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Background: Food crop micronutrient concentrations can be enhanced through 
agronomic biofortification, with the potential to reduce micronutrient deficiencies 
among rural population if they have access to fertilizers. Here we reported the 
impact of agronomic biofortification on finger millet grain zinc (Zn) and iron (Fe) 
concentration.

Methods: A field experiment was conducted in farmers’ fields in Ethiopia in 
two locations; over two seasons in one district (2019 and 2020), and over 
a single season (2019) in a second district. The experimental design had 15 
treatment combinations comprising 3 finger millet varieties and 5 soil-applied 
fertilizer treatments: (T1) 20 kg ha−1 FeSO4 + 25 kg ha−1 ZnSO4 + NPKS; (T2) 25 kg ha−1 
ZnSO4 + NPKS; (T3) NPKS; (T4) 30% NPKS; (T5) 20 kg ha−1 FeSO4 + NPKS. The 
treatments were studied at two slope positions (foot and hill), replicated four 
times in a randomized complete block design.

Results: Grain Zn concentration increased by 20% in response to Fe and Zn and 
by 18.9% due to Zn addition. Similarly, grain Fe concentration increased by 21.4% 
in T1 and 17.8% in T5 (Fe). Zinc fertilizer application (p < 0.001), finger millet variety 
(p < 0.001), and an interaction of Fe and Zn had significant effect on grain Zn 
concentration. Iron fertilizer (p < 0.001) and interactive effect of Fe fertilizer and 
finger millet variety (p < 0.01) had significant effects on grain Fe concentration. 
Location but not slope position was a source of variation for both grain Zn and 
Fe concentrations.

Conclusion: Soil application of Zn and Fe could be a viable strategy to enhance 
grain Zn and Fe concentration to finger millet grain. If increased grain Zn and Fe 
is bioavailable, it could help to combat micronutrient deficiencies.
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Introduction

Micronutrient deficiencies (MNDs), which affect more than 2 
billion people globally (1), is predominantly a result of intake of 
monotonous diets dominated by foods of low nutrient content (2). 
MNDs are more prevalent in developing countries where the diet is 
dominated by staple crop-based foods (3). In Ethiopia, a high 
prevalence of Zn (72%) and Fe (34.4%) deficiencies has been reported 
based on biomarkers of status (4). The nutritional quality including 
Zn and Fe content of cereals (5) also varies geospatially in Ethiopia. 
Zinc and Fe deficiencies can lead to impaired physical growth and 
cognitive functions, reduced resistance to infections, metabolic 
disorders, and increased prenatal morbidity (6).

MNDs can be addressed through different program that are either 
targeted on enhancing vitamin and mineral intake, or on reducing loss 
of nutrients from the body. Strategies can include dietary 
diversification, food fortification, and supplementation. In addition, 
public health measures such as deworming, vaccination, improved 
water, sanitation and hygienic practices, improved health care system 
and nutrition education are crucial interventions to prevent MNDs 
(7). Each strategy has strengths and limitations, and they should 
be considered in the context of local conditions. For example, dietary 
diversification is the most sustainable and preferred strategy since it 
can potentially address the root cause of MNDs. However, availability 
and affordability of the diversified foods can be barriers in resource 
poor societies. Food fortification can potentially have wider impact 
and be more cost-effective compared to supplementation. However, 
food fortification is limited to the centrally processed foods and thus 
difficult to address societies that are dependent on local food sources. 
Supplementation is preferred when the MND is severe and there is a 
need to provide the quickest improvements, although can present 
many logistical challenges (8).

Agronomic biofortification is a strategy to increase micronutrient 
content in the edible part of food crops through the application of 
mineral fertilizers (9). This approach can enrich food crops with 
multiple elements at a time and can reach resource poor rural 
populations, providing they have access to fertilizers. On the other 
hand, repeated and excess use of mineral fertilizers may cause soil and 
water contamination over time suggesting the need for regular 
monitoring of the environmental impact of agronomic biofortification 
(10). For agronomic biofortification to be effective, targeting food 
crops and varieties known to well adapt in their local environment is 
important (11).

Finger millet has several agronomic merits that can make it well-
adapted to certain environments, including tolerance to moisture 
stress and soil acidity as well as resistance to disease (12). Finger millet 
also has appreciable nutritional content, e.g., high calcium (Ca) 
concentration 450 mg 100 g−1 (10-fold greater than milk on a volume 
basis) (5, 13). It is also a good source of other micronutrients (5) and 
protein (15.58%) (14). In addition, finger millet grain is gluten free, 
which makes it more attractive than wheat to some consumers (15). 
Finger millet is an indigenous crop to Ethiopia, and the sixth most 
important cereal crop after teff, wheat, maize, sorghum, and barley. It 
is produced on ~480,000 hectare of land, yielding about 1.2 M tonnes 
per annum (16). To our knowledge, there is no available previous data 
on finger millet for the effect of Zn, Fe, or combined fertilizers on 
grain Zn and Fe concentration. Therefore, this study aims to determine 
the potential impact of agronomic biofortification on finger millet 

grain Zn and Fe concentration. In addition, this study aims to 
investigate influence of varietal and environmental factors on Zn and 
Fe biofortification response. For example, it has been observed that 
the amount of plant available Zn can vary in different landscape 
positions of Ethiopian mixed cereal cropping systems (17).

Materials and methods

Field experiment

Agronomic biofortification experiments with Zn and Fe fertilizers 
were carried out in farmer fields, in two districts (locally known as 
Woreda) in the Amhara and Oromia regions, Ethiopia: Gojjam 
(11°41′54”N 37°29′79″E foot slope and 11°40′23”N 37°30′29″E hill 
slope) and Arsi Negelle (7°19′38”N 38°38′54″E foot slope and 
7°18′43”N 38°39′57″E hill slope), respectively. According to the agro-
ecological classification of Ethiopia, both sites are characterized as 
sub-humid midlands located between 1,500 and 2,300 m.a.s.l. and 
receive an average annual rainfall of 800–1,200 mm (18). The 
experiment consisted of 15 treatment combinations: 3 finger millet 
varieties (Diga-01, black grain colour; Urji white grain colour; Meba, 
brown grain colour) and 5 soil-applied fertilizer treatments as 
indicated below:

T1: 25 kg ha−1 ZnSO47H2O, 20 kg ha−1 FeSO47H2O, 131 kg ha−1 
NPS, 60 kg ha−1 potassium (K), 54 kg ha−1 urea.

T2: 25 kg ha−1 ZnSO47H2O, 131 kg ha−1 NPS, 60 kg ha−1  K, 
54 kg ha−1 urea.

T3: 131 kg ha−1 NPS, 60 kg ha−1 K, 54 kg ha−1 urea (control).

T4: 30% rate of T3 (Negative control).

T5: 20 kg ha−1 FeSO47H2O, 131 kg ha−1 NPS, 60 kg ha−1  K, 
54 kg ha−1 urea.

Note: The negative control was included to observe the dilution 
effect. This is because reports show that considerable number of 
farmers reported to use very low amount of fertilizer as compared to 
the recommendation (19).

A randomized completed block design (RCBD) was used with 4 
replications. The plot size was 4 m x 4 m, with gangways of 1 m width 
between plots while the distance between the block was 0.5 m. The 
experiment was repeated for two seasons but only at Arsi Negelle (due 
to Covid-19 pandemic travel restriction in Gojjam). Different farms 
were used in each year, sowed between mid-June and mid-July. 
Harvesting of the trial crop was on the first week of November and 
end November at Arsi Negelle and Gojjam, respectively.

Sample collection

Soil samples for mineral analysis were collected from a 60 m2 
circular plot in each of the experimental fields from both locations. 
Five sub-sample sites were located, the first at the centre, then two 
sub-sample points were selected at locations on a line through the plot 
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centre along the crop rows, and two on a line orthogonal to the first 
through the plot centre. The ‘long’ axis of the sample array (with 
sample locations at 5.64 m and 4.89 m) was oriented in the direction 
of crop rows with the ‘short axis’ (with sample locations at 3.99 m and 
2.82 m) perpendicular to the crop rows. A single soil sample was 
collected (to 20 cm depth) at each of the five sub-sample points with a 
Dutch auger with a flight of length 150 mm and diameter 50 mm. Any 
plant material adhering to the auger was carefully removed, and the 
sub-samples were aggregated and stored in a single bag. The detail 
procedure on soil sample collection, processing and mineral analysis 
follows Gashu et al. (20).

Matured and dried finger millet crop fingers were taken from each 
plot and the crop samples were hand threshed to produce 
approximately 1 kg of grain representing a sample and whole-grain 
samples were packed in sample envelope (5).

Sample preparation

Whole-grain samples were air-dried in sample bags. The samples 
were ground in a domestic stainless-steel coffee grinder, which was 
wiped clean before use and after each sample with a non-abrasive 
cloth. All preparations were done away from sources of soil and dust 
contamination. A 20 g subsample (following a representative 
quartering system) of the ground finger millet was then shipped to the 
University of Nottingham, UK. Soil samples were oven-dried at 40°C 
for 24–48 h depending on the moisture content of the soil. Preparation 
took place in a soil laboratory to avoid cross-contamination. Plant 
material and stones were removed from soil samples, which was then 
disaggregated and sieved to pass through 2 mm (5). This material was 
representatively quartered to produce subsamples. A 150 g subsample 
of soil was poured into a self-seal bag, labeled and shipped to the UK 
for analysis in the laboratories at the University of Nottingham.

Soil and grain mineral analysis

The soil samples were digested using Aqua-Regia for mineral 
analysis (20). A certified reference material (CRM Wageningen, 
WEPAL ISE-850, Calcareous Soil) was digested and analysed for 
mineral concentration for quality control purpose of the method. 
Operational blanks were also analysed at the same time following the 
same procedure to determine limits of detection (LODs). A three-step 
sequential extraction scheme for the fractionation of sulfur (S) was 
followed, using 0.01 M KNO3, 0.016 M KH2PO4, and 10% tetra methyl 
ammonium hydroxide (TMAH) to determine soluble, exchangeable, 
and organically bound S fractions, respectively. The detailed procedure 
for soil mineral analysis and three-step sequential extraction for S is 
reported elsewhere (20–22).

Hot plate acid digestion was employed for grain sample 
digestion using methods described in Kumssa et al. (22). Briefly, 
0.2 g of finger millet grain samples were weighed in digestion tubes 
and placed into heating blocks (Multicube 48, Anton Paar Ltd., 
UK). Then, 8 mL of concentrated HNO3 (trace metal grade, Fisher 
Chemical, United  States) was added to each tube and left for 
30 min at room temperature. The samples were heated for 2 h at 
115°C, left to cool for 10 min, and the samples were diluted to 
50 mL using milliQ water (18.2 MΩ cm; Fisher Scientific). A 1 mL 

aliquot was transferred into an inductively coupled plasma tube 
and diluted again to 10 mL using milliQ water. A certified reference 
material (CRM Wheat 1567b, National Institute of Standards and 
Technology, Gaithersburg, MD, United  States) was used to 
determine % recovery. Operational blanks were also analysed to 
determine limits of detection (LODs). Soil and crop sample 
mineral concentrations were analysed by Inductively Coupled 
Plasma Mass Spectrometry (ICP-MS, Thermo Scientific, 
Germany).

Statistical analysis

Data were analysed using R software version 3.3.2. The data 
were presented as mean ± standard deviation (SD). The data were 
analysed with a linear mixed model to compare mineral 
concentrations among control and fortified grain samples. Slope, 
fertilizer, and variety were treated as fixed effects whereas season, 
block within farm, farm within location, and location were 
treated as random effects. For logistical reasons treatments and 
varieties were randomized within farms, and farms were selected 
from slope positions within locations. The replication for slope 
position is thus very limited, and the model is prone to 
singularities. For several variables, slope was therefore dropped 
as a fixed effect and treated as a random effect for grain Fe 
concentration data. Then, variance component for the slope 
random effect was checked to determine how important slope 
might be relative to other factors. Skewness of the residuals for 
grain Zn and Fe concentration data and histograms were 
examined to decide whether any transformation was required 
before proceeding to interpretation of the outputs (see 
Supplementary material).

The fixed effect for treatments can be  partitioned into four 
orthogonal contrasts, selected prior to data analysis, to test specific 
hypotheses. These were as follows.

C1: The comparison between the mean grain Zn for the 0.3NPKS 
treatment and all the treatments with NPKS at recommended rate.

C2: Within the full NPKS rate, the Fe main effect (difference 
between treatments with Fe and no Fe).

C3: Within the full NPKS rate, the Zn main effect (difference 
between treatments with Zn and no Zn).

C4: The Fe/Zn interaction: does the response to Zn depend on the 
level of Fe and vice versa.

Results

Mineral concentrations of soil samples from both trial locations 
at each slope position is presented in Table 1. Calcium, potassium, 
boron, sulfur, and iron content of soil samples were significantly 
different among the two locations and slope positions. The recovery 
for all minerals is between the acceptable ranges (85–120%). Fe and 
Zn agronomic biofortification response of finger millet samples for 
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each fertilizer treatment at different location and slope position is 
indicated in Figures 1, 2. The recovery percentage for grain Fe and Zn 
concentration was 91.0 and 96.4%, respectively.

Grain Zn concentration was significantly different (p < 0.001) 
between fertilizer treatments (see Supplementary materials). There 
was 20 and 18.9% increase in grain Zn concentration in response to 
application of combined Fe and Zn, and Zn-only fertilizers, 
respectively (Figures 1, 2). There was no significant difference in grain 
Zn concentration between 30% NPKS and NPKS at recommended 
rate. Irrespective of fertilizer treatment, location and slope position, 
finger millet varieties differed significantly (p < 0.001) with respect to 
Zn concentration, showing the average result of Diga-01 < Meba < Urji 

(Figure 2). There is no evidence for an interaction between fertilizer 
and variety effect on grain Zn concentration (see 
Supplementary materials).

The orthogonal contrasts provide strong evidence (p < 0.001) for main 
effect of Zn fertilizer on grain Zn concentration as well as variety effect, 
some evidence for an interaction of Fe and Zn (p < 0.05), moderate 
evidence (p < 0.01) for a difference between the 30% NPKS and NPKS at 
recommended rate treatments (see Supplementary materials). Therefore, 
the application of Zn fertilizer significantly improves the grain Zn 
concentration while it is slightly dependant on the level of Fe fertilizer. 
Location was a source of variation for grain Zn concentration with Arsi 
Negelle having larger grain Zn concentration than Gojjam (see 

TABLE 1 Mineral concentrations (mg/kg) of soil from the finger millet agronomic biofortification experimental sites in Ethiopia.

Location Slope B Mg P S K Ca Fe Zn

Arsi-Negelle Foot 3.9 ± 0.79A 2052 ± 47 2061 ± 49 122.7 ± 0.4 3,227 ± 185A 4,662 ± 481A 26,918 ± 1149A 89 ± 7

Hill 3.0 ± 0.70B 1728 ± 240 1725 ± 240 105.8 ± 7.3 2,729 ± 448B 4,050 ± 918B 23,952 ± 1804B 105 ± 10

Mean 3.4 ± 0.95a 1890 ± 259a 1893 ± 264a 114.3 ± 10.3a 2,978 ± 464a 4,356 ± 870 a 25,435 ± 2320a 97 ± 13a

Gojjam Foot 1.0 ± 0.37C 1731 ± 131 1731 ± 131 136.6 ± 6C 934 ± 33C 1,185 ± 149C 107,973 ± 3372C 81 ± 4

Hill 0.1 ± 0.08D 1,597 ± 167 1,597 ± 167 207.1 ± 42.8D 859 ± 85D 1,668 ± 430D 124,304 ± 5913D 104 ± 11

Mean 0.55 ± 0.5b 1,664 ± 180a 1,664 ± 180a 171.8 ± 47.3b 897 ± 82b 1,426 ± 440b 116,138 ± 10383b 92 ± 16a

Results labeled with different small letters are significantly different for location and those with different capital letter are significantly different for slope at the 0.05 probability level.

FIGURE 1

 Grain iron (A) and zinc (B) concentration of finger millet at Arsi Negelle as affected by genotype and zinc and iron fertilization T1: 25 kg ZnSO47H2O, 
20 kg FeSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1; T2: 25 kg ZnSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1; T3: 131 kg NPS, 60 kg K, 54 kg urea ha−1; 
T4: 30% of T3; T5: 20 kg FeSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1. Columns designated by different lowercases (a, b, c, d, e) have significantly 
different response to fertilizer treatment for single genotype. Columns designated by different uppercases (A, B, C, D, E, F, G, H, I) have significantly 
different response to genotypes for single fertilizer treatment.
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Supplementary materials). Despite soil Zn concentrations were 
significantly different among slope positions, slope (having smaller 
variance [0.3155] than block, location and season) was not the major 
source of variation of grain Zn concentration (see 
Supplementary materials). Therefore, block within the farm, slope 
position and season shows a negligible effect on grain Zn concentration.

Grain Fe concentration was significantly different (p < 0.001) 
between fertilizer treatments. NPKS shows the lowest 
(53.25 mg kg−1) and Zn-only fertilizer having the highest 
(60.2 mg kg−1) grain Fe concentration (Figures 1, 2). There was an 
average 21.4 and 17.8% enhancement of grain Fe concentration 
due to application of FeSO47H2O and ZnSO47H2O (21.4%) and 
FeSO47H2O alone (17.8%) fertilization, respectively (Figures 1, 2). 
There was no significant difference in grain Fe concentration 
between 30% NPKS and NPKS application at recommended rate. 
As for grain Zn concentration, irrespective of fertilizer treatment, 
location and slope position, grain Fe concentration significantly 
(p < 0.01) differed between the varieties ranging between 53.6 and 
57.2 mg kg−1 (Figures 1, 2). However, there was no evidence for an 
effect of slope position and an interaction of fertilizer and variety 
effect (see Supplementary materials). Thus, the fertilizer main 
effect was replaced by four orthogonal contrasts (slope and 
interaction effect dropped).

The orthogonal contrasts provide strong evidence (p < 0.001) 
for interaction of Fe and Zn effect on grain Fe concentration, 

suggesting that the response to Fe strongly depends on the level of 
Zn fertilizer application (see Supplementary materials). The 
Analysis of Variance indicates moderate evidence (p < 0.01) for an 
effect of Fe fertilizer application as well as variety on grain Fe 
concentration (see Supplementary materials). Location was a 
source of variation in grain Fe concentration, with Gojjam having 
larger grain Zn concentration than Arsi Negelle (see 
Supplementary materials). However, block within the farm as well 
as farm within the location shows negligible effect on grain Fe 
concentration (see Supplementary materials).

Discussion

The present study investigated the impact of Zn and Fe agronomic 
biofortification on finger millet grain Zn and Fe concentrations. 
Irrespective of variety, location and slope positions, finger millet grain 
Zn and Fe concentration increased by 18.9–20% and 17.8–21.4%, 
respectively, as a result of Zn and Fe agronomic biofortification. This 
suggest that agronomic biofortification of finger millet can be  an 
effective supplementary strategy to reduce Fe and Zn deficiency, if the 
increased Fe and Zn in grains are bioavailable. Our finding also 
indicates that finger millet’s response to Zn and Fe agronomic 
biofortification significantly was affected by variety and location, but 
not slope positions.

FIGURE 2

Grain iron (A) and zinc (B) concentration of finger millet at Gojjam as affected by genotype and zinc and iron fertilization T1: 25 kg ZnSO47H2O, 20 kg 
FeSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1; T2: 25 kg ZnSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1; T3: 131 kg NPS, 60 kg K, 54 kg urea ha−1; T4: 30% 
of T3; T5: 20 kg FeSO47H2O, 131 kg NPS, 60 kg K, 54 kg urea ha−1. Columns designated by different lowercases (a, b, c, d, e, f) have significantly different 
response to fertilizer treatment for single genotype. Columns designated by different uppercases (A, B, C, D, E, F, G, H, I) have significantly different 
response to genotypes for single fertilizer treatment.
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Zinc fertilizer increased grain Zn 
concentration in finger millet

The current experiment shows strong evidence that Zn 
fertilization effectively enhances grain Zn concentration of finger 
millet. Joy et  al. (23) reported an incremental effect of soil 
application of Zn fertilizer on Zn concentrations of maize (20%), 
rice (7%) and wheat (19%) in 10 African countries. In addition, 
an experiment by Botoman et al. (24) and Manzeke et al. (25) 
showed that maize grain Zn concentration was increased by 15 
and 44.5% due to the application of 30 kg and 45 kg ZnSO4 ha−1, 
respectively. Similarly, 29% maize grain Zn enhancement was 
observed as a result of 50 kg ZnSO47H2O ha−1 fertilizer application 
(26). Another research showed 17.7% increase in wheat Zn 
concentration in response to soil application of up to 37.5 kg 
ZnSO4 ha−1 (27). Pal et al. (28) also reported 21.3% increase of Zn 
in chickpea through 25 kg ZnSO4 ha−1fertilizer application. 
Another study from India also showed an increase of 26.5% rice 
Zn concentration by applying 5 kg ZnSO4 fertilizer per hectare 
(29). Similar increase in Zn concentration of wheat grain following 
soil Zn application was also seen in Australia (30), Turkey (31) 
and India (32). Contrary to the finds of previous studies reporting 
positive effects of nitrogen on grain Zn concentration (25, 26), in 
the present study nitrogen had no significant effect on grain 
Zn concentration.

Variations in relative response of grain Zn concentration to Zn 
agronomic biofortification was observed between and among the 
present and previous studies could be attributed to several factors 
including due to differences in crops’ ability to relocalize and 
remobilize Zn into the grain (33, 34). Wu et al. (35) also reported that 
rice Zn concertation density in rice grain was closely associated with 
the ability to translocate Zn from old tissues to new tissues at both 
early and late growth stages and with phloem remobilization of Zn 
from leaves and stems to grains. Phloem mobility of each element 
greatly affects the amount of element remobilization in plants (36), 
and Zn showed good remobilization via phloem mobility (35). In 
addition, grain Zn concentration also significantly decreased as a 
result of elevated CO2 (37, 38) but increased as a result of heat stress 
(39), however the mechanism is still unknown. Another study 
reported that phosphorus can negatively affect Zn absorption by 
inhibiting colonization hence, impaires mycorrhizal uptake pathway 
(40, 41). Nitrogen significantly enhances Zn absorption in plants (42, 
43), probably, by balancing charge which contribute to higher 
accumulation of cationic nutrients like Zn (42). Nitrogen also 
increases the activity of transporter proteins and nitrogenous 
compounds that helps to maintain Zn root uptake and shoot 
translocation (44, 45).

Iron fertilizer increased grain Fe 
concentration in finger millet

The current experiment shows strong evidence that Fe fertilization 
effectively enhances grain Fe concentration of finger millet. There is 
no available data on agronomic biofortification of Fe on finger millet 
results, however, on other crops available research showed a significant 
increase on wheat due to the application of Fe fertilizer. Results of a 
greenhouse experiment reported a 19.4% increase in grain Fe 

concentration due to soil application of 10 mg of FeSO4 kg−1 of soil 
(42) or 43% increase in response to soil application of 75 FeSO4 kg 
ha−1 (27).

Pahlavan-Rad and Pessarakli (46) observed a 36% grain Fe 
concentration increase due to 1% of FeSO4 foliar application at stem 
elongation and flowering stages. Manzeke-Kangara et al. (47) also 
reported about 83% increase in finger millet grain Fe concentration 
due to foliar Fe-EDTA application at vegetative growth and 
flowering stage.

Agronomic biofortification of Fe is less well studied compared to 
Zn. Fe biofortification only moderately increase grain Fe concentration 
as compared to Zn biofortification. This might be associated to the fact 
that Fe has poor phloem mobility (48, 49). Also, when applied to 
calcareous soils, Fe is rapidly converted into unavailable forms 
(48, 49).

Interactions between Zn and Fe fertilizers 
on finger millet grain Zn and Fe 
concentration

Enhancement of 13 and 5.5% grain Fe and Zn concentration, 
respectively, were observed due to Fe and Zn interaction effect. 
Similarly, Pahlavan-Rad and Pessarakli (46) also reported an 8 and 
13% increase of wheat grain Fe and Zn concentration, respectively due 
to Fe and Zn interaction. Zinc fertilizers also resulted in Fe 
accumulation in soybean roots and increased root to fruit Fe 
translocation in tomato plants (50). These might be due to both Zn 
and Fe deficiency in plant is signaled by the same gene (51, 52). Also, 
Fe-and Zn-regulated transporter encoding genes expression in roots 
and shoots is induced at the transcriptional level by Zn and/or Fe 
availability (53–55), which suggests these genes may control the uptake 
and homeostasis of Fe and Zn (56). However, additional experiments 
are required to understand the mechanism of Zn and Fe interactions.

Effect of finger millet genotype and 
response to Zn and Fe fertilizer on grain Zn 
and Fe concentration

Response to agronomic biofortification of Zn and Fe in current 
experiment was significantly influenced by finger millet variety. In the 
present study, Diga-01 variety accumulated the lowest Zn 
concentration while Meba variety had the highest Zn. Though, the 
genetic variability in mineral concentration of finger millet has been 
previously reported (57), there is no available data on the finger 
millet’s genetic response to Zn and Fe fertilization. However, Wissuwa 
et al. (58) from Philippines showed that rice genotypes differ greatly 
in their response to foliar Zn treatments. Similarly, significant varietal 
response to the soil application of Zn fertilizer on rice grain Zn 
concentration was reported (59). Despite a similar root uptake rate or 
shoot accumulation of minerals, genotypic differences influence grain 
mineral concentrations (60).

Stability of a trait over different locations is an important factor in 
breeding programs (61). When a highly promising genotype for grain 
Zn and Fe concentration is identified, special attention should be paid 
to how the grain Zn and Fe concentration of that genotype vary with 
soil type (62). In the current experiment Meba and Urji finger millet 
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varieties exhibited stability over the two locations on grain Fe and Zn 
concentration, respectively.

Effect of location on grain Zn and Fe 
concentration in finger millet

Location had significant effect on grain Zn and Fe concentration 
of finger millet. Similarly, their subnational scale data from Ethiopia 
and Malawi, Gashu et al. (5) reported location as a source of variability 
in cereal grain mineral concentration.

Conclusion

The application of 25 kg ZnSO47H2O and 20 kg FeSO47H2O per 
hectare along with recommended rate of NPKS enhances grain Zn 
and Fe concentration of finger millet and can offer an effective option 
to increasing Zn and Fe concentration among consumers. However, 
social acceptability of agronomically biofortified food and 
technological and economic feasibility of application of mineral 
blended fertilizers and social acceptability of agronomically 
biofortified foods in resource poor settings could be a challenge and 
warrants further studies are important. In addition, crop grains such 
as finger millet have high amount of fiber and antinutritional factors 
that reduce bioavailability of minerals hence, evaluation of the 
bio-accessibility and bioavailability of biofortified crops is essential. 
Furthermore, use of mineral fertilizers could be contamination risks 
to the environment from the minerals of interest and contaminants in 
the mineral mixtures. For example, Stuart et al. (10) reported extra 
addition of 28 tonnes of Cu to the soil each year from use of Cu 
fertilizer for cereal biofortification in parts of the United Kingdom.
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