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Abstract
Unlike flocks of birds and schools of fish that show net motion and synchronized motion, insect
mating swarms are stationary and lack velocity ordering. Their collective nature when unperturbed
is instead evident in their spatial statistics. In stark contrast with bird flocks, wherein the number
density can fluctuate enormously from flock to flock, the number density of individuals in
laboratory swarms of the midge Chironomus riparius is approximately constant. Nonetheless, as
swarms grow more populous, individuals cluster more and more. Here with the aid of stochastic
trajectory models I show that these two seemingly contradictory behaviours can be attributed to
the presence of multiplicative noise. The modelling also predicts that swarms are most stable when
they are asymptotically large.

1. Introduction

Insect swarms are a form of collective animal beha-
viour that challenge basic notions of what consti-
tutes such behaviour because unlike flocks of birds,
schools of fish, and herds of ungulates they do not
display ordered collective movements (Okubo 1986,
Kelley and Ouellette 2013). Their collective nature
when unperturbed is instead evident in their spatial
statistics. But in this regard, they also differ from bird
flocks (Ballerini et al 2008) and other groups of social
animals because the number density of individuals
of swarming insects can, as in the case of laborat-
ory swarms of the midge Chironomus riparius, be
approximately constant (Kelley and Ouellette 2013,
Puckett and Ouellette 2014). Moreover, as the labor-
atory swarms of midges grow more populous, indi-
viduals cluster more and more (Kelley and Ouellette
2013, Puckett and Ouellette 2014). Here with the aid
of stochastic trajectory models I show that these two
seemingly contradictory behaviours can be attributed
to the presence of multiplicative noise;—the noise
experienced by an individual being dependent upon
the number of local neighbours. The new results add
to the growing realization that many of the emergent
properties of insect swarms and other forms of col-
lective motion can be attributed to the presence of
multiplicative noise (Ahn and Ha 2010, Sun and Lin

2015, Reynolds 2019, 2021a, Jhawar and Guttal 2020,
Haghsheno and Mehrafarin 2024).

2. Methods

The 3-dimensional trajectories ofN swarming insects
were simulated using the random walk model
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where xi is the position of the ith individual at time
t, and dWi (t) is an incremental Wiener process with
correlation property dWi (t)dWj (t+ τ) = δ (τ)δijdt.
The first term on the right-hand side of equation (1)
represents attraction to the swarm centre or ‘swarm
marker’, a visually prominent feature over which
swarm form. The constant part of the second term,
the noise term, represents fluctuations in the indi-
vidual movement that arise partly because of the lim-
ited number of individuals in the grouping and partly
because of the nonuniformity in their spatial dis-
tribution. The position-dependent part of the noise
term represents fluctuations which arise because of
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the chance encounters with individuals that hap-
pen to be in the neighbourhood of the individual
in question. The amplitude of this contribution to
the noise is density dependent being relatively low
when individuals are sparsely distributed through-
out the swarm, and relatively high when, as will hap-
pen occasionally, some individuals crowd together;
conditions that will result in q-Gaussian density pro-
files (Reynolds 2018), those occurrence in other set-
tings has enriched the long-standing analogy between
insect swarms and self-gravitating systems (Okubo
1986, Gorbonos et al 2016, Reynolds 2018, 2021b).
The constants, k, D, F and σ determine the strength
of the central attraction, and the magnitudes of the
additive andmultiplicative components of the driving
noise. In the absence ofmultiplicative noise (i.e. when
F= 0), equation (1) is the long-time limit of Okubo’s
(1986) classic stochastic model for the joint evol-
ution of a swarming insect’s position and velocity;
extensions of which correctly predict the collective
mechanical- and thermodynamic-like properties of
insect swarms that emerge when they are subjected to
external perturbations (Reynolds 2018, van der Vaart
et al 2019, 2020, 2021 a).

3. Results

As observed byKelley andOuellette (2013), themodel
predicts that the number density is approximately
constant (figure 1(a)). The model also predicts, as
observed (Kelley and Ouellette 2013, Puckett and
Ouellette 2014), that individuals cluster more and
more, as swarms grow more populous (figure 1(b)).
Here, as in Puckett and Ouellette (2014), this tend-
ency to cluster is quantified in terms of the aver-
age distance between individuals and their nearest
neighbours. As observed the asymptotic state is
approach exponential slowly like A+Bexp(−N/N0).
As observed by Puckett and Ouellette (2014), two
closely related but distinct quantities, the volume per
individual (which, as observed, is nearly constant for
large swarms with N > 10), and the average dis-
tance between individuals and their nearest neigh-
bours are also indicative of nearly constant num-
ber density and clustering (figures 1(c) and (d)). As
noted by Puckett and Ouellette (2014), as opposed
to the volume per individual, the nearest-neighbour
distance may be more sensitive to any pairwise inter-
actions in the swarm. Indeed, evidence for the pre-
dicted occurrence of clustering comes from the distri-
bution of distances to nearest neighbours. The peaks
of these distributions lie at ever shorter distances and
the nearest neighbour distances fluctuate less strongly
as the swarms become more populous (figure 2).
Further analysis of the predicted clusters is presented
in the Supplementary Material.

As expected, the simulated swarms have q-
Gaussian profiles with q < 1 (Reynolds 2018)
(figure 3(a)). Such density profiles have finite sup-
port, so that individuals are effectively more tightly
bound to the swarm centre than they are in swarms
with Gaussian density. The density profiles become
more compact, and individuals become ever more
rightly tightly bound to the swarm as q decreases.
This is predicted to arise as swarms become more
populous (figure 3(b)). This new result complements
that of Reynolds (2021b) who showed that small (far
from asymptotically larger) swarms have broader-
than-Gaussian q-Gaussian profiles with q> 1.

4. Discussion

In contrast with bird flocks, fish schools and animal
herds, laboratory swarms of the midge Chironomus
riparius are a form of collective behaviour that lack
collective order in their motions (Okubo 1986, Kelley
and Ouellette 2013). Their collective nature is instead
evident in the spatial statistics, and also in their
responses to perturbations (Ni and Ouellette 2016,
Sinhuber et al 2019, 2021, van der Vaart et al 2019,
2020). Herein with the aid of stochastic modelling
it was shown how the near constant number dens-
ity and clustering, two previously unexplained fea-
tures of laboratory swarms of the midge Chironomus
riparius, can be attributed to intrinsic multiplic-
ative noise, as can the emergent mechanical-like
and thermodynamic-like properties of these swarms
(Reynolds 2019, 2021a). This mechanism for density
regularization is distinctly different from how large
bird flock self-organize to the maximum density at
which a typical individual still can see out through
the flock in many directions (Pearce et al 2014). Here
it appears to be an accidental by-product of noisy
dynamics. Nonetheless, the tendency of the midges
to arrange themselves to maintain some empty space
in their local neighbourhood could be advantage-
ous because collisions are damaging and because
the sharp manoeuvres required to avoid a collision
when two individuals come close together are ener-
getically costly. Indeed, midges rarely come closer
together than about a wingspan distance (as pre-
dicted, figure 2) (Puckett et al 2014). The cluster-
ing precludes the emergence of scale-free behaviour
which is a hallmark of starling flocks (Cavagna et al
2010); and one which is contingent on the flocks
essentially having just relevant length scales, namely
the inter-individual distance, which controls local
interactions, and the overall size of the flock, which
is an emergent property. The clusters in the midge
swarms suggest a broader range of relevant length
scales, with intermediate scales characterising the

2



Phys. Biol. 22 (2025) 044001 A Reynolds

Figure 1. Predicted spatial statistics of insect swarms (•). (a) The root-mean-square size of a swarm as a function of the number
individuals in the swarm. Also shown are the standard errors (o) which are comparable with the experimental uncertainties
(Kelley and Ouellette 2013). The solid line is a fit σ_x∝ N∧(1/3) as would be expected if the number density were independent
of the swarm size. As observed (Kelley and Ouellette 2013), there are deviations from N∧(1/3) scaling. (b) The average distance
between individuals and their nearest neighbours as a function of the number individuals in the swarm. The solid line is a fit to
A+ Bexp(−N/N_0)is added to guide the eye. The quantity N_0≈ 25 is a characteristic scale of approach to the asymptotic state.
Standard errors decrease monotonically from 0.96 to 0.7 a.u. Similar trends are found for focal individuals within the core of the
swarms, i.e. located within a distance σ_x from the centre of the swarm, and for focal individuals within the outskirts of the
swarms. (c) Volume per individual. The solid line is an exponential fit with N_0≈ 19. (d) The average distance between
individuals and their nearest neighbours as a function of the root-mean-square size of a swarm. Predictions (simulation data)
were obtained using equation (1) with k= 1, D= 1/10, F = 1 and σ = 1a.u. Noisier swarms (e.g. with F = 5) are also found to
have near constant number densities and clustering albeit with smaller number densities and faster approaches to saturation. The
same behaviours are predicted to arise when instead of using the ‘smoothed’ density in the multiplicative noise, a discrete version,
i.e. the actual local density within a given volume around each individual is used.

clusters, as in the case of themosquitoAnopheles gam-
bie (Shishika et al 2014). Insect swarms may therefore
be dynamically more complex than flocks.

The modelling showed how multiplicative noise
determines the spatial statistics of swarms and gov-
erns how these statistics saturate as the swarms enter
an asymptotic regime. Swarms containing order 10
individuals were predicted to be asymptotically large,
as the addition of more individuals does not change
the spatial statistics. This surprisingly small threshold
is consistent with the observations of Puckett and
Ouellette (2014) which provided a strong constraint
on how rapidly swarm models must produce collect-
ive states.

The new modelling together with previous ana-
lysis (Reynolds 2021b) predicts that swarms trans-
ition from having expansive q-Gaussian density pro-
files (with q > 1) to having compact, more tightly
bound, q-Gaussian density profiles (with q < 1) as
swarms growmore populous. The first prediction has
experimental support (Reynolds 2021b). The second
prediction awaits experimental verification, as the
largest laboratory swarms which contain on aver-
age 92 individuals have Gaussian (i.e. have q = 1 q-
Gaussian) density profiles (Reynolds 2021b). It would
therefore be interesting to analyse the spatial statist-
ics of larger swarms, such as those measured in the
wild which can contain orders of magnitude more
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Figure 2. Distributions of distances to nearest neighbours. Predictions for swarms containing N= 5, 10 and 20 individuals were
obtained using equation (1) with k= 1, D= 1

10
, F= 1 and σ = 1 a.u. dnn is the distance to the nearest neighbour and σx is the

root mean size of the swarms.

Figure 3. (a) Swarms are predicted to have q-Gaussian density profiles. Simulation data (o) for a swarm containing N= 10
individuals are shown together with the best fit Gaussian and best fit q-Gaussian which has q= 0.67. (b) Swarms are predicted to
be most stable when they are asymptotically large (•). The solid line is a fit to q= A+ Bexp(−N/N0) is added to guide the eye.
The quantity N0 ≈ 17 is a characteristic scale of approach to the asymptotic state. Standard errors for the estimates for q are about
0.01. Predictions were obtained using equation (1) with k= 1, D= 1

10
, F= 1 and σ = 1 a.u.

individuals (Armitage et al 1995). The new prediction
complements that of Reynolds (2018) who showed
that environmental perturbations can drive insect
swarms into more robust states characterized by q-
Gaussian density profiles with q< 1, as in the case of
wild swarms of the mosquito Anopheles gambie (see
also Supplementary Material).

To summarize: With the aid of stochastic
trajectory models, I showed how two seemingly
contradictory properties of insect swarms, namely
approximate constancy of the number density of
individuals and the tendency for individuals to
cluster more and more as swarms grow more pop-
ulous, can be attributed to the presence of intrinsic
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multiplicative noise. This new result adds to the
growing realization (Ahn and Ha 2010, Sun and Lin
2015, Reynolds 2019, 2021a, Jhawar and Guttal 2020,
Haghsheno and Mehrafarin 2024) that rather than
being a disruptive influence, the presence of intrinsic
noise is, in fact, fundamental in bringing about many
of the emergent collective behaviours of swarms and
flocks.
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