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1. Introduction

When Professor Neyman invited me to attend the Fifth Berkeley Symposium,
and give a paper on the basic principles of the design and analysis of experiments,
I was a little hesitant. I felt certain that all those here must be thoroughly
conversant with these basic principles, and that to mull over them again would
be of little interest.

This, however, is the first symposium to be held since Sir Ronald Fisher's
death, and it does therefore seem apposite that a paper discussing some aspect
of his work should be given. If so, what could be better than the design and
analysis of experiments, which in its modern form he created?

I do not propose today to give a history of the development of the subject.
This I did in a paper presented in 1963 to the Seventh International Biometrics
Congress [14]. Instead I want to take a fresh look at the logical principles Fisher
laid down, and the action that flows from them; also briefly to consider certain
modern trends, and see how far they are really of value.

2. General principles

Fisher, in his first formal exposition of experimental design [4] laid down three
basic principles: replication; randomization; local control.

Replication and local control (for example, arrangement in blocks or rows and
columns of a square) were not new, but the idea of assigning the treatments at
random (subject to the restrictions imposed by the local control) was novel, and
proved to be a most fruitful contribution. Its essential function was to provide
a sound basis for the assumption (which is always implied in one form or another)
that the deviations used for the estimation of error are independent and contain
all those components of error to which the treatment effects are subject, and
only those components. When a randomized design is used and correctly analyzed
disturbances such as those arising from real or imagined fertility gradients in
agricultural field trials, and the fact that neighboring plots are likely to be more
similar than widely separated plots, can be ignored in the interpretation of the
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results. The results (yields, and so forth) can in fact be treated as if they were
normally and independently distributed about "true" values given by additive
constants representing the treatments and block or other local control effects.
Valid estimates of the treatment effects and their errors can then be obtained
by the classical method of least squares. The analysis of variance (another of
Fisher's brilliant contributions) formalizes the arithmetic of this procedure, and
permits its extension to more complicated designs, such as split plots, involving
a hierarchy of errors.
There is, of course, nothing sacrosanct about the assumptions of normality

and additivity, and alternative assumptions can be made if these appear appro-
priate. What is not sometimes recognized, however, is that the results of one
small experiment provide very weak evidence on which to base alternative
assumptions. The practical experimenter, or the statistician who works for him,
bases his assumptions on long experience of the behavior of the type of material
he is handling, and has devices, such as transformations, which enable him to
reduce his data to a form which, he is reasonably confident, permits him to
apply standard methods of analysis without serious danger of distortion.

This point, I think, Fisher never sufficiently emphasized, particularly as he
frequently emphasized the opposing point that each experiment should be per-
mitted to determine its own error, anid that no a priori information on error
should be taken into account.

Nevertheless, Fisher, with his sound practical sense, drew the line between
a priori and current information where, in the material he was handling, it should
be drawn. In other circumstances he would undoubtedly have approved of other
methods. When, for example, laboratory determinations of the content of a par-
ticular chemical compound are being made on a series of substances, with du-
plicate determinations on each, that is, 1 d.f. for error for each experiment,
determination of error from a control chart, analogous to that used in quality
control, is clearly preferable to treating each experiment as an independent
entity.
Two points are important here. First, the experimenter does not want to be

involved in a haze of indecision on the appropriate methods to apply to the
analysis of each particular experiment. Second, when considering the results of
an experiment, he should have clearly segregated in his mind the information
on the treatment effects provided by the current experiment and that provided
by previous experiments with the same or similar treatments.

3. Some points on randomization

There is one point concerning randomization in experiments to which Fisher
always appeared to turn a blind eye. As soon as, by some appropriate random
process, an experimental layout is determined, the actual layout is known, and
can be treated as supplementary information in the subsequent analysis if this
appears relevant. Usually, and rightly, the experimenter ignores this informa-
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tion, but there are occasions when it appears wrong to neglect it. Thus, in an
agricultural experiment the results may indicate a fertility gradient which is
very imperfectly eliminated by the blocks. Should the experimenter not then be
permitted to attempt better elimination of this gradient by use of a linear regres-
sion on plot position, which can very easily be done by a standard covariance
analysis? My own opinion is that when a large and obvious effect of this type
is noticed, a statistician would be failing in his duty if he did not do what can
be done to eliminate it. But such "doctoring" of the results should be the excep-
tion rather than the rule, and when it is resorted to, this should be clearly stated.
Such operations will in general introduce bias into the estimate of error, in

the sense that for a fixed set of yields, the average error mean square, for all
admissible randomization patterns of dummy treatments, will no longer equal
the average treatment mean square. Absence of such bias has been used, by
Fisher and others, as one of the justifications for randomization, and as a
criterion for the validity of specific randomization procedures. The condition is
certainly necessary to ensure full validity of the t and F tests, but can scarcely
be regarded as sufficient to ensure a good experimental design. An example is
provided by quasi-Latin squares [13]. In this type of design confounding of one
set of interactions with the rows of a square, and another set with the columns,
enables a 26 design, for example, to be arranged in an 8 X 8 square of plots,
row and column differences being eliminated as in a Latin square. The design
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O DNP 2 P 3 D I N 2 DNK OK 3 NPK I DPK

I D 3 N 2 DNP O P 3 DPK I NPK 2 K O DNK
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O PK 2 DNPK 3 NK I DK 2 O DN 3 DP I NP
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I NK 3 DK 2 PK O DNPK 3 NP I DP 2 DN 0

2 DPK O NPK I DNK 3 K O D 2 N [ P 3 DNP

FIGURE 1

4 X 24 factorial design in an 8 X 8 quasi-Latin square.
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is undoubtedly useful, but can with some frequency give an experimental layout
in which the contrast between the two pairs of diagonally opposite 4 X 4 squares
represents the main effect of one factor. This I first noticed when exhibiting in
1945 a slide of a 4 X 24 experiment done at Rothamsted in 1939 (figure 1) which
had previously been exhibited in 1940 without exciting any comment! This un-
fortunate contingency is due to the fact that the required confounding is only
possible with one rather special basic square. The defect can for the most part
be obviated by what I have termed restricted randomization [6]. By excluding
the most extreme arrangements, both those of the type mentioned and the com-
plementary type which may be expected on average to be particularly accurate,
the unbiased property of the error is preserved.

This throws light on the classical problem of the Knut-Vik or Knight's Move
5 X 5 Latin square, typified by figure 2(a). This was strongly advocated by

(a) (b)

A B C D E A B C D E

D E A B C E A B C D

B C D E A D E A B C

E A B C D C D E A B

C D E A B B C D E A
FIGURE 2

Knut-Vik and diagonal 5 X 5 Latin squares.
(a) Knut-Vik square. (b) Diagonal Latin square.

some as likely to be more accurate than a random Latin square, and Tedin [10]
showed by tests on uniformity trials that this was indeed so. The estimate of
error, however, is necessarily biased in the opposite direction, so that the results
appear less accurate than those of a random square. But, of course, a Knut-Vik
square might be obtained by randomization. If this happens, should the exper-
imenter reject it, and rerandomize? If so, the unbiased property of error will not
hold over all remaining squares. This dilemma can in fact be neatly overcome by
also excluding the diagonal squares, typified by figure 2(b), which Tedin also
investigated and showed to be less accurate than the "random" squares he tested,
though because of a small arithmetical error he did not recognize that the loss
of accuracy in these squares exactly equals the gain in accuracy in the Knut-Vik
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squares. This follows immediately from the fact that the four sets of 4 d.f. given
by the treatment contrasts of the two Knut-Vik squares and the two diagonal
squares are mutually orthogonal, and therefore together comprise the 16 d.f.
left after eliminating rows and columns.
From the practical point of view none of this is of great importance, except

in such special types of design as quasi-Latin squares. If the experimenter rejects
arrangements with obvious systematic features, such as a diagonal pattern in a
Latin square, he will not appreciably bias the estimate of error, as their chance
of occurrence is very small (1/672 for a 5 X 5 diagonal square, for example).
However, the exclusion of the complementary arrangements by formal applica-
tion of restricted randomization is possibly worth while, not because it eliminates
any general bias over all admitted arrangements, but because it eliminates
arrangements that are particularly likely to give an overestimate of error. It
should not be forgotten that the experimenter is much more concerned with the
trustworthiness of estimates obtained from the arrangement actually selected,
than with the behavior of these estimates in a hypothetical population of all
admissible arrangements.

It may be asked, if the Knut-Vik squares are knowin to be on average more
accurate, why not always use these, and accept an overestimate of error? There
are two objections to this. First, valid estimates of error are in fact often required
in experimental work, not only as a basis for tests of significance and fiducial
limits in individual experiments, but also for investigating secondary points, for
example, variation in treatment effects, over a set of experiments. Second, ran-
domization not only provides valid estimates of error, it also eliminates distor-
tions, which can be large, because, for example, one treatment always occurs in
a fixed relation to another. With a randomized design the experimenter can
examine his results objectively without continually looking over his shoulder to
see if the apparent conclusions require qualification because of some statistical
oddity in the design.

4. Estimation and tests of significance

Fisher, I think, tended to lay undue emphasis on the importance of formal
tests of significance in experimental work. Many experiments have as their main
object the estimation of effects of one kind or another. Often it is well known
before the experiment is started that the treatments tested will have some effect.
What is then required is an efficient estimate of these effects and a valid and
reasonably accurate estimate of their error.

In part this emphasis on tests of significance is attributable to the way in
which the subject developed, and to the fact that in the simpler types of exper-
iment the treatment means furnish efficient estimates, whereas the correct es-
timation of error requires more subtle theory and more extensive computation;
in part to the demands of experimenters, particularly biologists, to many of whom
the attainment of a significant result seemed more or less equivalent to a new
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scientific discovery. Fisher himself was also much concerned with the logic of
inductive inference, in which tests of significance play a central part.
The emphasis on tests of significance has undoubtedly had unfortunate con-

sequences, both at the practical level, and in theoretical work. Too much effort
has been devoted to the investigation of minor points of little real importance.
This has resulted in proliferation of alternative methods of analysis, hedged
about with restrictions and qualifications, to the confusion of the practical
worker.

There is a logical point of some importance concerning alternative tests of
significance on the same material. Although with large samples alternative tests
which have similar power functions may be expected to give similar results when
applied to a given set of data, provided these data conform to the basic assump-
tions on which the tests are based, this is by no means so with small samples.
Consequently two statisticians applying two different tests, both of which are
"reasonable," may arrive at very different conclusions. This situation is, to say
the least, unfortunate.
An example is provided by the randomization test in experimental design.

Fisher originally gave an example of this test in The Design of Experiments ([5],
1935) to provide confirmatory evidence of the validity of the t test on the type
of data to which it is usually applied without hesitation by the practical sta-
tistician. Unfortunately, this was taken to imply that the randomization test,
because it made fewer assumptions, was somehow better, and that if the two
tests did not agree on a particular set of data, the t test was incorrect. Following
this line of thought, Welch [11] evolved a method of "correcting" F tests in
randomized block and Latin squares so as to conform approximately to random-
ization tests.

Fisher did not regard the regular use of randomization and other nonparamet-
ric tests as reasonable. As he wrote in the second edition of The Design of Exper-
iments ([5], 1937), "they were in no sense put forward to supersede the common
and expeditious tests based on the Gaussian theory of errors." He did not, how-
ever, ever seriously discuss the question of what should be done when alternative
tests give different verdicts, and in various passages in Statistical Methods for
Research Workers [4], which were never amended, encouraged the statistician
to look around for the test giving the highest significance. This is a pity.

5. Fixed, random, and mixed effects models

The analysis of variance, in the form originally proposed by Fisher, and devel-
oped by him and his coworkers, rapidly became the accepted method of analyzing
replicated experiments. Once the requirements of orthogonality were understood
it was successfully applied to very complex types of experiment, for example,
those involving a hierarchy of split plots, partial or total confounding and frac-
tional replication.

In addition to providing estimates of error and tests of significance for the
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various classes of effect, the results of an analysis of variance of experimental
data can, if required, be used to estimate the variance components attributable
to different classes of effect. Indeed in Statistical Methods for Research Workers
([4], 1925) the reader is first introduced to the analysis of variance in this con-
text, as an alternative to intraclass correlation; this, as Fisher said, was "a very
great simplification."

For most experiments the estimation of variance components is irrelevant,
but such estimates are sometimes required. When, for example, in plant breeding
work a random sample of varieties is selected for test, the varietal component
of variance may be of interest. Similarly, when a fertilizer is tested on several
fields selected at random, the component of variance of the response will rep-
resent the true variation in response to the fertilizer (apart from year to year
variation).

All this was well known before the war and accepted by those using the anal-
ysis of variance to interpret experimental results. UJnfortunately, after the war
a new concept of fixed and random effect models was introduced. The trouble
appears to have started with a paper by Eisenhart [2], which discussed the
assumptions underlying the analysis of variance. In the course of this discussion
he distinguished what he termed "Model I" or the fixed effects model and "Model
II" or the random effects model. Although there is no real difference in his treat-
ment of these two models, different symbols are used and equivalent formulae
for expectations of mean squares in consequence look different. Furthermore,
Eisenhart appeared to think that there was a genuine difference between them,
or at least encouraged his readers to believe this. He wrote:
"Which Model-Model I or Model II? In practical work a question that often

arises is: which model is appropriate in the present instance-Model I or Model
II? Basically, of course, the answer is clear as soon as a decision is reached on
whether the parameters of interest specify fixed relations, or components of random
variation."
Be that as it may, the hare, once started, could not be stopped. Differences in

formulae, arising from differences in definition, soon intruded, and before long
it was represented that the tests of significance which could be correctly applied
would differ for the two models. (For later developments see a review by Plackett
[9]; the discussion on this paper is also worth reading.)
What are the facts? The first and crucial point to recognize is that whether

the factor levels are a random selection from some defined set (as might be the
case with, say, varieties), or are deliberately chosen by the experimenter, does
not affect the logical basis of the formal analysis of variance or the derivation
of variance components. Once the selection or choice has been made the levels
are known, and the two cases are indistinguishable as far as the actual exper-
iment is concerned. The relevance of the various variance components that can
(but need not) be calculated will of course depend on whether the levels can be
regarded as approximating to (or are actually) a random selection from some
population of levels of interest, but the tests of significance will not be affected.
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There is an analogy here with the classical problem of determining the error
of a linear regression coefficient, in which, it may be remembered, it was some-
times claimed that allowance had to be made for the fact that the observed x
were a sample from some population of x, whereas Fisher rightly insisted they
could be taken as known.
The difference in definition, though I have not traced it to its source, appears

to be in the interaction constants of an A X B table (p X q levels, k replicates).
If A and B are regarded as random, the cell (r, s) of the table is taken to have
a "true" value of
(3.1) ar + Os + 'yr,.
where a,r, Os and 'Yrs are members of populations with variances aAo, O' and oAB-
The marginal mean of the true values for level r of A will then be

1 1(5.2) a,r + - (0) + - E (Yr.),

and the mean square for A in the analysis of variance will have expectation

(5.3) Oe + kaAB + kqaA.
If B is regarded as fixed, the -y are redefined so as to have zero marginal means
over B, that is, to satisfy the conditions

(5.4) E (yr8) = 0-
8

The expectation for the A mean square is then

(5.5) ue + kqA.
This restriction serves no useful purpose. If it is not imposed, the random

and fixed models have identical mean square expectations. All that has to be
remembered is that the A mean square contains a term in CAB as well as A)
and similarly for the B mean square. The factorial case then conforms to the
convention customarily adopted for a hierarchical classification, where the mean
square for a given level contains variance components for that level and all
lower levels.
The above differences in expectations have given rise to the belief that the

tests of significance differ for the random and fixed models. Denoting the mean
squares by SA, SB, SAB, SE, we can compare SA with SE or SAB. The comparison
SA/SE tests whether for the levels of B in the experiment (whether chosen or
obtained by random selection) the effect of A averaged over these levels of B
differs from zero. The comparison SA/SAB tests whether, when the levels of B are
a random sample of all possible levels, there is any average effect of A over all
possible levels of B.
The latter test is clearly not relevant unless the levels of B can be regarded

as a random sample of all levels. Even then I would submit that it is pointless,
for if there are interaction terms (0AB and therefore the -y not zero) their av-
erages over all levels of B will in general not be zero, and thus A effects exist,
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whereas whenl there are no interactiotis SA/SE is the appropriate test. The appro-
priate test for interactions is SAB/SE, or, more conservatively, if SA < SAB,
[SAB, SA]/SE, where [ ] indicates the combined mean square.

Confidence limits for the populationi average of the A effects can be obtained
directly from SA1B, but here another complication intrudes. If A has more than
two levels and there is real variation in the A effects over levels of B, there is
no reason to expect that SAB will be homogeneous. Thus, if A represents fer-
tilizer levels and B places, the variance of some general measure of response,
for example, the linear effect, may be expected to be greater than that of other
effect components, for example, the quadratic. Even if A represents varieties
the same is likely to be true, for varieties which differ greatly on average may
be expected to vary more markedly in their place to place differences. CoIn-
sequently, for the investigation of place to place differences and similar issues,
it is imperative to partition the effects d.f. into single d.f. (usually, but not
necessarily, orthogonal) with similar partition of the effects X places d.f. For
such investigations to be fruitful fair replication of places is necessary, otherwise
the number of effects X places d.f. associated with any particular effect d.f. will
be small.
A paper by Harter [7] on the analysis of split plot designs exemplifies the

extreme state of confusioni that can arise from these differences of definition and
from treating replicates as an additional factor R? more or less on a par with the
treatment factors.

Harter first lists the expectations of the mean squares for A (whole plot factor),
B and R, with a, b and r levels, respectively, and their interactioins, in terms of
2-A 2J 2 2,2AB , aiid SO forth, fol fixed anid ranidom effect models for A aiid
B ("R always regarded as random"). He then gives the list of test ratios showii
below, where p is the correlation between the subplots in the sense that if a,
and a- are the whole and subplot error variances, additional to A R and so forth,
a2 = {1 - (b -l)p}o2 and o2 = (1 -p)O2.

Test ratios for A. If B is fixed, use SA/SAR (exact test). If B is random, use
SA/SAR (assumes a2As = 0) or SA/SAB (assumes O-UR = 0, p = 0). Satterthwaite
test: SA/(SAI? + S1AB - SABO); Cochrani test: (S., + SAIBR)/(SAR + SAB).

Test ratios for B. If A is fixed, use SBI/SRI (exact test). If A is random, use
SB/SI'? (assumes OjIAB = 0) or SB/S11?A (assumes 2-BI? = 0). Satterthwaite test:
SBR(SKRB + SAB - SABR); Cochrani test: (SB + SABI) (SBR + SAIB)-

Test ratio Jor A X B. Use SABISABR (exact test).
If these were indeed the appropriate tests it might, as he states, be a "crucial"

question whether or not SBI? and SAB?e should be pooled to make up subplot error.
Far from being crucial, during the maiiy years I have been responsible for the
analysis of split plot experiments I have never considered the two components
worth separation. The only reason for separation would be to examine, from the
results of maniy experiments, whetlher there wvas evideiice for variation in response
to the subl)lot factor over rel)licates; for this purpose SBI? might he tested against
5.111,1. This questioni of differential response has beeni fairly thoroughly examine(d
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in connection with confounded experiments [8], [12], [15] because in such exper-
iments differential response would appear as an apparent interaction between
other factors. All the evidence indicates that it is of negligible magnitude in
agricultural field trials, even with fertilizer treatments.

Suffice to say that, of the five experiments quoted by Harter, SBR is less than
SABR in three, and in none is the difference significant at the 5 per cent level.
Yet, following Bozivich, Bancroft, and Hartley [1], he recommends separation
in three experiments, in one of which SBR is less than SABR!

Incidentally, it may be noted that Harter's arguments have really little to do
with split plots. The same partition of error d.f. can be made in an ordinary
A X B factorial experiment, and the same confused situation would arise if his
arguments were valid.

6. Nonfactorial response surface designs
Nonfactorial response surface designs, of which rotatable designs are an

example, were originally introduced to determine the optimum levels of several
factors in industrial processes. They have occasionally been advocated for use
in preference to ordinary factorial designs in agricultural field trials whose
primary object is to determine optimal levels of fertilizer components. This use
seems to me to be very questionable, for the circumstances are very different.
An example of a design that recently came to my notice may bring out the

basic objections to rotatable designs. This design was in fact more extreme than
a rotatable design, but will serve as an illustration. The design was for a set of
trials on nitrogen and phosphate with treatments as in figure 3.
The experimental results were sent to Rothamsted because analysis on a desk

calculator was too onerous. It was onerous for us too, as the required formulae
had to be worked out, and some special programming was required. This is a
very real disadvantage of these designs.

In correspondence on this design we made the following comments. It would
have been much better to use the conventional 3 X 3 design, starting each fer-
tilizer at zero level with increments of 30 lb/acre. The information on what
happens at the corners of the ordinary conventional 3 X 3 design is of great
importance, and in the present design the curvatures are ill determined because
of nonorthogonality. The point is illustrated by table I of variances in three
replicates of (I) a 3 X 3 factorial design with factors 5 or 35 or 65 lb N per acre,
and 0 or 30 or 60 lb P205 per acre, and (II) the design adopted (table I).

TABLE I

COMPARISON OF VARIANC(ES

I II

Linear 1/72 1/36
Linear X Linear 1/192 1/12
Quadratic 1/96 5/192
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FIGURE 3

Response surface design for N and P.

Of course, Box's designs have advantages over factorial designs. They enable
a given number of factors to be tested on fewer units (plots) if necessary, they
are particularly suitable for sequential experimentation (indeed they were first
introduced for this purpose) and in certain circumstances they are less sensitive
to departures from the assumed form of response surface. These points may well
be relevant in industrial experimentation, particularly when errors are small, so
that loss of efficiency becomes less important, but none is a major consideration
in present day fertilizer experiments.
The much lower accuracy of the design is, of course, mainly due to the fact

that there are fewer points at the extremes of the permissible ranges of N and P.
But for fertilizer components, and I suspect for many factors in other types of
experiment, there are no grounds for reducing the range of one factor at the
extremes of the others. Exploration of a rectangular area of the response surface,
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rather tlhan a circular area, is more approl)riate. If it were eertaill that the factols
interacted positively, as often happeins with fertilizer components, there might
be a case for omitting the 0, 2 and 2, 0 combinations in a 3 X 3 design, but
negligible interactions are quite common, and in some sets of experiments the
existence of strong negative interactioiis has been establislhed.
The lowest level of a factor need not, of course, be zero. Wheln, for example,

it is known from previous work that good responses to N are to be expected,
levels of N1, N2, N3 might be adopted for the factorial scheme. It is then useful
to include some additional plots (for example, onie in each block of a confouiided
3 X 3 X 3 factorial) with, for example, no N and the intermediate levels of P
and K. This indeed is now common practice, and our computer program for
the analysis of 3 X 3 X 3 factorials provides for such additional treatments, and
also for summarizing groups of experiments.
One further general poiInt. A single experiment on fertilizers, as indeed is true

in much other experimeiital work, is not expected to give final answers on all
points. We do not ask that the optimal dressings should be determinable from
one experiment. To do so would demand an impracticably large experiment,
and would in any case be relevant only to the chosen field in the current season.
All that we expect is reasoinably accurate infoimation on the general responses
to the separate factors. Informationi oIn the curvatures of the response curves
and interactions between compoineints, which is required for the calculation of
optimal dressinigs, is gradually accumulated as the experimental program pro-
ceeds. This is another fundamental difference betweeni the industrial and agricul-
tural situation.

7. Computers and experimental design

Electronic computers are radically altering the computational problems asso-
ciated with the analysis of experiments, and this has some influence on design.
When only desk calculators were available, it was imperative that the arith-
metical computations should be kept simple. Now we can, potentially, face much
more extensive numerical work if this results in compensating advantages.

I say "potentially" advisedly, for it is unfortuniately true that as yet very
few computers are programmed to provide full analysis of the more complex
types of experimenit that are in current use. It may be objected that the need
for this is not great, as such experiments were in the past satisfactorily anialyzed
on desk calculators, and this can contiinue. This is only partially true, as anyone
who has contact with extensive experimental programs knows. Backlogs of un-
analyzed results build up, and multivariate techni(lues involving covariance
analysis are seldom used; these are frequently required for experiments in which
many variates are observed. Missing observations also cause much trouble.
We have shown at Rothamsted that powerful general programs for the anal-

ysis of wide groups of designs can be written. We have, for example, recently
written a general factorial program which handles designs with partial (balanced
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or unibalanced) or complete confounding (including 3P X 2q confounded designis),
split plots (including successive splits), and even, although this was not planned,
fractional replication. Covariance, missing values, and preliminary processing of
the data are included, and the results are presented in a form acceptable to
those familiar with desk calculators.

I consider that an urgent task facinig statistical departments in universities
and research institutes is to provide programs of this type on the computers to
which they have access. This iieed not be ani onerous task if a cooperative effort
is made, anid programs are written in a common language such as Fortran or
Algol. It would indeed be a great hell) to practical exl)erimenters if there were
a set of standard statistical l)rograms common to all computers of the requisite
size. But such standard programs must be good ones. Many of the programs at
present available are insufficiently general and unsatisfactory statistically.
To return to the questioni of how computers will inifluence design, it is clear

that designs re(uirinig the inversion of matrices can now be faced. This is already
leadinig to the development of designs oni mixtures (simplex designs); I believe
mutch further iinteresting work lies ahead of us here. But I would emphasize
that in general additional computationial complications should not be introduced
uiiless they can be shown to have compensating advantages, and that in many
circumstances computationally simple designs, because of their balanced prop-
erties, are in fact the most efficient.
Further work for which I believe computers will be particularly useful is the

comnbined analysis of sets of experiments, and the analysis of the accumulated
results of long term experimenits. The techniques required for these tasks require
much further development to which I hol)e we at Rothamsted will make a
useful contributionl.
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