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Abstract
Oxygen demand in river substrates providing important habitats for the early life stages of

aquatic ecology, including lithophilous fish, can arise due to the oxidation of sediment‐asso-

ciated organic matter. Oxygen depletion associated with this component of river biogeo-

chemical cycling, will, in part, depend on the sources of such material. A reconnaissance

survey was therefore undertaken to assess the relative contributions from bed sediment‐

associated organic matter sources potentially impacting on the River Axe Special Area of

Conservation (SAC), in SW England. Source fingerprinting, including Monte Carlo uncertainty

analysis, suggested that the relative frequency‐weighted average median source contributions

ranged between 19% (uncertainty range 0–82%) and 64% (uncertainty range 0–99%) for

farmyard manures or slurries, 4% (uncertainty range 0–49%) and 35% (uncertainty range

0–100%) for damaged road verges, 2% (uncertainty range 0–100%) and 68% (uncertainty

range 0–100%) for decaying instream vegetation, and 2% (full uncertainty range 0–15%)

and 6% (uncertainty range 0–48%) for human septic waste. A reconnaissance survey of sed-

iment oxygen demand (SOD) along the channel designated as a SAC yielded a mean SOD5 of

4 mg O2 g−1 dry sediment and a corresponding SOD20 of 7 mg O2 g−1 dry sediment, com-

pared with respective ranges of 1–15 and 2–30 mg O2 g−1 dry sediment, measured by the

authors for a range of river types across the UK. The findings of the reconnaissance survey

were used in an agency (SW region) catchment appraisal exercise for informing targeted

management to help protect the SAC.
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1 | INTRODUCTION

There is a clear requirement for improved catchment management

strategies aimed at controlling fine‐grained sediment and associated

organic matter (OM) mobilization and delivery to watercourses to help

support the maintenance of good water quality and ecological status.

Well‐documented specific impacts of excess sediment as a stressor

on aquatic ecology include gill clogging, histological changes, reduced

resistance to disease, suppressed feeding efficiency, and the smother-

ing of progeny incubating in fish spawning gravels (Greig, Sear,

Smallman, & Carling, 2005; Kemp, Sear, Collins, Naden, & Jones,

2011). Sediment‐borne OM entering rivers and ingressing the benthic

zone competes with aquatic ecology for the supply of dissolved oxy-

gen, by imparting a demand during decay and oxidation, and thereby

hampers survival of a range of species (Chevalier, Carson, & Miller,

1984; Greig et al., 2005). To date, however, this component of
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sediment has received less attention even though its improved

management has recently been underscored as important for helping

the UK to achieve environmental objectives around aquatic ecological

status (Collins et al., 2011; Sear et al., 2014, 2016).

The management of the aquatic environment in the UK has, to a

large extent, been underpinned by a three‐pronged approach compris-

ing targeted advice for farmers and incentives for mitigation methods

such as agri‐environment measures and environmental regulation.

Improved management of the diffuse pollution problem, including the

detrimental impacts of sediment‐associated OM on aquatic ecology,

requires mitigation strategies to be underpinned by a catchment‐wide

perspective on the key sources of the problem. This is essential

because the off‐site impacts experienced in river habitats, including

spawning gravels, reflect distributed (diffuse and point) inputs from

across upstream landscapes. Applying traditional sediment measure-

ment and monitoring techniques on a spatially distributed basis face

many logistical problems and issues of cost, and as a result, sediment

fingerprinting procedures have been increasingly used to document

key sources at catchment scale (Collins et al., in press; Walling, 2013;

Walling & Foster, 2016). Where information is required in a short time-

scale to start informing management decisions, the source fingerprint-

ing approach has proved useful in catchment reconnaissance surveys

(e.g., Walling, Collins, & McMellin, 2003). At the same time, some

recent studies have demonstrated the utility of sediment source

tracing procedures to apportion inputs from catchment sources of

sediment‐associated OM, with a view to supporting more holistic

management of the sediment problem in the UK (Collins et al., 2014;

Cooper et al., 2015).

Against the above background, a reconnaissance study was under-

taken to provide new evidence for the management of the River Axe

Special Area of Conservation (SAC), UK. It was intended that the

new work should build upon the evidence base provided by a recent

source‐tracing study focussing on the primary sources of minerogenic

bed sediment silting salmonid spawning gravel habitats along the River

Axe (Collins et al., 2012). Accordingly, the new work examined the

provenance of sediment‐associated OM and undertook sediment oxy-

gen demand (SOD) measurements to ensure that the evidence base

underpinning catchment management decisions for sediment control

FIGURE 1 The River Axe catchment, showing the channel bed sediment sampling locations for the source tracing and sediment oxygen demand
(SOD) work, plus the locations from which composite source samples were collected to represent the damaged road verge and instream decaying
vegetation source categories. The terms of the funding contract did not permit the locations of farm manure or slurry or domestic septic tank
sampling to be disclosed given the sensitivities around these potential point sources. Here, it is important to note that adherence to this condition
was frequently a prerequisite for the field team gaining access to sampling sites [Colour figure can be viewed at wileyonlinelibrary.com]
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takes account of the key process linkages degrading the quality of the

aquatic environment for ecology.

2 | THE RIVER AXE SAC AND UPSTREAM
STUDY AREAS

The River Axe (Figure 1).SAC extends for 13 km downstream from the

confluence with the Blackwater River, meandering through a well‐

developed floodplain dominated by improved dairy pasture. The SAC

is designated for watercourses of plain to montane levels with crow-

foots (Ranunculion fluitantis) and starworts (Callitricho‐Batrachion) veg-

etation, sea lamprey (Petromyzon marinus), brook lamprey (Lampetra

planeri), and bullhead (Cottus gobio). The River Axe SAC is also notified

as a Site of Special Scientific Interest (SSSI) for its nationally important

geomorphology (which demonstrates contrasting patterns of meander

formation), for the presence of otter (Lutra lutra) and medicinal leech

(Hirudo medicinalis), and for its diverse invertebrate communities. An

Atlantic salmon (Salmo salar) run was extirpated in the 1980s, and cur-

rently, the site is in “unfavourable condition.” This is believed to be for

a variety of reasons including degraded water quality, primarily due to

siltation and associated OM inputs. Natural England's objective for

“favourable condition” in SSSIs/SACs designated for river habitat has

been set out in Common Standards agreed by the UK conservation

agencies in response to the European Union Habitats Directive. These

Common Standards apply equally to SSSI and SAC designations and

relate to the availability of the river (as a representative of its type)

to provide favourable habitat conditions for the characteristic biologi-

cal community, rather than conditions that might favour a particular

individual species. Table 1 presents summary information for the study

subcatchments.

2.1 | The sediment‐associated OM fingerprinting
methodology

2.1.1 | Field sampling

The collection (February 2013) of representative sourcematerial samples

for fluvial bed sediment‐associated OM encompassed four potential

source categories. These source typeswere farmyardmanures or slurries,

damaged road verges, decaying instream vegetation, and point source

human septic waste discharges. The source type categories were final-

ized during discussions with Natural England. Table 2 summarizes the

source sample numbers. In the case of the farmmanures or slurries, dam-

aged road verge, and decaying instream vegetation source categories,

every 10 subsamples collected in the field were bulked into a composite

sample for subsequent laboratory analysis. For the human septic waste

source category, every five subsamples were bulked into a composite

for laboratory analysis. The sampling of farmyard manures or slurries

included fresh excreta from yards, steadings, and housings, as well as

material from dry or wet stores and manure heaps in fields. Sampling

included both cattle and sheep excreta. The random subsampling was

designed to be spatially representative of each yard, steading, housing,

store, or field heap in question. Damaged road verge samples were col-

lected from 100‐m sections of degraded road margins selected randomly

to be representative of the entire road network in each subcatchment

and comprised the leaf litter andmulch present in degraded roadmargins

damaged by vehicle and livestock traffic. Representative samples of

decaying instream vegetation were retrieved along the channel system

from specific 100‐m reaches selected randomly along the river network

of each subcatchment and included material trapped by coarse woody

debris and additional obstacles. Septic tank subsamples were collected

from the chambers or drainage field biomat of each individual installation

and bulked into a single composite. Locally, septic tanks were considered

to be the primary source of spatially distributed risk for human septic

TABLE 1 Background data for the River Axe subcatchments

FEH attribute
Upper River

Axe
Temple
Brook

River
Synderford

Blackwater
River

Kit
Brook

River
Yarty

Main channel
River Axe SAC

Area (kmb)a 20 10 9 18 20 95 304

Mean altitude (m) 150 146 152 129 163 139 134

Base flow index 0.526 0.547 0.48 0.398 0.617 0.399 0.499

Mean slope (m km−1) 80.3 88.7 106.6 91.7 93 99.6 90.5

Mean flood depth (cm) 0.397 0.187 0.087 0.094 0.072 0.328 0.457

Median annual maximum 1‐hr rainfall (mm) 11.6 11.6 11.7 11.5 11.4 11.3 11.4

Median annual maximum 1‐day rainfall (mm) 42.3 41.1 40.8 40.6 39.4 39.5 39.9

Average annual rainfall for period 1961–1990 (mm) 986 1,003 1,013 1,024 1,003 1,014 991

Standard percentage run‐off 37.95 39.09 44.31 43.49 32.12 41.98 38.73

% urbanb 3 5 3 2 3 3 5

% waterb 1 1 1 1 1 1 1

% woodlandb 5 3 7 10 10 11 9

% rough grazingb 8 4 6 5 6 6 6

% arableb 12 15 16 12 24 12 14

% improved grazingb 71 72 67 70 56 67 65

Note. FEH = Flood Estimation Handbook version 3.0; SAC = Special Area of Conservation.
aDerived using the CatchmentsUK tool from Wallingford Hydro Solutions Ltd.
bBased on the ADAS land use database combining the CEH land cover map and the June Agricultural Survey Returns (see Comber, Anthony, & Proctor, 2008
for background).
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waste reaching subcatchment watercourses as opposed to sewage treat-

ment works. Information on the connectivity of sources to streams is

provided in Supplementary Information (SI). All source samples were

placed in cool boxes with ice packs immediately upon collection in the

field and remained in such storage for transport to the laboratory (typi-

cally on the same day).

Representative samples of fine‐grained channel bed sediment for

both the sourcing exercise and for assessing SOD were collected

during February 2013 using an established remobilization technique

(Collins et al., 2012; Duerdoth et al., 2015; Lambert & Walling, 1988).

During sample collection, a metal stilling well (height 1.1 m and surface

area 0.18 m2) was carefully lowered onto, and pushed into, the river

bed to provide a means of minimizing the loss of remobilized sediment

by winnowing. The river water and upper 10–20 cm of the channel bed

enclosed in the stilling well were stirred and agitated using a portable

battery‐powered drill equipped with a plaster stirrer fitting. Agitation

of both the water column and river bed provided a basis for sampling

fine‐grained sediment stored both as a surface drape and within the

interstices of the bed matrix. Each bed sediment sample (total volume

of 1 L) comprised a composite of two subsamples (~0.5 L each)

retrieved from different points in the channel at each location. More

detail is provided in SI. Three composite samples were collected in trip-

licate at each channel location in conjunction with the source tracing

exercise (Figure 1; Table 2). For SOD measurements, two composite

samples were collected from each channel location along the SAC

(Figure 1; Table 2). The river water and substrate were consistently agi-

tated for 60 s prior to the depth‐integrated sampling of the remobilized

sediment within the stilling well. Collection of sediment to a depth of

10–20 cm helped to ensure retrieval of deposited and ingressed mate-

rial from the layer of the river substrate used by a variety of species but

especially lithophilous fish. All river channel bed sediment samples

were returned to laboratory fridge storage on the day of sampling in

acid‐washed polyethylene containers transported in a cool box with

ice packs. Samples were de‐watered using settling and decanting.

2.1.2 | Laboratory analyses

The source material and bed sediment samples collected for the sourc-

ing work were wet sieved using a cascade of two apertures (250 and

63 μm) and subsequently oven dried at 40°C. Both the source material

and sediment samples were ground to a fine powder prior to analysis

for % total organic carbon and total nitrogen and stable isotope deter-

minations of δ13C and δ15N values using a Carlo Erba NA2000 analyser

(CE Instruments, Wigan, UK) and a SerCon 20‐22 isotope ratio mass

spectrometer (SerCon Ltd., Crewe, UK). Wheat flour (1.91% N,

41.81% C, 4.8 δ15N, and −26.4 δ13C) calibrated against IAEA‐N‐1 by

Iso‐Analytical, Crewe, UK, was used as a reference standard. The nat-

ural abundance stable isotope values were expressed using the stan-

dard δ notation with respect to the reference materials. Near infrared

spectra were measured using an online Thermo Scientific Antaris 1

TABLE 2 Summary of the subsample numbers collected during the field campaign

Sediment‐associated OM sources
Bed sediment for source

apportionment
Bed sediment

for SOD

Subcatchment
Farm manures
or slurries

Damaged
road verges

Decaying instream
vegetation

Human septic
waste point

source discharges

Location (UK National
Grid reference and
latitude/longitude)
of sample collection

Upper River Axe 80 80 80 40 ST429059
50.849786 N
−2.812477 W

18

Temple Brook 80 80 80 40 ST409052
50.843291 N
−2.840771 W

18

River Synderford 80 80 80 40 ST377047
50.838459 N
−2.886130 W

18

Blackwater River 80 80 80 40 ST330021
50.814556 N
−2.952392 W

18

Kit Brook 80 80 80 40 ST315024
50.817077 N
−2.973737 W

18

River Yarty 80 80 80 40 ST281982
51.677944 N
−3.041269 W

18

Main channel River Axe SACa ‐ ‐ ‐ ‐ ST324023
To SY259927
50.816284 N
−2.960944 W to
50.729173 N
−3.051258

‐ 24

Note. OM = organic matter; SOD = sediment oxygen demand; SAC = Special Area of Conservation.

The ‘‐’ is used to indicate no samples were collected.
aSamples collected along the main channel reach designated as the SAC.
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analyser that provided a spectral range of 4,000–10,000 cm−1 and

returned 32 scans per sample with a typical resolution of 8 cm−1.

All samples were run in triplicate with the average of these repeat

runs used in subsequent statistical and numerical modelling data

processing. No reagents were used in conjunction with the near

infrared analyses.

The river channel bed sediment samples collected for SOD mea-

surements were wet sieved using river water, and the <63‐μm fraction

FIGURE 2 Plots comparing the subcatchment
source and sediment sample bulk isotope data
(panel a) and near infrared (panel b) spectra
(FYM = farmyard manures or slurries;
DRV = damaged road verges; IS = decaying
instream vegetation; HSW = human septic
waste) [Colour figure can be viewed at
wileyonlinelibrary.com]

COLLINS ET AL. 5

http://wileyonlinelibrary.com


retained, as previous experience has shown that the highest SOD cor-

responds to this grain size fraction (Bateman, 2012). Duplicate 200‐ml

aliquots of the wet‐sieved slurry were subsampled and transferred into

1‐L amber Duran flasks. When all of the bed sediment samples were

processed, the flasks were placed in a Gallenkamp temperature‐

controlled orbital incubator set to the average water temperature for

the sample river. A shaker speed of circa 100 rpm was used to ensure

adequate mixing of the sediment samples during the experiment and

to mitigate the formation of oxygen gradients within the liquid. The

flasks were sealed with tops in which were inserted a calibrated Q‐OX

MediceL oxygen sensor (Shawcity Technology Ltd., error <1% signal)

connected to a Delta‐T2 data logger. The flask contents were allowed

to acclimate to operating conditions (approximately 1 hr) prior to com-

mencing data logging. Oxygen concentration in the bottle headspace

was sampled at 1‐min intervals and logged every 10 min for the 25‐

day duration of the experiment. In order to correct for each individual

oxygen probe, a blank experiment was run for 25 days using 200 ml of

ultra‐high pure water. At the end of the 25‐day measurement period,

the dry weight equivalent of the sediment in each test vessel was deter-

mined by filtering the slurry through dried, preweighed glass fibre/circle

(GF/C) filter papers. The filters were subsequently oven dried for 2 hr at

100°C, cooled in desiccators, and weighed until constant values were

achieved.

The output from the Q‐OX MediceL probes was converted into a

mass of oxygen in the headspace. The sediment oxygen consumption

(SOC) rate was calculated from the mass of oxygen consumed in the

flask over time:

SOC ¼ m1−m2ð Þ
t

; (1)

where SOC is the sediment oxygen consumption rate in mg O2 day
−1, t

is time in days, and m1 and m2 are the mass of oxygen at time 1 and

time 2 in the headspace. All values were blank corrected. The final

values were corrected using a Q10 (or Van't Hoff) equation to normal-

ize the SOC estimates to 20°C:

SOC20 ¼ 1:065 20‐Tð Þ⋅SOCT ; (2)

where SOC20 is the rate at 20°C and T is the water temperature during

measurement in degrees Celsius (Doyle & Lynch, 2005; Thomann &

Mueller, 1987). This correction applies to temperatures of 10°C or more,

which was the incubation temperature used in the experiments. The

resulting rates were used to calculate the total mass of oxygen consumed

over 0–5 days (SOC5) and 0–20 days (SOC20), respectively. These values

were divided by the dry mass of sediment used in each flask to give SOD

values in mg O2 g−1 dry sediment. Five days is a standard time period

used to observe the oxygen demand of organic effluents and sewage

wastes on water. A 25‐day time period is considered by convention to

be an adequate time for the complete biochemical oxidation of organic

material within water samples, sometimes known as the total biological

oxygen demand (Delzer & McKenzie, 2003). It was considered that the

5‐ and 20‐day periods used in the measurement of SOD are significant

to incubating fish embryos because these rates provide a more accurate

account of oxygen consumption by channel bed sediment over the

embryo incubation period. It is critical to understand the longer term

SOC of river channel bed sediments given the propensity for sediment

retention in UK lowland rivers (e.g., Naden et al., 2016) and the need to

take into account the oxygen demand imparted by deposited sediment‐

associated OM (Sear, Frostick, Rollinson, & Lisle, 2008).

2.1.3 | Data processing for source discrimination

The data processing procedure is described in detail in Collins et al.

(2014). The ranges (minimum and maximum) of the fingerprint prop-

erty values measured for each source category were used to define

TABLE 3 Fingerprint properties passing the mass conservation test

Upper River Axe Temple Brook River Synderford Blackwater River Kit Brook River Yarty

ArNH2 ArNH2 ArNH2 ArNH2 ArNH2 ArNH2

ArOH Aromatic ArOH ArOH ArOH ArOH

Aromatic CH Aromatic Aromatic Aromatic Aromatic

Aromatic CH2 C=H C=H C=H C=H

CH HC=CH Cellulose Cellulose Cellulose Cellulose

CH2 Protein CH CH CH CH

CH3 RNH2 CH2 CH2 CH2 CH2

CONH2 ROH CH3 CH3 CH3 CH3

CONHR Starch, glucose CONH CONH2 CONH CONH2

HC=CH δ15N CONH2 CONHR CONH2 CONHR

Protein CONHR HC=CH CONHR H2O

RNH2 H2O Protein HC=CH HC=CH

ROH HC=CH RNH2 Protein Protein

Starch Protein ROH RNH2 RNH2

Starch, glucose RNH2 Starch ROH ROH

δ15N ROH Starch, glucose Starch Starch

δ13C Starch δ15N Starch, glucose Starch, glucose

Starch, glucose δ13C δ15N δ15N

δ15N δ13C δ13C

6 COLLINS ET AL.



TABLE 4 The results of the genetic algorithm‐driven discriminant function analysis (GA‐DFA) for sediment‐associated organic matter (OM) source
discrimination

Upper River Axe

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

ArOH 97 1.10 Aromatic 96 1.39 ArOH
97

1.41

Aromatic 96 1.09 δ13C 69 1.00 δ13C
69

1.00

CH3 88 1.00 CH2 88 1.27 CH2

88
1.27

HC=CH 100 1.14 CONH2 94 1.36 CH3

88
1.27

Starch, glucose 94 1.07 CONHR 100 1.45 ROH
94

1.36

Totalc 100 Totalc 100 Totalc

100

Temple Brook

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

Aromatic 49 1.05 ArOH 59 1.28 HC=CH
58

1.21

CH 48 1.04 Aromatic 49 1.05 ArOH
59

1.28

CH2 46 1.00 δ15N 76 1.65 CH2

46
1.00

δ15N 76 1.65 Protein 49 1.05 δ15N
76

1.65

Starch, glucose 46 1.00 RNH2 46 1.00 ROH
51

1.11

Totalc 94 Totalc 100 Totalc

100

River Synderford

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

Aromatic 73 1.59 Aromatic 73 1.59 ArNH2 69 1.49

C=H 69 1.49 Cellulose 46 1.00 C=H 69 1.49

Cellulose 46 1.00 CONH2 63 1.35 Cellulose 46 1.00

CONH 66 1.43 CONHR 66 1.43 CH3 60 1.30

CONH2 63 1.35 H2O 66 1.43 CONH2 63 1.35

CONHR 66 1.43 δ15N 75 1.62 CONHR 66 1.43

Protein 63 1.35 Protein 63 1.35 δ15N 75 1.62

Starch, glucose 61 1.32 RNH2 68 1.46 Protein 63 1.35

Totalc 100 Totalc 100 Starch, glucose 61 1.32

Totalc 100

Blackwater River

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

δ13C 94 1.14 Aromatic 85 1.00 δ13C
94

1.17

Cellulose 83 1.00 δ13C 94 1.10 Cellulose
83

1.03

CONH2 88 1.06 CONHR 88 1.03 CH
88

1.09

Starch 88 1.06 δ15N 94 1.10 RNH2 1.00

(Continues)
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parameter space for a mass conservation or bracket test (Figure 2) and

only those properties for which the river channel bed sediment sample

ranges were located in the mixing polygon represented by the OM

source samples from the same subcatchment (Table 3) were entered

into the statistical analysis for source discrimination.

Statistical verification of composite signatures (Collins et al., 2014)

involved the use of genetic algorithm‐driven discriminant function

analysis (GA‐DFA), the Kruskal–Wallis H‐test (KW‐H), and principal

component analysis (PCA). Table 4 presents the results of the GA‐DFA.

Three alternative final composite signatures were identified for dis-

criminating the channel bed sediment‐associated OM sources in each

subcatchment. Each signature was selected on the basis of 200 repeat

iterations of the GA‐DFA, using the minimization of Wilks' lambda as a

stepwise selection algorithm and a probability value for parameter

entry of 0.05. Final composite GA‐DFA signatures correctly classified

100% of the source samples collected in the upper River Axe, River

Synderford, Blackwater River, Kit Brook, and River Yarty

subcatchments and 94–100% of those source samples collected in

the Temple Brook subcatchment. Tracer discriminatory weightings for

the mass balance modelling for sediment‐associated OM source

apportionment were estimated using the relative discrimination of

the corresponding source samples by the individual properties

included in each optimum composite fingerprint (Table 4).

The KW‐H test was used to rank properties with the largest statis-

tically significant differences among the OM source type pairs. The

highest ranked properties were passed through the GA‐DFA to calcu-

late the tracer discriminatory weightings and the total discriminatory

efficiency of the final set of properties (Table 5). KW‐H selected final

TABLE 4 (Continued)

Blackwater River

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

80

Starch, glucose 88 1.06 ROH 88 1.03 ROH
88

1.09

Totalc 100 Totalc 100 Totalc

100

Kit Brook

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

CH 75 1.00 ArOH 81 1.08 Aromatic 81
1.08

Protein 77 1.03 C=H 81 1.08 CONH 81
1.08

CH3 88 1.17 CH2 78 1.04 CONH2 81
1.08

CH2 78 1.04 CONH 81 1.08 HC=CH 75
1.00

CONH 81 1.08 δ15N 75 1.00 ROH 81
1.08

Totalc 100 Totalc 100 Totalc 100

River Yarty

GA‐DFA 1 GA‐DFA 2 GA‐DFA 3

Property %a TDWb Property %a TDWb Property %a TDWb

ArNH2 59 1.10 Aromatic 88 1.18 ArNH2 74
1.10

Aromatic 69 1.18 CH 89 1.30 δ13C 69
1.03

CONH2 67 1.13 CONH2 67 1.00 CH 87
1.30

ROH 85 1.44 CONHR 88 1.31 HC=CH 67
1.00

Starch, glucose 83 1.39 RNH2 88 1.31 δ15N 67
1.00

Totalc 100 Totalc 100 Totalc 100

a% sediment‐associated OM source type samples classified correctly by individual properties.
bTracer discriminatory weighting used in the mass balance modelling for sediment‐associated OM source apportionment.
c% sediment‐associated OM source type samples classified correctly by composite signature.
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composite fingerprints correctly classified 94–100% of the samples

collected to characterize sediment‐associated OM sources in the River

Axe subcatchments (Table 5). Alternative composite fingerprints were

identified using PCA and ranking properties with the highest loadings.

Two components were consistently sufficient for explaining nearly

100% of the tracer property variance. For consistency, the individual

properties and the property sets identified using the PCA were passed

through the GA‐DFA to calculate tracer discriminatory weightings and

to assess the percentage of the source samples classified correctly.

Table 5 shows that the final fingerprints selected using PCA correctly

distinguished 94–100% of the source samples.

2.1.4 | Data processing for source apportionment

The relative contributions from the individual sediment‐associated OM

source types were quantified using the mass balance mixing model

described by Collins et al. (2014). In short, the model seeks to solve a

set of linear equations for each composite signature by minimizing

the sum of squares of the weighted relative errors, namely,

∑
n

i¼1
Ci− ∑

m

s¼1
PsSsiSVsi

� �� �
=Ci

� �2

Wi; (3)

where Ci deviates median concentration of tracer property (i) in the

channel bed sediment samples; Ps is the optimized percentage contri-

bution from source category(s); Ssi deviates median concentration of

tracer property (i) in source category(s); SVsi is the weighting

representing the within‐source variation of tracer property(i) in source

category (s); Wi is the tracer discriminatory weighting; n is the number

of tracer properties comprising the final composite fingerprints

selected using GA‐DFA, KW‐H, or PCA; m is the number of sedi-

ment‐associated OM source categories.

A within‐source variation weighting is incorporated into the

objective function to ensure that those properties with smaller

variance exert more influence on the mathematical solutions. The

inverse of the coefficient of variation was used as a basis for these

calculations. The tracer discriminatory power weighting in the

objective function is based on the relative outputs of the discriminant

function analysis for the individual properties comprising each

TABLE 5 The final Kruskal–Wallis H‐test (KW‐H) and principal com-
ponent analysis (PCA) composite signatures for sediment‐associated
organic matter (OM) source discrimination

Upper River Axe

KW‐H PCA

Property %a TDWb Property %a TDWb

ArOH 97 1.71 Aromatic 96 1.71

Aromatic 96 1.71 δ13C 69 1.22

δ13C 69 1.22 CH2 88 1.56

CH3 88 1.56 HC=CH 100 1.78

δ15N 56 1.00 δ15N 56 1.00

Totalc 100 Totalc 100

Temple Brook

KW‐H PCA

Property %a TDWb Property %a TDWb

ArOH 59 1.23 Aromatic 49 1.09

CH 48 1.00 CH2 46 1.00

HC=CH 58 1.21 Protein 49 1.09

δ15N 76 1.61 δ15N 76 1.65

ROH 51 1.08 ROH 51 1.11

Totalc 94 Totalc 94

River Synderford

KW‐H PCA

Property %a TDWb Property %a TDWb

ArNH2 69 1.10 Aromatic 73 1.22

ArOH 64 1.02 CH 81 1.35

Aromatic 73 1.16 CH2 70 1.17

CH 81 1.30 CH3 60 1.00

CH2 70 1.12 CONH2 63 1.04

CONH2 63 1.00 HC=CH 73 1.21

HC=CH 73 1.16 δ15N 75 1.25

δ15N 75 1.20 Protein 63 1.04

Totalc 100 RNH2 68 1.13

Totalc 100

Blackwater River

KW‐H PCA

Property %a TDWb Property %a TDWb

ArOH 88 1.06 Aromatic 85 1.09

Aromatic 85 1.02 δ13C 94 1.21

δ13C 94 1.14 Cellulose 83 1.06

δ15N 94 1.14 CH2 78 1.00

Protein 83 1.00 δ15N 94 1.21

Totalc 100 Totalc 100

Kit Brook

KW‐H PCA

Property %a TDWb Property %a TDWb

ArOH 81 1.08 δ13C 73 1.00

Protein 77 1.03 Cellulose 88 1.21

δ15N 75 1.00 CH2 78 1.07

CONH 81 1.08 CH3 88 1.21

CH 75 1.00 δ15N 75 1.03

Totalc 100 Totalc 100

River Yarty

KW‐H PCA

Property %a TDWb Property %a TDWb

Cellulose 88 1.31 δ13C 69 1.03

CH3 88 1.31 CONH2 67 1.00

CONH2 67 1.00 HC=CH 67 1.00

HC=CH 67 1.00 δ15N 67 1.00

δ15N 67 1.00 Protein 73 1.09

Totalc 100 Totalc 100

a% sediment‐associated OM source type samples classified correctly by
individual properties.
bTracer discriminatory weighting used in the mass balance modelling for
sediment‐associated OM source apportionment.
c% sediment‐associated OM source type samples classified correctly by
composite signature.
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FIGURE 3 Probability density functions for the predicted deviate median relative contributions from each source type to the bed sediment‐
associated organic matter collected from the Blackwater River subcatchment, using each final composite fingerprint. KW‐H = Kruskal–Wallis
H‐test; PCA = principal component analysis; GA‐DFA = genetic algorithm‐driven discriminant function analysis
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composite fingerprint selected using GA‐DFA, KW‐H, or PCA. On this

basis, the discriminatory power of the property providing the lowest

discrimination (%) of the source samples in question is assigned a

weighting of 1.0, and the corresponding weightings for the remain-

der of the properties are calculated using the ratio of their discrimi-

natory efficiency to that of the weakest property in any specific

composite signature.

Uncertainties in characterizing the median tracer values for the

mass balance model on the basis of relatively few source materials

and channel bed sediment samples were quantified explicitly using

the scaling of the parameter distributions based on Qn (Rousseeuw &

Croux, 1993) and a Monte Carlo approach. Robust statistics were used

because analyses using the Lilliefors test revealed that the majority of

the tracers were nonuniform in distribution. Stratified repeat mixing

model iterations using Latin hypercube sampling generated deviate

predicted median relative source contributions. A goodness‐of‐fit test

based on the absolute mean relative error (Collins, Walling, & Leeks,

1997) between source‐weighted predicted and measured sediment‐

associated OM properties assessed each individual repeat solution,

and the mixing model iterations continued until 5,000 viable solutions,

TABLE 6 Relative frequency‐weighted average median source type contributions to the sediment‐associated OM sampled in the River Axe
subcatchments, using each final signature

Subcatchment Signature
Farmyard manures

or slurries
Damaged road

verges
Decaying instream

vegetation
Human septic waste point

source discharges

Upper River Axe KW‐H 0.29 0.13 0.54 0.04

PCA 0.29 0.14 0.54 0.03

GA‐DFA 1 0.54 0.07 0.35 0.04

GA‐DFA 2 0.67 0.14 0.15 0.04

GA‐DFA 3 0.67 0.12 0.15 0.06

Overall weighted averagea 0.49 0.12 0.35 0.04

Temple Brook KW‐H 0.24 0.06 0.67 0.03

PCA 0.25 0.04 0.69 0.02

GA‐DFA 1 0.24 0.05 0.69 0.02

GA‐DFA 2 0.25 0.04 0.69 0.02

GA‐DFA 3 0.24 0.05 0.68 0.03

Overall weighted averagea 0.25 0.05 0.68 0.02

River Synderford KW‐H 0.14 0.13 0.70 0.03

PCA 0.15 0.13 0.69 0.03

GA‐DFA 1 0.30 0.10 0.57 0.03

GA‐DFA 2 0.19 0.07 0.71 0.03

GA‐DFA 3 0.18 0.07 0.72 0.03

Overall weighted averagea 0.19 0.10 0.68 0.03

Blackwater River KW‐H 0.55 0.10 0.32 0.03

PCA 0.58 0.07 0.32 0.03

GA‐DFA 1 0.76 0.06 0.15 0.03

GA‐DFA 2 0.58 0.06 0.33 0.03

GA‐DFA 3 0.72 0.07 0.18 0.03

Overall weighted averagea 0.64 0.07 0.26 0.03

Kit Brook KW‐H 0.14 0.03 0.81 0.02

PCA 0.14 0.07 0.77 0.02

GA‐DFA 1 0.62 0.05 0.29 0.04

GA‐DFA 2 0.14 0.03 0.81 0.02

GA‐DFA 3 0.59 0.04 0.34 0.03

Overall weighted averagea 0.33 0.04 0.60 0.03

River Yarty KW‐H 0.29 0.25 0.38 0.08

PCA 0.31 0.42 0.22 0.05

GA‐DFA 1 0.27 0.29 0.37 0.07

GA‐DFA 2 0.29 0.30 0.33 0.08

GA‐DFA 3 0.21 0.47 0.27 0.05

Overall weighted averagea 0.27 0.35 0.32 0.06

Note. OM = organic matter; KW‐H = Kruskal–Wallis H‐test; PCA = principal component analysis; GA‐DFA = genetic algorithm‐driven discriminant function
analysis.

The bold emphasis was suggested in the author version of the paper to assist readers in extracting the overall weighted average source proportions.
aEstimated using a weighting combining the corresponding goodness‐of‐fit and % discriminatory power.
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on the basis of the goodness‐of‐fit (>0.85), were identified for each

composite fingerprint for each subcatchment. Using a goodness‐of‐fit

estimator based on absolute mean relative error is more robust,

because widely used alternatives based on relative mean error squared

can return highly acceptable fits between source‐weighted predicted

and measured sediment tracer concentrations, even when the former

estimator returns unacceptable fits (Laceby & Olley, 2015). The proba-

bility density functions generated by the Monte Carlo runs illustrated

the full uncertainty ranges associated with the mixing model outputs

and were used to estimate relative frequency‐weighted average

median contributions (R) from the individual OM source types, namely,

R ¼ ∑
n

i¼1
vi Fi; (4)

where n is the number of intervals for the predicted deviate relative

contribution, scaled between 0 and 1, and v and F are the midvalue

and the relative frequency for the ith interval, respectively.

3 | RESULTS AND DISCUSSION

As an example, Figure 3 presents the mixing model output probability

density functions for the Blackwater River subcatchment. These and

the corresponding outputs for the remaining subcatchments were

used as a basis for estimating relative frequency‐weighted median

source contributions on the basis of each of the five composite signa-

tures identified for each subcatchment. The final source apportion-

ment estimates (Table 6) .were generated using a weighting

combining the goodness‐of‐fit and % discriminatory power afforded

by each composite signature within the set of five for any individual

subcatchment. Table 6 shows that farmyard manures or slurries repre-

sented a key source of sediment‐associated OM collected across the

River Axe catchment by the reconnaissance survey, with the esti-

mated contributions ranging from 19% (uncertainty range 0–82%) in

the River Synderford subcatchment to 64% (uncertainty range

0–99%) in the Blackwater River subcatchment. A corresponding range

of 26% (uncertainty range 0–100%) to 44% (uncertainty range

0–100%) was recently reported by Collins et al. (2014). This source

category therefore warrants further investigation to identify problem

yards, positioning of heaps, or spreading practices. Findings from the

reconnaissance survey suggest that the Blackwater River, the upper

Axe, and Kit Brook subcatchments (Figure 1).are priorities with

respect to investigating issues associated with losses of farm manures

or slurries to the river channel system. Across the subcatchments, the

overall average median contribution from farmyard manures or

slurries to bed sediment‐associated OM collected by the reconnais-

sance survey was 36%.

Damaged road verge contributions were estimated to be highest

(35%) in the River Yarty subcatchment. Elsewhere, the contributions

were typically up to ~10%. Across the study areas as a whole, the esti-

mated average median contribution from damaged road verges to bed

sediment‐associated OM was 12%. Previous work by Collins et al.

(2014) also highlighted damaged road verges as an important source

of sediment‐associated OM ingressing river substrates, reporting a

range of 11% (uncertainty range 0–75%) to 48% (uncertainty range

0–99%). Road verges are frequently damaged by vehicle traffic and

livestock movements, and the sediment‐associated OM is easily deliv-

ered to streams along metalled road and associated drain networks.

Recent experimental work has demonstrated the detrimental impact

of damaged road verge sediment on Atlantic salmon and brown trout

in terms of sublethal impacts, reflecting the high OM content of such

source material (Sear et al., 2016). The results from the reconnaissance

survey herein suggest that damaged road verges are highly likely con-

tributing to the unfavourable condition of the River Axe SAC, meaning

that appropriate subcatchment‐wide solutions warrant investigation.

Decaying instream vegetation also represented an important

source of bed sediment‐associated OM with the estimated contribu-

tions ranging from 22% (uncertainty range 0–100%) in the River Yarty

subcatchment to 68% in both the Temple Brook (uncertainty range

0–100%) and River Synderford (uncertainty ranges 0–100%)

subcatchments. For the study areas as a whole, this source category

was estimated to contribute 48%. Increased shear stress in conjunction

with higher flows can mobilize in‐channel decaying vegetation, and

evidence has demonstrated that some of this material can infiltrate

river substrates thereby contributing to oxygen consumption via sub-

sequent decomposition (Bateman, 2012; Soulsby, Malcolm, Tetzlaff,

& Youngson, 2009; Soulsby, Malcolm, & Youngson, 2001).

The reconnaissance survey suggested that human septic waste

does contribute to bed sediment‐associated OM sampled across

the River Axe study catchment, although this is consistently the least

important source (contributions typically <5%). Septic tank dis-

charges pose a risk to rural water quality across the UK with com-

mon reasons for failure including poor maintenance, irregular

cleaning out, and the fact that many tanks are inefficient because

they are >25 years old (cf. Beal, Gardner, & Menzies, 2005; May,

Place, O'Malley, & Spears, 2011). Previous work by Collins et al.

(2014) reported a corresponding range of 4% (uncertainty range

0–31%) to 10% (uncertainty range (0–44%).

The source apportionment results must be interpreted in the con-

text of a number of limitations. Overall, the full uncertainty ranges

around the final estimates of median source contributions suggested

that inputs from farmyard manures or slurries, damaged road verges,

and decaying instream vegetation are more uncertain than those from

the human septic waste source category. The source sample numbers

collected by any tracing investigation are inevitably constrained by

available budgets and rarely, if ever, satisfy statistically based probabil-

ity sampling. The collection of subsamples that are bulked into com-

posite samples for laboratory analysis improves representativeness

by taking account of microscale spatial variations, whereas the dis-

persal of sampling locations across a given subcatchment captures

macroscale spatial variations. It is assumed that any tracer property

transformation during transit to, and through, the river channel system

is not significant enough to impact on the predicted source propor-

tions. Although tracer properties are screened for significant transfor-

mation using the range test, this does not confirm a complete absence

of tracer transformation. River sediment was collected from a single

location towards the downstream end of each subcatchment. The esti-

mated source proportions therefore relate to these sampling points.

Source estimates are scale dependent in that they can differ for dif-

ferent sampling locations along a channel network as the mixture of
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potential sources and their connectivity to the channel system vary lon-

gitudinally (Koiter et al., 2013). An important limitation of the reconnais-

sance survey was its short duration. Capturing temporal variability in

source contributions by sampling river sediment for longer is important

as seasonal variations can exist in conjunction with land management

activities, for example, the spreading of farm manures or slurries in the

spring. Further discussion is provided in SI.

Table 7 compares the SOD data (0–5 and 0–20 days) for the River

Axe SAC with those assembled for other rivers (Collins et al., 2015).

This comparison suggests that the SOD5 of the channel bed sediment

deposited in the River Axe SAC is joint third highest, out of the 10 riv-

ers for which such data are presented. The SOD20 of the channel bed

sediment deposited in the River Axe SAC is sixth highest out of the 10

rivers. SOD values for the different rivers show appreciable variability.

Reasons for this are likely to be a function of the dominant type of OM

(Lundkvist, Grue, Friend, & Flindt, 2007; Tank, Rosi‐Marshall, Griffiths,

Entrekin, & Stephen, 2010), the quantity of OM (Thomann & Mueller,

1987), and the surface area of the particles sampled (House, 2003).

Each of these factors might be expected to vary with catchment type.

The River Blackwater (New Forest) catchment, for instance, is a semi-

natural largely forested stream. SOD in this stream is low, as might be

expected in the absence of significant human impacts through wide-

spread intensive agriculture or inputs from domestic or industrial point

sources. Similarly, large parts of the River Lod subcatchment of the

Western Rother River, in West Sussex, are forested, and recent unpub-

lished source apportionment work in that area has underscored the

significance of sediment inputs from forestry (relative frequency‐

weighted average median contribution of 47% for contemporary

channel bed sediment samples). Particulate OM derived from wood/

forest or leaf sources typically has a lower Biological Oxygen Demand

(BOD) as a result of the higher concentrations of refractory C in lignin

(Ward, 1986). In contrast, chalk catchments, such as the rivers Test

and Frome, have the highest instream biomass as a result of stable

thermal and flow regimes, and the SOD values for these streams

are higher. The simple comparison of SOD data provided in

Table 7 illustrates how the reconnaissance survey generated medium

values, suggesting that the oxygen consumption by deposited sedi-

ment along the SAC is reasonably significant in the context of corre-

sponding information for alternative rivers.

The SOD data from the River Axe SAC reported here are the prod-

ucts of a single sampling campaign. The SOD measurements were

undertaken in the laboratory in line with previous studies, as opposed

to in situ. Although it was not possible to collect repeat samples given

the short duration of the reconnaissance survey, the values shown are

representative of a broader range of UK rivers. The methodology

demonstrates a novel approach to identifying OM sources and

SOD as a reconnaissance tool for supporting more detailed targeting

for source control. We conclude that the reconnaissance survey for

OM sources and SOD should be extended with sample collection

linked to critical periods of juvenile fish development and specific

subcatchments, depending on local priorities, to improve the

robustness of the dataset.
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