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Abstract: Euphorbia is a large genus of flowering plants with a great diversity in metabolic pattern.
Testing the cytotoxic potential of fifteen Euphorbia species revealed highest activity of E. officinarum
L. against CACO2 cell line (IC59 7.2 uM) and of E. lactea Haw. against HepG2 and MCF-7 cell
lines (ICsp 5.2 and 5.1 uM, respectively). Additionally, metabolic profiling of the fifteen tested
species, using LC-HRMS, for dereplication purposes, led to the annotation of 44 natural compounds.
Among the annotated compounds, diterpenoids represent the major class. Dereplication approach
and multivariate data analysis are adopted in order to annotate the compounds responsible for the
detected cytotoxic activity. Results of PCA come in a great accordance with results of biological testing,
which emphasized the cytotoxic properties of E. lactea Haw. A similarity correlation network showed
that the two compounds with the molecular formula C14H;30g and CygHz9O1, are responsible for
cytotoxic activity against MCF-7 and HepG2 cell lines. Similarly, the compound with molecular
formula C1gH35NO correlates with cytotoxic activity against CACO?2.

Keywords: Euphorbia; cytotoxic activity; metabolic profiling; LC-HRMS; PCA

1. Introduction

Cancer represents one of the most lethal diseases worldwide. Cancer treatments have
adverse effects. Moreover, not all tumors react in the same way to the treatment. Natural
products are considered as a promising approach to cancer control and management [1].
Several studies investigated the cytotoxic potential of phytoconstituents against variable
cancer cell lines [2].

Genus Euphorbia belongs to family Euphorbiaceae, spurge family, which is composed
of about 50 tribes, 300 genera, and 8000 species [3]. Euphorbia is the third largest genus
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of flowering plants, only after Astragalus (Fabaceae) and Psychotria (Rubiaceae) with ap-
proximately 2160 species [4]. Members of this genus are characterized by the production
of a milky irritant latex which is exuded when they are injured. Euphorbia L. are widely
distributed throughout both tropical and temperate regions and range in morphology from
small, annual or perennial herbaceous plants to woody shrubs, trees and even large desert
succulents [3,5].

Different Euphorbia species are used traditionally for the treatment of digestive system
disorders as diarrhea, jaundice, constipation, colic and indigestion [4]. Furthermore,
they are also used for the treatment of skin diseases, gonorrhea, migraines, intestinal
parasites, inhibition of HIV-1 viral infection, warts and for mediating pain due to their
antipyretic and analgesic activity [5].

Euphorbia exhibited a wide variety of compounds with diverse pharmaceutical ac-
tivities. Diterpenes, triterpenes, steroids, phenolics and flavonoids are among secondary
metabolites isolated from genus Euphorbia [5]. In the past few years, many studies have
been performed on the cytotoxic activity of Euphorbia diterpenes as they proved to have
moderate or strong anti-proliferative activity due to the lactone structures. Euphorbia diter-
penes also reported to own potent antineoplastic activity towards various cancer cell lines
(e.g., chronic myeloid leukemia and nasopharyngeal, pancreatic, lung, ovarian, and colon
carcinomas) [3].

Plants have a great challenge in metabolomics due to the high chemical and physical
diversity of their metabolites [6]. Furthermore, Metabolomics is being applied to identify
and biotechnologically optimize the production of pharmacologically active secondary
metabolites [7]. In this framework, liquid-chromatography coupled to high resolution
mass spectrometry (LC-HRMS) is performed and, by untargeted data-dependent MS/MS
experiments, much information on the chemical composition of crude extracts can be
created [8]. This interesting task cannot be achieved by a single analytical technique rather
several analytical platforms are needed [9]. The dereplication approach and multivari-
ate data analysis are used in order to identify compounds in a mixture responsible for
the anti-proliferative effects of plant extracts, and provide a better understanding of the
mechanisms of action of medicinal plants [10]. Principle component analysis (PCA) is an
unsupervised clustering method requiring no knowledge of the dataset and acts to reduce
the dimensionality of multivariate data while preserving most of the variance within [11].

Consequently, this study is designed to investigate the cytotoxic potential of fifteen
Euphorbia species against three cancer cell lines, i.e., HepG2 (human hepatoma), MCE-7 (Hu-
man breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells. Moreover,
metabolic profiling tools and dereplication processes are adopted to investigate the differ-
ences in secondary metabolite pattern between the 15 species and annotate the compounds
responsible for the tested anti-proliferative activity of the tested Euphorbia species

2. Results
2.1. Cytotoxic Activity

The cytotoxic activity of fifteen Euphorbia species against three cancer cell lines was
evaluated (Table 1). Results reveal that five Euphorbia species display activity against
HepG2 where E. lactea Haw. and E. obesa Hook. are the most active (ICsp 5.2 and 6.3 pg/mL,
respectively). Moreover, five species are active against MCF-7 where E. lactea Haw. and
E. grandialata R.A. Dyer exhibit highest activity (IC5p 5.1 and 7.5 pug/mlL, respectively).
On the other hand, eight Euphorbia species show cytotoxic activity against CACO2 where
E. officinarum L. and E. royleana Boiss. are the most active (ICsp 7.2 and 9.1 pug/mL, respec-
tively). Among fifteen Euphorbia, three species, E. tirucalli L., E. horrida Boiss., and E. ingens
E. Mey. are inactive against the tested cell lines.
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Table 1. IC5y uM values of methanolic Euphorbia extracts in different cancer cell lines.

Sample Code HEPG2 MCEF-7 CACO2
E. abyssinica J.F. Gmel. - - 11.3
E. caput-medusae L. - - 17.2
E. trigona Mill. - 16.1 15.6
E. stenoclada Baill. 19.3 19.5 18.2
E. tithymaloides L. - - 13.6
E. tirucalli L. - - -
E. royleana Boiss. - - 9.1
E. officinarum L. - - 7.2
E. horrida Boiss. - - -
E. canariensis L. 9.8 12.7 -
E. grandialata R.A. Dyer 8.4 7.5 -
E. obesa Hook. 6.3 - -
E. lactea Haw. 5.2 51 -

E. ingens E. Mey. - - -

E. milli Des Moul. - - 9.8

(-) No significant cytotoxicity at the examined concentrations.

2.2. LC-HR/MS Analysis

Metabolic profiling of 15 Euphorbia species by LC-HR-MS for dereplication purposes
has resulted in the characterization of a variety of metabolites, of which diterpenes are
predominant. The dereplication study of the metabolites (Table 2) using the Dictionary of
Natural Products (DNP) database followed by chemotaxonomic filtration resulted to the
characterization of 44 natural compounds from the 15 studied Euphorbia species. The an-
notated compounds can be classified into: diterpenoids (21 compounds), sterols (seven
compounds), triterpenoids (four compounds), flavone glycosides (four compounds), tan-
nins (three compounds), sesquiterpenoids (two compounds), alkaloid (one compound),
acetophenone glycosides (one compound), and isoquinoline-carboxylic acid (one com-
pound). As illustrated in (Figure 1), diterpenoids represent the most predominant chemical
class in the tested species.

M Diterpenoids

M Triterpenoids

M Sterols

@ Flavone glycosides

B Sesquiterpenoids

B Tannins

O Alkaloids

B Acetophenone glycoside

OIsoquinoline carboxylic
acid

Figure 1. Percentage of different classes of metabolites distributed in the tested 15 Euphorbia species.
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2.3. Metabolic and Molecular Correlations Analysis

To provide a holistic coverage of Euphorbia’s metabolic profile, the crude extracts of
the tested species were analyzed in both positive and negative ion electrospray ionization
(ESI) MS modes as changes in ESI polarity can often hinder competitive ionization and
suppression effects, revealing otherwise suppressed metabolite signals. This resulted
in approximately 3000 molecular ions of both polarities. Principle component analysis
(PCA) was applied to the dataset to explore the relative variability and/or similarity of
the chemical profiles among the tested species. PCA score plot (Figure 2A) exhibited a
respective total variance of 48% and 16% for PC1 and PC2, and highlighted the outlying of
EU2, EU9, and EU13 corresponding to the crude extracts of E. caput-medusae L., E. horrida
Boiss. and E. lactea Haw., respectively. The dispersal of the former extracts revealed for
their unique chemical profiles which led to probe the metabolites contributed to such
segregation. PCA loading plot (Figure 2B) demonstrated the discriminatory molecules at
m/z (retention time in minutes) 592.268 [M*] (tr 29.13) characteristic for E. caput-medusae
L. and E. horrida Boiss., while E. lactea Haw. was characterized by 402.225 [M*] (tg 24.58).
The molecular correlation network uses Pearson correlation coefficient to detect molecules
highly correlated with bioactivities (represented by percentage of inhibition against cancer
cells). Features (molecules) are connected by edges (correlation values) where an edge’s
width is corresponding to the strength of this correlation [12]. The threshold of Pearson
correlation coefficient was set to 0.8 and a network of metabolites linked to the bioactivity is
depicted in (Figure 3A). The network is mapped so nodes are colored in pie chart according
to their concentration in the tested species and labeled with feature’s molecular weight.
An extracted network of the molecules directly linked to the bioactivity and their neighbor
ions (Figure 3B), showed metabolites at m/z [M*] (retention time in minutes) 338.100
(9.40) and 430.184 (10.94) are highly correlated with MCF-7 activity. In addition, the other
molecule directly linked to HPEG2 activity at m/z 503.506 [M*] (tgr = 29.66), was not
reported before, that refers to a new chemical structure still to be discovered. The network
did not detect any molecules correlated with CACO2 cytotoxic activity, even though the
threshold was decreased. To highlight the molecules could be contributed to the cytotoxic
activity against CACO2 cancer cell line, an OPLS-DA (orthogonal partial least square
discrimination analysis) module was created. OPLS-DA was validated by permutation
test. The test showed the original R2 and Q2 values were more than the permuted values
and the cumulative value of Q2 is —0.08 (less than zero) which is indicative for the good
prediction ability of the model. Discriminatory elements were confirmed by descriptive
statistics, i.e., p-value<0.05, coefficient of variation (95% confidence limits do not cross
zero), and variable importance (VIP values >1). The score plot (Figure 4A) demonstrated
a clear separation between the active and inactive extracts with a strong goodness of
fit RZ = 0.96 and a goodness of prediction Q? = 0.46. The S-loading plot (Figure 4B) is
a very useful tool to compare the variable magnitude against its reliability, where axes
plotted from the predictive components are the covariance p against the correlation p(cor).
The molecules highly correlated with the CACO2 activity were checked and only those
with high coefficient of variation, whose 95% confidence level limits not crossing zero,
were chosen. The significant metabolite highly correlated with the CACO2 cytotoxicity
was at m/z [M]* 281.272 (tg = 29.16).
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3. Discussion
3.1. Cytotoxic Activity

However, the anticancer activity of E. lactea Haw. remains largely unexplored, its methano-
lic extract exhibits high activity against both HepG2 and MCF-7 cell lines (ICsg 5.2 and
5.1 uM, respectively). Previous studies tested the ethanolic extract of E. lactea Haw. against
another hepatic cancer cell line HEp-2 and the ICsy was found to be 89 ug/mL [13]. In ad-
dition, it was reported that the hydro-alcoholic extract of E. lactea Haw. exhibited cytotoxic
and anti-migratory activities toward HN22 cells [14]. Additionally, E. officinarum L. and
E. royleana Boiss. are the most active against CACO2. Interestingly, the cytotoxicity of
E. officinarum L. hasn’t tested before on any cancer cell lines, and the cytotoxic activity of
the hexane extract of E. royleana Boiss. was only studied on a potato disc and found to be
61.66% at 800 ug/mL [15]. Current results also show mild cytotoxic activity of E. trigona
Mill. extract against both MCF-7 and CACO2. The latex of E. trigona Mill. was previously
tested on HT-29 (colon cancer cell line) and found to be inactive [16]. Notably, among
the fifteen tested extracts, three species, namely E. tirucalli L., E. horrida Boiss., and E. in-
gens E. Mey.,, are inactive against the three tested cell lines. However, previous studies
reported high cytotoxic activity of the butanol extract of E. tirucalli L. against MCF-7 [17]
as well as moderate activity of high concentration of aqueous extract of the same species
(100-150 png/mL) against human leukocytes [18].

3.2. LC-HR/MS Analysis

The distribution of the compounds in the 15 Euphorbia species reveals the presence
of different chemical classes such as terpenoids, sterols, flavonoids and tannins and all
of these classes were reported previously in Euphorbia species [5,19]. Also, Milliamine ]
alkaloid (44) is detected only in E. milli Des Moul. and this was reported before [20]. Addi-
tionally, I-methyl-6-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (1) and the
acetophenone ebractelatinoside C (19) record the highest concentrations in the same species.

Basically, diterpenoids, such as jatrophanes, lathyranes, tiglianes, ingenanes, myrsi-
nols nucleus, and those with oxygen-containing functionalities, are the majority among
secondary metabolites of the genus Euphorbia. About 400 diterpenoids have been isolated
from different Euphorbia species [21]. This comes in great accordance with our results that
detect diterpenes as the main class of constituents in all tested Euphorbia species, where four
different nuclei, i.e., lathyrane (10 compounds), tigliane (5 compounds), inginane (4 com-
pounds), and jatrophane (2 compounds), are detected. Furthermore, inginane nucleus
represents the highest concentration compared to other nuclei where compound (21)
ingenol-3-angelate-5,20-diacetate is detected in high concentration especially in E. abyssinica
J.E. Gmel., followed by compound (25), 17-hydroxyingenol-17-benzoate-20-angelate, that is
highly represented in E. horrida Boiss. Similarly, a study of the diterpenoid ester content of
E. cupanii, using liquid chromatography coupled to tandem mass spectrometry and molec-
ular networking coupled to unsupervised substructure annotation (MS2LDA) was recently
published and showed the presence of premyrsinane/myrsinane diterpene esters [22].

Herein, the sesquiterpene supinaionoside A (3), is the leading among other annonated
sesquiterpenes and is detected in E. abyssinica J.F. Gmel. for the first time. On the other
hand, triterpenes have been frequently reported in Euphorbia species [5]. Among the
detected triterpenoids, euphorbiane (6) and canaric acid (9) exist in high concentration in
E. milli Des Moul.

Considering sterol content, 24-hydroperoxytirucalla-8,25-dien-33-ol-7-one (18) is
recorded in the highest concentration in E. lactea Haw. and E. ingens E. Mey. Also,
many sterols were identified in E. ingens [23]. Regarding flavonoids, rhamnetin-3-x-
arabinofuranoside (12) is the main flavonoid detected and recorded in high concentration
in almost all the fifteen tested species, a result that agrees with previous report about the
prevalence of rhamnetin glycosides within the Euphorbiaceae [24]. In the same context,
recent LC-DAD-MS" fingerprint of the phenolics of E. hirta, E. heterophylla and E. convolvu-
loides concluded the presence of flavonoids, coumarins and phenolic acids [25]. Tannins,
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specifically; helioscopinin B (38) and 3,3’,4-tri-O-methyl-4’-O-rutinosyl-ellagic acid (42) are
detected in high concentration in E. stenoclada Baill. and E. abyssinica ].F. Gmel., respectively.

Table 2. List of secondary metabolites isolated from fifteen Euphorbia species.

N. Compound Class Mode Formula m/z Rt Structure Source
I-Methyl-6-
hydroxy-1,2,3,4-  Isoquinoline- o
tetrahydro- 3- HO OH E.
. nye . - C11H13NO;5 206.0824 10.37 myrsinites
isoquinoline-3- carboxylic NH L [26]
carboxylic acid )
acid
HO 2
. E. tirucalli
2 4-Deoxyphorbol Diterpene + CyoHpg05 349.2006 9.63 oH
L. [27]
HO  oH

E. supina
Raf. [28]

3 Supinaionoside A Sesquiterpene C19H390O9 401.1817 10.01

H
H
H

E. resinifera

4  Euphorbioside B Sesquiterpene + C19Hz3409 407.2271 8.12 Berg. [29]

E. tirucalli

5 Euphorbosterol Sterol + Cp9HygO 413.3775 27.46 L. [30]

HO. o
o (0]
OH
OH
o OH
(o) OH OH
(o]
HO
W
|
(6]
O\?ﬁ

HO

E. tirucalli

6 Euphorbiane Triterpene + C39HygO 425.3775 24.48 L [31]

o
o}
E. tirucalli
7 Cycloeuphordenol Sterol + C3oH500 427.3931 26.12  Ho L. [30]
E. tirucalli
8  Cycloeuphornol Sterol + C31H500 439.3931 27.24 HO L [32]

Canaric acid(3,4-

E. broteri
seco-429)2080)  myarpene 4+ CypHgO, 4413724 27.36 Dav-
Lupadien-3-oic HO eau. [33]

acid)
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. E. tirucalli
10 Euphorbinol Sterol + C31H5,0 441.4086 27.33 OH L [32]
A : o
’ Sterol + Co9Hyg03 445.3674 27.85 narum
5a-cholest-8-en-11-
L. [34]
one HO OH
OH
OH
Rhamnetin-3-«- E. amyg-
12 . . Flavonoid + C1HpO01q 449.1074 11.87 daloides
arabinofuranoside
L. [35]
o]
. . HO E. supina
13 Supinenolone C Triterpene + C30Hy03 455.3517 26.27
Raf. [36]
o]
=
. . E. neriifolia
14 Euphonerin D Triterpene + C30Hyg03 457.3673 20.59 L. [37]
HO oH '
OH
3B3- HO E
Hydroxycycloart- Sterol cyparissias
25-ene-24- L. [38]
hydroperoxide Ovon b
15 + C30Hs5003 459.3829 2598 Tillandsia
recurvata
Cycloart-23-ene- and
3,25-diol-25- Sterol
hydroperoxide ~ Xanthosoma
y o robustum
Ho [39,40]
Kaempferol-3- . E. lathyris
16 elucuronide Flavonoid + Cy1H15012 463.0867 11.92

L. [41]
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O OH
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17 (Euphorbia factor Diterpene + CoyH3z607 473.2531 21.64 4{? J E. spp [45]
HO
Pel) \ O}}/
o}
HO.
24-
Hydroperoxytirucalla- E.
18 1 yaroperoxy Sterol + CaoHusOy 4733622 2334 micractina
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Boiss. [46]
one
HO o

HO OH
HO OH
o :
19 c CyH30O13  491.1753  10.11 ° od NPTy ebracteolata
o@—( Hayata [47]
OH
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20  Tirucalicine Diterpene ~ + CoyHzsO9  507.2582 1679 E‘Iflr[fi‘é‘;lll
S
Ingenol-3- c E.
21 angelate-5,20- Diterpene + Co9H350g 515.2636 22.72 0 canariensis
diacetate ° L. [49]
\
Euphohelioscopin E
P P Diterpene  + C3oHpO; 5152998  24.44 helioscopia
L. [50]
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Table 2. Cont.
N. Compound Class Mode Formula m/z Rt Structure Source
16-Angeloyloxy- OYK
13- o] OW E
. : x .
150111[;%20;1 éc_)xy Diterpene .' z grandicornis
trihydroxytiglia- c@ oH Goebel [51]
1,5-dien-3-one
O OH
+ Co9HyOg 517.2792 23.04
13-O-[2-Methyl-2- /\y\g
cis-butenoyl]-16- o
O-isobutyryl .
-12-desoxy-16- Diterpene HO 0 E. cooperi N.
hydroxy- oj\ E. Br. [52]
phorbol(Euphorbia
factor C) o OH OH
OH
12-0-(2Z,4E- 3
Octadienoyl) . E. tirucalli
24 -phorbol-13 Diterpene + C30Hy0Og 529.2791 20.37 HO L. [53]
acetate 0
Y
(0]
ﬁ
17- J° E
Hydroxyingenol- . oH S
25 Diterpene + C3H30g 551.2634 2297 canariensis
17-benzoate-20- @ o L. [49]
angelate '
SUR%lye
0
OH
o
12-0-2ZAE,6- E. tirucalli
26 Decatrienoyl)- Diterpene + C3pHypOg 555.2949 24.67 HO .L 53]
phorbol-13-acetate o) '
NSO 5
0
12-O-Acetylingol- . E. royleana
27 3,8-ditiglate Diterpene + C3pHy409 573.3053 22.48 Boiss. [54]
3,7,12-Tri-O- E. tirucalli
28 acecyl-8- Diterpene + C31Hyg40q9 577.3000 25.83 ’

isovaleryl-ingol

L. [55]
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Table 2. Cont.
N. Compound Class Mode Formula m/z Rt Structure Source
5,15,17-Tri-O-
acetyl-3-0- . E. lathyris
29 benzoyl-17- Diterpene + Cs3Hy009 581.274 22.95 L. [56]
hydroxy- '
isolathyrol
8-Methoxyingol- E. offici-

30 7,12-diacetate-3-  Diterpene + C33HyO9 583.2896 25.25 narum
phenylacetate L. [57]
12-O-Acetyl-3-O- E. rovleana

31  benzoylingol-8- Diterpene + C34HypOg 595.2890 23.05 . Y
. Boiss. [54]
tiglate
3-0-(24,6-
Decatrienoyl)-16- ﬂ E. inoens E
32 O-angeloyl- Diterpene + C35Hy60g 595.3260 25.79 C 3 ’
ingol(Euphorbia Mey. [58]
HO
factor I5) Ox° Ho
kag/v
RN
OH
HO
12-0-(2,4,6,8- ° . .
. E. tirucalli
33 Tetradecatetraenoyl)- Diterpene + C36HygOg 609.3417 26.12 HO L 53]
phorbol-13-acetate o '
NSO 5
0
Deghucopyranony- E. drancin:
g Hcopy Y* " Flavonoid culoides
(1-4)-O-o-L- Lam. [59]
rhamnopyranoside )
34 + Co7H39016 611.1599 10.83
Tilia spp.,
Vincetoxi-
Vincetoxicoside A Flavonoid citm Spp-
0, and many
K;IOH other plant
spp. [60-62]
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Table 2. Cont.

N. Compound Class Mode Formula m/z Rt Structure Source
OH
HO
o
WaWa W
AR OH Ruta
Ho graveolens L.
Rutin Flavonoid ]i/OH and Many
HO plants
OH 0 [63,64]
HO_Ag
HO
OH
8,12-0- E. royleana
35 Diacetylingol-3,7-  Diterpene + C34Hy6010 615.3155 2411 -y
o Boiss. [54]
ditiglate
Quercetin-3-0O-(2”-
galloyl) . ) E. spp.
36 _B-D- Flavonoid CosH4016 615.0990 10.77 [65,66]
galactopyranoide
37 Euphocharacin G  Diterpene  +  CsHuNOjy 6283109  23.20 E Eh‘EZ;C]’“S
E.
38 Helioscopinin B Tannin - Co7H», 015 633.0732 8.99 helioscopia
L. [68]
2,3-Di-O-
methylellagic . E. tirucalli
39 acid-7-O- Tannin + C28H30017 639.1548 10.59 L. [69]
rutinoside
I.ngol—7,8,12— E. offici-
triacetate-3-(4- .
40 Diterpene + C35Hy4011 641.2962 22.71 narum
methoxyphenyl)-
L. [57]
acetate
41 EuphocharacinK  Diterpene  +  CssHyNOjy — 642.3267  23.23 E. characias

L. [67]
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N. Compound Class Mode Formula m/z Rt Structure Source
3,3’ ,4-Tri-O- E. acaulis
methyl-4"-O- . Roxb. [70]

rutinosyl-ellagic Tannin * C2oH32017 653.1704 11.93 E. tirucalli
acid L. [69]
8,12-0- E. royleana
43 Diacetylingol-3,7-  Diterpene + C3gHy201q9 659.2844 23.04 Ty
. Boiss. [54]
dibenzoate
44 Milliamine J Alkaloid +  CuHpN;Opp 7783324 2681 E. milli Des
S ' Moul. [20]

3.3. Metabolic and Molecular Correlations Analysis

The dereplication study revealed that molecule at m/z [M+] 592.268 is corresponding
to molecular formula (C35H36N4Os5) which may be phaeophorbide A that is a chlorophyll
degradation product formed by enzymic hydrolysis of phaeophytin A by chlorophyllase.
More interestingly, signal at m/z 402.225 is equivalent to molecular formula Cy9H340Og that
may correspond to either taxane or grayanane type of diterpenoid molecule i.e., pierisfor-
mosoid which was reported in the literature for its cytotoxic, analgesic and antifeedant
properties [71,72]. The PCA and dereplication results matched with the investigated biolog-
ical activities of the Euphorbia’s crude extracts which emphasized the cytotoxic properties
of E. lactea Haw. The biological investigations revealed the cytotoxic activities of E. lactea
Haw. against HPEG2 and MCF-7 cancer cell lines and E. officinarum L. against CACO2
cell line. To pinpoint the molecules mediated for such bioactivities, a similarity correla-
tion network was implemented. The molecules 338.100 (9.40) and 430.184 (10.94) that
correlated with MCF-7 were equivalent to molecular formula C;,H;30g and Cy0H30O19
respectively. In addition, the molecule at 430.184 was further correlated to the cytotoxic
activity against HPEG2. Moreover, the correlated metabolite with the CACO2 cytotoxicity
281.272 (tg = 29.16) that was equivalent to C1gH35NO. More amazingly, all these molecular
formulae not reported to be isolated previously from genus Euphorbia and need further
investigation. In summary, metabolomics was a powerful tool that gave a shorter access to
the bioactive metabolites could mediate for the demonstrated cytotoxicity of Euphorbia’s
extracts against MCE-7, HPEG2 and CACO2 cancer cell line. Moreover, the dereplication
study relied on a precise molecular formula prediction along with 'HNMR to minimize
the number of hits per each molecular formula, leading to the tentative identification of the
top hits [73].

4. Materials and Methods
4.1. Plant Material

The aerial non-flowering parts of fifteen Euphorbia species were collected during
October 2018 from Helal Cactus farm, Abdel Samad village, El-Mansuriya, Giza, Egypt.
All the collected species consisted mainly of stems and leaves. The species were identified
and authenticated by Prof. Dr. Abdel-Halim Mohammed; Professor of Agriculture, Flora
department, Agricultural museum, Dokki, Giza, Egypt. Fresh plants were cut into small
pieces and directly macerated in methanol 80%.
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4.2. Methanolic Extracts for Metabolic and Cytotoxic Studies

Methanolic extracts were prepared by maceration of 50 g fresh samples in (3 x 200 mL)
80% methanol (Sigma-Aldrich, Darmstadt, Germany). The extracts were separately filtered
and evaporated to dryness using rotatory evaporator. Dried extracts were stored at 4 °C.

4.3. Cytotoxic Activity

Cytotoxicity of the methanolic extracts was evaluated in cell lines using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay [74,75]. HepG2 (hu-
man hepatoma), MCF-7 (Human breast adenocarcinoma), and CACO2 (human colon
adenocarcinoma) cells were maintained in RPMI medium (Merck, Darmstadt, Germany),
supplemented with 10% fetal bovine serum (FBS). Cancer cells were cultured at 37 °C, 5%
(v/v) COy in RPMI1640 medium, supplemented with 5% (v/v) fetal bovine serum (FBS), 1%
(w/v) L-glutamine, 1% sodium pyruvate and 0.4% (w/v) antibiotics (50 U/mL penicillin,
50 mg/mL streptomycin). Cells were obtained from the American Type Culture Collection
(ATCC, Rockville, MD, USA; HPACC, Salisbury, UK) and routinely sub-cultured twice
per week. Alcoholic extracts were dissolved in DMSO at a concentration of 0.05 g/0.5 mL
as a stock solution and filtered to remove any particulate matter. Further dilutions were
made in culture medium. DMSO used for the assay was of ACS reagent grade from Sigma
Aldrich (Darmstadt, Germany). The water used was reverse osmosis water purified using
a Millipore cartridge filter. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium
bromide) substance, and all the other reagents and substances were obtained commercially
(Sigma Aldrich, USA). The glass vials (2 mL) utilized were Fisher-brand with Titeseal
closure (Fisher Scientific). To normalize cell viability values, each plate included a triplicate
of cells treated with the various methanolic extracts carrier on DMSO to define 100% viable
cells as well as a triplicate of cells incubated with a cytotoxic mixture (200 ng/mL Tumor
Necrosis Factor TNF, 200 ng/mL CD95L (Fas ligand), 200 ng/mL TRAIL (TNF-related
apoptosis-inducing ligand), 25 g/mL CHX (Cycloheximide), 1% (w/v) sodium azide) to
define maximal cell death and thus 0% viability. The viable cells produced a dark blue for-
mazan product, whereas no such staining was formed in the dead cells. All samples were
transferred to a 96-well plate and absorbance was measured at 570 nm using a SpectraMax
plus Microplate Reader (Molecular Devices, CA, USA). The cell viability was expressed
relative to the untreated control cells. All other viability values were normalized according
to the averages of these triplicates and analyzed by the Graph Pad Prism 5 software (La
Jolla, CA, USA), 50%. 5-Flurouracil was used as a positive control.

4.4. LC-HR/MS Analysis

One mg of each extract (of the fifteen species) was weighted using sensitive electric
balance (Sartorius, type 1712, Germany) and dissolved in one mL HPLC grade methanol
then it was analyzed on an Acquity Ultra Performance Liquid Chromatography system
coupled to a Synapt G2 HDMS quadrupole time-of-flight hybrid mass spectrometer (Wa-
ters, Milford, CT, USA). The HPLC column was an ACE (ACE, Mainz, Germany) C18,
75 mm x 3.0 mm, 5 um column. The mobile phase consisted of HPLC grade water (A) that
was obtained in-house from a direct Q-3 water purification system (Millipore, Watford,
UK) and acetonitrile (B) with 0.1% formic acid in each solvent. All reagents were of analyt-
ical grade and were purchased (Fisher Scientific, Hemel Hempstead, UK). The gradient
program started with 10% B linearly increased to 100% B at a flow rate of 300 pL/min
for 30 min and remained isocratic for 5 min before linearly decreasing back to 10% B in
1 min. The column was then re-equilibrated with 10% B for 9 min before the next injection.
The total analysis time for each sample was 45 min. The injection volume was 10 uL,
and the tray temperature was maintained at 12 °C. High resolution mass spectrometry
was carried out in both positive and negative ESI ionization modes with a spray voltage at
4.5 kV and capillary temperature at 320 °C. The mass range was set from m/z 150-1500.
Both negative and positive ionization switch modes were used to include the highest
number of metabolites from the investigated methanol extracts subjected to LC-HR-ESIMS
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analysis. The dereplication was achieved for each m/z ion peak with metabolites recorded
in the customized databases based on established parameters (m/z threshold of £3 ppm
and retention time) [76], which provided a high level of confidence in metabolites identity.
Consequently, the number of the remaining unknown metabolites in each species was
refine. The raw data were processed, aligned, and merged into one dataset according to
the method previously developed in our lab [77,78].

5. Conclusions

The present study highlighted the cytotoxic activity and metabolic profiling of fifteen
Euphorbia species where E. lactea Haw. shows the highest cytotoxic activity against HepG2
and MCF-7 (ICsp 5.2 and 5.1, respectively). On the other hand, E. officinarum L. is the
most active against CACO2 ICsg 7.2. The molecular interaction network is implemented
in order to correlate the chemical and biological profiles. Interestingly, molecule detected
at m/z 503.506 [M*] (tr = 29.66), directly linked to HepG2 activity, was not reported
before, suggesting that a new chemical structure still to be discovered. Also, the molecular
correlations analysis reveals for the unique chemical profiles of E. caput-medusae L., E. horrida
Boiss., and E. lactea Haw. where means of 592.268 [M*] (tg 29.13) is characteristic for E. caput-
medusae L. and E. horrida Boiss. while 402.225 [M*] (tg 24.58) is characterized for E. lactea
Haw.
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