). We used the 21 siRNA B. cinerea 598 

target genes published by Cai and colleagues (2018) to demonstrate that the PPI networks presented 599 

in this study can add further annotation to the targeted genes. The predicted direct protein interaction 600 
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partners are more likely to have a function in virulence themselves and are therefore elevated to 601 

virulence gene candidate status. Due to the large numbers of proteins in the network, we focused our 602 

analysis on subnetworks in F. graminearum with a higher presence of PHI-base phenotypes to 603 

speculate on a potential role in virulence. A caveat to this approach is that using phenotype 604 

annotation from PHI-base is likely to introduce a bias as proteins with known annotation were 605 

preferentially selected to generate subnetworks. However, our approach identified 35 candidate 606 

virulence genes, including eight siRNA target gene orthologs themselves, that were mapped to RAS 607 

signalling, heat shock response, cell-wall integrity, ergosterol biosynthesis, trichothecene mycotoxin 608 

biosynthesis, DNA replication and ATP driven export. The potential link found between ergosterol 609 

biosynthesis and trichothecene mycotoxin biosynthesis due to their co-occurrence within the same 610 

subnetwork is both intriguing and unexpected.  Overall, these findings add further annotation to the 611 

siRNA targets previously identified (Cai et al., 2018), their unannotated potential interactors and map 612 

the B. cinerea siRNA targets to proteins targeted by azole fungicides in the wheat head blight 613 

pathogen F. graminearum (Fan et al., 2013). While B. cinerea is not a pathogen of wheat but of 614 

tomato and many other dicotyledonous hosts (Table 1), we suggest that the orthologous B. cinerea 615 

siRNA target genes in F. graminearum have a conserved function and may also likely be virulence 616 

genes in this species. While Cai and colleagues (2018) identified siRNAs from tomato, similar 617 

analysis are now underway in wheat. Recently FG_12063 encoding a protein with unknown function 618 

was suggested as the target of a small wheat RNA called Tae-miR1023 (Jiao and Peng, 2018). The 619 

deletion of FG_12063 reduced the pathogen’s ability to cause disease. The finding that FG_12063 is 620 

predicted to interact with the B. cinerea siRNA target homolog Nps2 identified in our F. 621 

graminearum subnetwork raises the possibility that siRNAs are also produced in wheat during 622 

defence against pathogen attack. Gene deletions of the prioritised genes presented in this work will 623 

be the focus of future investigations.  624 

The projecting of the B. cinerea annotations arising from the RNA silenced targets onto the F. 625 

graminearum network yielded several unexpected results, that could not have been acquired solely 626 

through a straightforward pathway analysis. This is because in KEGG/MetaCyc pathways mostly 627 

enzymes are represented, whereas regulatory genes including kinases and transcription factors are 628 

not. In addition, pathway information is highly fragmented for filamentous pathogens. For instance, 629 

out of 13,447 F. graminearum proteins in the KEGG reference genome, 9,356 (70%) are currently 630 

not linked to any annotation or pathway. By using the network approach this allows researchers to 631 

overlay the pathways on the wider PPI network to permit the exploration of known pathways within a 632 

far richer context. For example, the cyp51 pathway is within the generic sterol biosynthesis pathway 633 

but through this PPI network analysis is also now linked by unknown mechanisms to additional 634 

genes not previously associated with sterol biosynthesis (including FG_12063, FG_21113, 635 

FG_21253) (as shown in Fig. 6) and some of the genes responsible for trichothecence mycotoxin 636 

biosynthesis. In the original Botrytis study, the predicted siRNA target site had not been associated 637 

with sterol biosynthesis. Finally, for yeast model organisms excellent databases covering pathways, 638 

signalling and transcription factors annotations do exist; however, a different problem confronts their 639 

predictive use by molecular plant pathology/bioinformatics researchers. The overall size of the yeast 640 

proteome is considerably smaller (~6,500) than for most filamentous pathogenic species (10,000 - 641 

16,000). Therefore, large parts of PPI networks generated for filamentous pathogens do not 642 

correspond to any part of the PPI networks generated for these model non-pathogenic organisms. 643 

This is the first study to explore the targets of small silencing RNAs delivered from host plants in 644 

the context of PPI networks for pathogenic species. This is also the first comparative study to explore 645 

whether new information on siRNA targeting obtained from one host-pathogen interaction can be 646 
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used to provide novel insights for a second host-pathogen interaction which has already been 647 

extensively explored using traditional forward and reverse genetic approaches as well as through PPI 648 

network analysis. 649 

The 15 PHI-Nets have been placed within the PHI-base resource.  This will enable researchers to 650 

integrate novel phenotypes in a timely fashion to the networks/subnetworks of greatest interest. PHI-651 

base entries are updated and extended 2-4 times a year. Also > 98% of PHI-base annotated proteins 652 

are mapped to Ensembl Genomes (Howe et al., 2019) and Fungidb browsers  (Basenko et al., 2018), 653 

where RNA-seq data, variation data and pathway maps for PHI-base proteins are available. This 654 

immediately provides researchers with an exciting and novel research environment within which to 655 

inter-connect and explore protein-protein relationships and pathways. In Fungidb release 46, 656 

subnetworks of interest for eight of the fifteen PHI-Net pathogen species (A. fumigatus, B. cinerea, F. 657 

graminearum, F. oxysporum f. sp. lycopersici, F. verticillioides, M. oryzae, S. cerevisiae, S. 658 

sclerotiorum) can also be mapped within Fungidb to KEGG and MetaCycDB pathways. In addition, 659 

Supplementary Table 2 (Col C-‘UniProt Id’ and Col E ‘PHI-base mutant phenotype’) directly 660 

provides phenotypic annotation for proteins present in the 15 Ascomycete networks taken from PHI-661 

base version 4.6. Here a corpus of UniProt Ids is provided rather than gene Ids. This information will 662 

directly assist researchers using a comparative genomics approach to identify species specific as well 663 

as conserved virulence functions across species and taxa. By using the data in this table researchers 664 

can more easily merge information provided by UniProtKB (GO information, subcellular location, 665 

enzymatic activity) with the in-host phenotypes provided by PHI-base. Finally, PHI-base already 666 

provides detailed biological lifestyle information for PHI-base species to allow non-specialist 667 

researchers  easy access to pathogen information to enable comparative studies (obligate biotrophs, 668 

heterotrophic and necrotrophic lifestyles) (Table 1) and published previously (Urban et al., 2015). 669 

The use case example networks and subnetworks for F. graminearum and B. cinerea were further 670 

uploaded to NDEx (www.ndexbio.org) to increase visibility of this study for wet lab molecular 671 

biologists and bioinformaticians alike. NDEx provides a rich infrastructure for network access and is 672 

closely linked to Cytoscape and promotes re-use of research findings (Pratt et al., 2015; Pillichet al. 673 

(2017).  NDEx also enables programmatic access via APIs and can be used to embed subnetworks 674 

directly into webpages (Pratt et al., 2015; Pillich et al., 2017). 675 

 676 

4.1 Conclusion and outlook 677 

We provide predicted protein-protein interaction networks of globally important filamentous plant 678 

pathogens for download and interactively accessible online versions at the network repository PHI-679 

Nets (www.phi-base.org/consortium.htm) and NDEx (www.ndexbio.org). We have also identified a 680 

set of features that can be effectively used to identify candidate virulence and pathogenicity genes in 681 

pathogenic fungi. Exemplar networks for B. cinerea and F. graminearum were used to enrich 682 

annotation for several B. cinerea genes targeted by small interfering RNAs produced by the 683 

Arabidopsis host during disease interaction. Several directly interacting proteins of the target genes 684 

were identified and are novel candidate virulence genes in both B. cinerea and F. graminearum. We 685 

predict that as more genomes are sequenced, and more pathogen genes are functionally characterised 686 

this will result in a data increase in interactome databases. Thus, networks will need to be rebuilt over 687 

time to take these latest developments into consideration when exploring strain-to-strain differences 688 

in pangenome and/or genome wide association studies. We also predict that once more protein-689 

protein interactions are experimentally verified for pathogenic species, these can be used to increase 690 
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the robustness and extend of DDI networks, permit topological properties of a network to be explored 691 

in detail and thereby increase their overall utility to comparative analyses when exploring host-692 

pathogen and pathogen-pathogen interactions. 693 
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10 Data Availability Statement 725 
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12 Tables 938 

Table 1: Lifestyle, host range and PHI-base network annotations for the 15 selected fungal species.  939 

 940 

Order Species NCBI 

taxo-

nomy 

identi-

fier 

Lifestyle  Host species 

types 

(natural) 

No of plant 

hosts; Vast - 

well over 100 

host species, 

Many - up to 

100 host 

species, A few - 

up to 20 host 

species, One - a 

single host 

species  

No of different 

host 

interactions 

recorded in the 

literature 3, 4  

PHI-base 

annotatio

ns in 

network 

Eurotiales Aspergillus fumigatus 746128 Lung 

infections and 

invasive 

aspergillosis 

(IA)1 

Human, 

domesticated 

and wild 

animal and 

bird species 1  

Many footnote 2 114 

Pleospirales Bipolaris sorokiniana 45130 Hemibiotroph  Cereal 

Monocot  

Vast 374 2 

Erysiphales Blumeria graminis f. 

sp. hordei  

62688 Obligate 

biotroph  

Cereal 

Monocot 

One 1 1 

Helotiales Botrytis cinerea 40559 Hemibiotroph 

- necrotroph 

Cereal 

Monocot - 

Non-Cereal 

Monocot - 

Dicot  

Vast 1367 50 

Glomerellales Colletotrichum 

fructicola 6 

690256 Hemibiotroph 

- necrotroph 

Non-Cereal 

Monocot - 

Dicot  

Vast 1911 5 2 

Glomerellales Colletotrichum 

graminicola 

31870 Hemibiotroph Cereal 

Monocot and 

Dicot 

Vast 342 8 

Hypocreales Fusarium 

graminearum 

5518 Hemibiotroph 

- necrotroph 

Cereal 

Monocot - 

Non-Cereal 

Monocot - 

Dicot  

Vast 216 789 

Hypocreales 

 

Fusarium oxysporum f. 

sp. lycopersici 

59765 Necrotroph Dicot A few  15 26 
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Hypocreales 

 

Fusarium 

verticillioides 

117187 Hemibiotroph 

- necrotroph 

Cereal 

Monocot - 

Non-Cereal 

Monocot - 

Dicot  

Many 124 24 

Pleospirales Leptosphaeria 

maculans 

5022 Hemibiotroph 

- necrotroph 

Dicot  Vast 110 2 

Magnaporthales Magnaporthe oryzae 318829 Hemibiotroph Cereal 

Monocot 

Many 46 389 

Saccharomycetales Saccharomyces 

cerevisiae 

4932 Saprotroph none Zero 0 13 

Helotiales Sclerotinia 

sclerotiorum 

5180 Necrotroph Non-Cereal 

Monocot - 

Dicot  

Vast 684 3 

Glomerellales Verticillium dahliae 27337 Necrotroph Dicot Vast 395 25 

Capnodiales Zymoseptoria tritici 1047171 Hemibiotroph Cereal 

Monocot 

A few 33 13 

1 IA disease only in human and animal hosts with severe immunodeficiency; 2 (Seyedmousavi et al., 2015) Aspergillus and 941 
aspergilloses in wild and domestic animals: a global health concern with parallels to human disease Seyedmojtaba Seyedmousavi, 942 
Jacques Guillot, Pascal Arné, G. Sybren de Hoog, Johan W. Mouton, Willem J. G. Melchers, Paul E. Verweij Medical Mycology, 943 
Volume 53, Issue 8, November 2015, Pages 765–797, https://doi.org/10.1093/mmy/myv067; 3 https://nt.ars-944 
grin.gov/fungaldatabases/fungushost/fungushost.cfm; 4 http://www.plantwise.org/KnowledgeBank; 5 Host species noted for 945 
Colletotrichum gloeosporioides in database 3, 6 Colletotrichum fructicola previously known as Colletotrichum gloeosporioides.  946 

 947 

 948 

 949 

Table 2. Summary of protein domain annotation statistics for the genome versions used in this study. 950 

 951 

Species Genome version 1 

Predicted 

proteins 

count 

Count of 

proteins 

with a 

domain 

% 

exome 

with a 

domain 

% exome 

with 

multiple 

domain 

% exome in the DDI 

network 2 

 

Aspergillus fumigatus CADRE.31 9630 6989 72.58% 21.50% 
52.56% (33.33% / 

19.23%) 

Bipolaris sorokiniana nd90pr.Cocsa1.31 12214 7416 60.72% 17.70% 
44.12% (28.20% / 

15.92%) 

https://doi.org/10.1093/mmy/myv067
https://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm
https://nt.ars-grin.gov/fungaldatabases/fungushost/fungushost.cfm
http://www.plantwise.org/KnowledgeBank
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Blumeria graminis f. sp. 

hordei  
EF1.31 6470 4337 67.03% 21.42% 

46.24% (27.73% / 

18.52%) 

Botrytis cinerea ASM15095v2.31 12103 7691 63.55% 18.49% 
46.00% (29.57% / 

16.43%) 

Colletotrichum fructicola 3 GCA_000319635.1.31 15381 9838 63.96% 16.60% 
46.93% (31.86% / 

15.07%) 

Colletotrichum graminicola GCA_000149035.1.31 12020 7816 65.02% 18.59% 
46.97% (30.27% / 

16.71%) 

Fusarium graminearum RR.26 14164 8488 59.93% 17.22% 
43.79% (28.30% / 

15.49%) 

Fusarium oxysporum f. sp. 

lycopersici 
FO2.31 17696 9805 55.41% 14.08% 

41.10% (28.55% / 

12.55%) 

Fusarium verticillioides ASM14955v1.31 14185 8286 58.41% 15.54% 
43.26% (29.18% / 

14.08%) 

Leptosphaeria maculans ASM23037v1.31 12469 6234 50.00% 15.16% 
35.94% (22.51% / 

13.43%) 

Magnaporthe oryzae MG8.31 12755 7242 56.78% 16.47% 
40.98% (26.21% / 

14.77%) 

Saccharomyces cerevisiae R64-1-1.31 6705 4837 72.14% 23.15% 
50.16% (30.08% / 

20.07%) 

Sclerotinia sclerotiorum ASM14694v1.31 10175 4568 44.89% 13.53% 
30.50% (19.27% / 

11.22%) 

Verticillium dahliae GCA_000150675.1.31 10535 6867 65.18% 18.35% 
46.39% (30.19% / 

16.20%) 

Zymoseptoria tritici MG2.31 10931 6597 60.35% 17.23% 
43.77% (28.64% / 

15.12%) 

 952 

1 All genomes were obtained from Ensembl Fungi v.31; 2 The percentages in brackets refer to single / multiple domain sub-counts 953 
respectively; 3 Colletotrichum fructicola previously known as Colletotrichum gloeosporioides.  954 

 955 

 956 

 957 

  958 
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Table 3: Network statistics 959 

 960 

Species Nodes Edges Average 

clustering 

coefficient 

Average 

degree 

centrality 

Modularity 

of the 

network 

Number 

of CCs 

Nodes in 

the 

largest 

CC 

Edges in 

the 

largest 

CC 

Communiti

es in the 

largest CC 

(Louvain) 

Modularity of 

the largest CC 

Aspergillus 

fumigatus 

5925 277441 0.631 93 0.4998 117 5498 276432 34 0.4974 

Bipolaris 

sorokiniana 

5389 264403 0.784 98 0.5117 258 4302 260418 32 0.5093 

Blumeria 

graminis f. sp. 

hordei  

3816 154218 0.477 80 0.3571 35 3709 153965 16 0.3363 

Botrytis cinerea 6416 344586 0.651 107 0.5087 130 5910 342596 30 0.5064 

Colletotrichum 

fructicola 1 

8161 444775 0.699 109 0.6430 137 7343 439356 47 0.6321 

Colletotrichum 

graminicola 

6514 297282 0.649 91 0.5482 128 5946 294921 38 0.5442 

Fusarium 

graminearum 

7062 381518 0.663 108 0.5748 130 6494 379470 38 0.5689 

Fusarium 

oxysporum f. 

sp. lycopersici 

8292 452631 0.699 85 0.6224 146 7571 449448 43 0.6177 

Fusarium 

verticillioides 

7094 334015 0.675 94 0.5636 141 6472 331647 42 0.5707 

Leptosphaeria 

maculans 

5327 221687 0.600 83 0.4423 97 4951 220656 27 0.4388 

Magnaporthe 

oryzae 

6071 287159 0.632 94 0.5065 119 5574 285379 32 0.5021 

Saccharomyces 

cerevisiae 

6024 235631 0.389 78 0.3502 3 6020 235629 11 0.3420 

Sclerotinia 

sclerotiorum 

3803 118987 0.616 62 0.4486 86 3531 118393 26 0.4351 
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Verticillium 

dahliae 

5801 247581 0.637 85 0.4968 113 5282 245569 34 0.4763 

Zymoseptoria 

tritici 

5609 251215 0.621 88 0.4495 104 5202 250084 31 0.4485 

 961 

CC - connected component; CCs - connected components; 1 Colletotrichum fructicola previously known as Colletotrichum 962 
gloeosporioides.  963 

 964 

Table 4: Summary of edges generated from each of the data sources across all 15 predicted 965 

interactome networks. For combined counts and proportions, the numbers were done on non-966 

redundant edge sets of those super-types. 967 

 968 

Inferred interaction source Number of edges Min/max proportion in individual 

networks 

DOMINE 2,652,834 58.56 - 73.88% 

3did 2,072,939 31.38 - 65.21% 

KBDOCK 755,866 10.11 - 30.10% 

Overall (DDI): 3,579,922 69.68-100.00% 

from S. cerevisiae 542,595 0.0% - 32.45% 

from S. pombe 9,086 0.0% - 0.65% 

Overall (interolog): 548,750 7.92-32.59% 

 969 

 970 

  971 
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Table 5: Functional cartography-specific node role distributions across all inferred 972 

interactomes. 973 

 974 

Species R1 [%] R2 [%] R3 [%] R4 [%] R5 [%] R6 [%] R7 [%] 

Aspergillus fumigatus 29.411 49.218 16.806 4.092 0.255 0.182 0.036 

Bipolaris sorokiniana 46.908 41.097 9.693 2.255 0.046 0.000 0.000 

Blumeria graminis f. sp. hordei  19.439 55.514 17.444 7.280 0.000 0.243 0.081 

Botrytis cinerea 28.511 54.924 13.063 2.944 0.355 0.169 0.034 

Colletotrichum fructicola 1 36.674 51.532 9.152 2.410 0.041 0.150 0.041 

Colletotrichum graminicola 29.617 53.145 10.545 5.869 0.656 0.135 0.034 

Fusarium graminearum 35.741 50.092 11.349 2.418 0.231 0.139 0.031 

Fusarium oxysporum f. sp. lycopersici 36.930 50.812 8.995 3.117 0.000 0.119 0.026 

Fusarium verticillioides 32.046 49.660 13.968 4.172 0.015 0.108 0.031 

Leptosphaeria maculans 23.086 51.747 19.087 5.676 0.222 0.121 0.061 

Magnaporthe oryzae 28.382 53.283 14.263 3.624 0.287 0.126 0.036 

Saccharomyces cerevisiae 19.153 61.927 12.027 6.595 0.000 0.299 0.000 

Sclerotinia sclerotiorum 30.926 51.742 13.141 3.993 0.000 0.170 0.028 

Verticillium dahliae 29.440 55.017 10.678 4.676 0.000 0.170 0.019 

Zymoseptoria tritici 25.356 49.904 19.377 5.190 0.000 0.115 0.058 

 975 
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R1 – ultra-peripheral node (all links within the cluster), R2 – peripheral node (most links within the cluster), R3 – non-hub connector 976 
node (many links to other clusters), R4 – non-hub kinless node (links homogeneously spread among all clusters), R5 – provincial hub 977 
(hub node with majority links within its cluster), R6 – connector hub (hub with many links to other clusters), R7 – global kinless hub 978 
(hub with links homogeneously spread among all clusters); 1 Colletotrichum fructicola previously known as Colletotrichum 979 
gloeosporioides.  980 

 981 

13 FIGURE LEGENDS 982 

Figure 1. Construction of computationally-inferred interactomes. 983 

Figure 2. Quality evaluation of the 15-predicted protein-protein interaction networks for pathogenic 984 

fungi.  985 

(A) Functional similarity was quantified using the information content for the most informative 986 

common ancestor Gene Ontology term for the linked proteins in the biological process.  987 

(B) Molecular function aspects of the gene ontology. Panels A and B show the overall functional 988 

similarity for interacting pairs.  989 

(C) Proportions of all interaction pairs co-localised to the same compartment.  Edge evidence 990 

sources are indicated by colours: Grey = inferred from domain pairs known to interact, black = 991 

experimentally-determined, blue = inferred from interacting ortholog pairs, red = baseline made up 992 

from randomly picked pairs of proteins of the same species. 993 

Figure 3. Receiver operating characteristic curve (ROC) used for Random walk with restart (RWR) 994 

from known pathogenicity-related and pathogenicity-unrelated seeds combined using random forest 995 

algorithm.  996 

The model was trained on the dataset of the four most well-annotated species and evaluated using 997 

5-fold cross validation. AUC – area under curve. 998 

Figure 4. Node roles distribution according to PHI-base annotation 999 

The numbers in brackets indicate the total number of annotated PHI-base phenotypes per largest 1000 

connected component for 15 networks. R1 - ultra-peripheral node (all links within the cluster), R2 - 1001 

peripheral node (most links within the cluster), R3 - non-hub connector node (many links to other 1002 

clusters), R4 - non-hub kinless node (links homogeneously spread among all clusters), R5 - 1003 

provincial hub (hub node with majority links within its cluster), R6 - connector hub (hub with many 1004 

links to other clusters). 1005 

Figure 5: Comparative network analysis in B. cinerea and F. graminearum.  1006 

(A) First-neighbour subnetwork of B. cinerea siRNA target BC1G_10508. Rectangular boxes 1007 

depict nodes/gene identifiers. Colours indicate: orange - B. cinerea target, white - untested 1008 

phenotype, pink - pathogenicity related phenotype in F. graminearum. 1009 

(B) Comparative subnetwork from F. graminearum. The B. cinerea target ortholog is indicated in 1010 

orange. FG_22771 encodes a pathogenicity related gene called FgEB1 (PHI:7124)   1011 

 1012 

 1013 
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Figure 6:   F. graminearum subnetwork containing three B. cinerea siRNA target homologs. 1014 

(A) Three overlapping first-neighbour subnetworks contain three siRNA B. cinerea target gene 1015 

orthologs (orange) and are connected to FG_12063 (yellow), independently identified as a wheat 1016 

RNAi target. Nodes are coloured to indicate target and phenotypes: orange (B. cinerea targets 1017 

orthologue in F. graminearum), pink (pathogenicity related), magenta (mixed outcome where 1018 

pathogen virulence is affected in some interactions but not others), grey (pathogenicity unrelated), 1019 

white (unknown phenotype). 1020 

(B) Same subnetwork displaying gene names taken from PHI-base instead of gene identifiers. 1021 

Essential CYP51 genes (magenta) and mycotoxin biosynthesis (pale blue) genes are identified 1022 

within the network. Nps2 is a B. cinerea siRNA target ortholog and was shown to be pathogenicity 1023 

related in some interactions.  1024 


