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Abstract Wheat is the staple food crop in temperate countries and increasingly consumed

in developing countries, displacing traditional foods. However, wheat products

are typically low in bioavailable iron and zinc, contributing to deficiencies in

these micronutrients in countries where wheat is consumed as a staple food. Two

factors contribute to the low contents of bioavailable iron and zinc in wheat: the

low concentrations of these minerals in white flour, which is most widely

consumed, and the presence of phytates in mineral-rich bran fractions. Although

high zinc types of wheat have been developed by conventional plant breeding

(biofortification), this approach has failed for iron. However, studies in wheat

and other cereals have shown that transgenic (also known as genetically

modified; GM) strategies can be used to increase the contents of iron and zinc in

white flour, by converting the starchy endosperm tissue into a ‘sink’ for minerals.

Although such strategies currently have low acceptability, greater understanding

of the mechanisms which control the transport and deposition of iron and zinc in

the developing grain should allow similar effects to be achieved by exploiting

naturally induced genetic variation. When combined with conventional

biofortification and innovative processing, this approach should provide increased

mineral bioavailability in a range of wheat products, from white flour to

wholemeal.
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Introduction

It is difficult to overemphasise the global importance

of deficiencies of mineral micronutrients, principally of

iron and zinc, in human diets. It has been estimated

that globally 43% of children and 29% of women of

reproductive age have anaemia, and about half of these
cases result from iron deficiency (WHO 2015). Zinc

deficiency is associated with stunted growth in children

under the age of 5 years and reported to affect approx-
imately 155 million children globally (WHO 2013). In

the UK, the zinc intake of around a quarter of adoles-

cents is below the lower reference nutrient intake
(LRNI; intakes below which are inadequate for most
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individuals), and the iron intake of over half of adoles-

cent girls and over a quarter of adult females is below
the LRNI (Roberts et al. 2018). Cereals such as wheat,

rice and maize provide 30–35% of energy intake in the

UK (Bates et al. 2014) and up to 60% of the daily
calories in developing countries (Ritchie & Roser

2018), but conventional processing of the grains

removes most of the micronutrients.
Many countries have mandatory fortification for iron

and selected vitamins in flours from wheat, maize and

rice (www.ffinetwork.org). Fortification of cereal flour
with zinc is also practised in several countries, but lar-

gely on a voluntary basis (Brown et al. 2010). All white

wheat flour milled in the UK is fortified in accordance
with the Flour and Bread Regulations 1998 (http://

www.legislation.gov.uk/uksi/1998/141/contents/made)

with inorganic forms of iron at levels of 16.5 mg/kg
(equivalent to levels in high extraction rate wheat

flour), which then enters the food chain through bread,

pasta, noodles, cakes, biscuits and a range of other
products. In other parts of the world where wheat is a

staple crop, such as north India and Pakistan, fortifica-

tion is difficult to implement because milling is carried
out domestically at a small scale as well as in large-scale

industrial mills. Hence, more innovative strategies are
required to ensure sustainable micronutrient levels in

those regions that need it most.

The provision of adequate minerals from bread and
other cereal products is determined by their total

amount in the grain and by their bioavailability.

Although the latter can be increased, to a limited
extent, by post-harvest processing such as micro-

milling and fermentation, modern breeding approaches

may be the only way to achieve the profound
increases in the amounts of bioavailable iron and zinc

that are required to meet the metabolic demands of

the global population, by altering the localisation and
form of the minerals in the grain.

Location of iron and zinc in wheat grains

The wheat grain is a single-seeded fruit, called a cary-

opsis. It contains a small embryo, which forms the new
plant on germination, and a large storage tissue (the

endosperm), which comprises mainly starch (a source

of energy) and protein. These tissues are surrounded by
protective layers derived from the seed coat (testa) and

fruit coat (pericarp). Iron and zinc, together with other

minerals, are concentrated in the embryo and in the
outer layer of endosperm cells, called the aleurone.

These distributions can be clearly seen in sections of a
wheat grain using simple staining methods (Fig. 1a),

but higher resolution is obtained by modern imaging

systems such as Synchrotron X-ray fluorescence
(Fig. 1b) and NanoSIMS (secondary ion mass spec-

troscopy) (Fig. 1c) (Moore et al. 2012; Neal et al.
2013). The uneven distribution of the two minerals
makes sense from a plant biology perspective: upon ger-

mination of the seed, the embryo will grow rapidly into

a young seedling for which it requires enzymes that are
dependent on iron, zinc and other cofactors (Bastow

et al. 2018). The growth is sustained by energy and

amino acids derived from the storage reserves (starch
and protein) in the central starchy endosperm. How-

ever, because the starchy endosperm cells die during the

later stages of grain maturation (Young & Gallie
2000), the starch and protein are mobilised as sugars

and amino acids after lytic digestion by enzymes

secreted from the aleurone layer and embryo. Interest-
ingly, the two minerals differ slightly in distribution

between the two tissues, with iron being more concen-

trated in the aleurone and zinc in the embryo (as shown
in Fig. 1b). The biological significance of these differ-

ences in the locations of the two minerals is not known.

Traditional milling of wheat by grinding between
stones produces wholemeal flour in which all parts of

the grain are mixed and can be only partially sepa-
rated by sieving. However, the introduction of roller

milling at the end of the 19th century enabled the pre-

cise separation of the starchy endosperm from
the embryo (germ) and the outer layers (including the

aleurone), which are usually recovered together as the

‘bran’. This resulted in the availability of affordable
white bread, previously an expensive luxury, for the

whole population. However, the removal of both the

germ and the aleurone layer means that white flour
has substantially lower contents of iron and zinc than

wholemeal – for example, means of 6.7 mg/kg iron

and 8.4 mg/kg zinc in white flour, compared to
28.2 mg/kg iron and 28.6 mg/kg zinc in the whole-

grain (Tang et al. 2008). The contents of iron and zinc

can partially be restored in white flour by enriching it
with wheat germ as in ‘patent breads’ (Burnett 2005).

In addition, numerous public health campaigns have

been aimed at increasing the consumption of whole-
meal products. Nevertheless, of the total bread-making

flour produced in the UK, less than 10% is wholemeal

(NABIM 2017).
Roller milling also results in the removal of most of

the anti-nutrient phytic acid, which limits mineral

bioavailability (as discussed below). Phytic acid (inosi-
tol hexakisphosphate) is the storage form of phospho-

rus of plants, which is another important element for

seedling germination and growth.
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Naturally occurring iron and zinc
compounds and their bioavailability

Iron and zinc are essential cofactors in a wide range
of metabolic enzymes. Thus, these elements occur in

protein-bound forms in plants and animals. Iron can

bind directly to the protein, or as an iron–sulphur
cofactor or as haem (Balk & Schaedler 2014). The

bioavailability of haem iron is high because it is very

stable and is thought to be taken up by a specific
transporter in the smaller intestine (Knutson 2017).

However, plants contain very little haem iron (<0.1%
w/v; Espinas et al. 2012) in contrast to animal tissues

(notably meat and liver). Zinc binds to proteins
directly, for example, in zinc-finger structures.

Iron and zinc are transported in plants as soluble
forms chelated by small organic molecules and reach

the developing grain through specialised vascular tis-

sues (xylem and phloem), which extend along the
groove of the grain (Fig. 1a). The organic acids citrate

and malate facilitate the transport of iron in the xylem

while nicotianamine facilitates iron and zinc transport
in the phloem and intracellularly (Connorton et al.
2017a). Iron–nicotianamine complexes are present in

extracts of white wheat flour (Eagling et al. 2014a)
and nicotianamine enhances the bioavailability of iron
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Figure 1 The locations of iron and zinc in wheat grain. (a) Transverse sections through wheat grains, showing the position of the embryo (Em), starchy endo-

sperm (ES), aleurone (Al), groove (gr) and bran and the locations of iron (light blue from staining with Prussian blue in upper image) and zinc (red from staining

with dithizone in lower image). (b) Heat map representation of the distribution of iron (Fe) and zinc (Zn) in longitudinal and transverse sections of wheat grain,

revealed by X-ray fluorescence. Taken from Neal et al. (2013) with permission. Labelling as in Panel (a). (c) NanoSIMS images of an aleurone cell of an imma-

ture wheat grain showing localisation of 56Fe16O� to the phytin globoids (as indicated by the 31P16O� image). White indicates high signal intensity. Taken from

Moore et al. (2012) with permission.
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and zinc as demonstrated in mouse studies (Lee et al.
2009) and in Caco-2 cells (Eagling et al. 2014b).

Plants have the capability to store iron either inside

a shell formed by the protein ferritin or in bodies

derived from vacuoles (Connorton et al. 2017a).
Wheat grains are low in ferritin, but high-resolution

imaging techniques such as NanoSIMS show that iron

is localised in small intracellular bodies (Fig. 1c).
These bodies also contain phosphate in the form of

phytic acid and are called phytin globoids. Phytic acid

has a cyclic structure with six phosphate groups, each
of which can bind a metal ion such as iron and zinc

(Maga 1982). Neal et al. (2013) used extended X-ray

fluorescence fine structure spectroscopy (EXAFS) to
show the presence of iron and zinc complexes in

wheat aleurone cells. A further application of X-ray

fluorescence, X-ray absorption near-edge structure
(XANES) imaging, gives information on the atomic

ligands of the metals, confirming that most of the iron

is bound to phytic acid in the aleurone (De Brier et al.
2016). This colocation poses a challenge for human

nutrition because mineral–phytate complexes tend to

be insoluble with low bioavailability in humans.

Agronomic and selective breeding
strategies to increase bioavailable forms of
iron and zinc

In addition to improvements in yield, disease resis-

tance and processing quality, there has been grow-

ing research interest over the past 20 years in
improving the health benefits of cereal crops,

including increasing their mineral and vitamin con-

tents (Vasconcelos et al. 2017), an approach known
as biofortification. However, this has focused on

increasing the mineral content in the wholegrain,

rather than on the starchy endosperm tissue (which
may limit the bioavailability).

There are two main biofortification approaches:

agronomy and genetics (including conventional breed-
ing and genetic modification; GM). Using agronomic

methods, the zinc content of grain can be increased by

simply fertilising the plants with zinc salts; for exam-
ple, foliar application of ZnSO4 increased total grain

zinc by about 60% (Zhang et al. 2012). However,

such agronomic practices are less effective for iron,
except if combined with increased nitrogen fertilisa-

tion (Aciksoz et al. 2011) which may not be economi-

cally or environmentally acceptable. Conventional
breeding has been used by workers at the International

Crops Research Institute for the Semi-Arid Tropics
(ICRISAT, India) to develop varieties of sorghum and

pearl millet with increased contents of iron and zinc,

and at the International Maize and Wheat Improve-
ment Center (CIMMYT, Mexico) to increase the zinc

content of wheat grain (Velu et al. 2018).
The zinc biofortified lines from CIMMYT are cur-

rently being grown in Pakistan and India and have

20–40% higher zinc concentration and at least compa-

rable grain yield to the best local cultivars (Velu et al.
2018). Furthermore, human intervention trials to

determine the bioavailability of the zinc in the biofor-

tified lines are currently being carried out in Pakistan
(Lowe et al. 2018). However, despite a number of

research programmes globally, including at CIMMYT,

no high iron wheat lines have yet been developed by
conventional breeding.

Transgenic strategies to increase
bioavailable forms of iron and zinc

A step change in our ability to biofortify crops has

come from a much better understanding of how plants

take up and distribute micronutrients, mainly through
the identification of genes for mineral transport and

the biosynthesis of organic metal chelators. This

knowledge has been exploited in modern biotechnol-
ogy approaches, demonstrating that it is possible to

increase iron and zinc levels, not only in the whole-

grain but also specifically in the starchy endosperm. In
fact, this shows that there is no biological reason why

iron and zinc cannot be concentrated in the starchy

endosperm and hence white flour.
The proof-of-concept of transgenic approaches was

initially demonstrated in rice. Increased expression of

NAS3, one of three genes encoding nicotianamine syn-
thase (NAS), led to a 2.2-fold increase in the concen-

tration of zinc and a 2.9-fold increase in the

concentration of iron in the grain (Lee et al. 2009).
Furthermore, feeding anaemic mice this enriched rice

resulted in greater increases in haemoglobin and

haematocrit (the volume of red blood cells in blood)
compared to when conventional rice was fed. This

high bioavailability results from the fact that the star-

chy endosperm cells do not store phytate. The initial
transgenic work on NAS in rice led to similar studies

in other cereals including wheat (e.g. Masuda et al.
2009; Zheng et al. 2010; Johnson et al. 2011; Singh
et al. 2017). The advantage of increasing nico-

tianamine levels is that it leads to increases in both

iron and zinc because it serves as a chelator for both
metals in their ionic forms.

By contrast, redirecting minerals into the starchy
endosperm cells by overexpressing metal transporter

© 2019 The Authors. Nutrition Bulletin published by John Wiley & Sons Ltd on behalf of British Nutrition Foundation
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genes leads to increases in single minerals, due to the

high specificity of metal transporters, unless several
genes are overexpressed together. For example, expres-

sion of the barley Metal Tolerance Protein 1

(HvMTP1), under the control of a starchy endosperm-
specific promoter, significantly increased the zinc con-

tent in the endosperm of barley grains (Menguer et al.
2018), while expression of a wheat Vacuolar Iron
Transporter (TaVIT2) using a similar promoter more

than doubled the iron content of the white flour frac-

tion (Connorton et al. 2017b). This is illustrated in
Fig. 2, which compares the contents of iron, zinc and

phosphorus in bran and flour fractions of a TaVIT2
transgenic line with control wheat grain milled on a
laboratory roller mill. It is notable that the increased

content of iron in the white flour (break and reduc-

tion) fractions in the transgenic line is not accompa-
nied by an increase in phosphorus, showing that iron

can accumulate in the endosperm without being asso-

ciated with phytic acid.

More recently, Wu et al. (2018) have shown that

preventing iron storage in the vacuoles, while at the
same time overexpressing the iron storage protein fer-

ritin specifically in the starchy endosperm cells, greatly

increased iron in polished rice.
Hence, it is now accepted that transgenesis can be

used to increase the contents of bioavailable iron and

zinc in the starchy endosperm of cereals (white flour
of wheat and polished white rice) by several-fold, by

redirecting mineral transport and/or providing a sink

to sequester the iron.

Post-harvest improvements of iron and zinc
bioavailability

It is probable that modern breeding approaches dis-
cussed above will be combined with novel processing

approaches to increase the content of bioavailable

minerals in wheat-based foods, ranging from whole-
meal to white flour products. The two most promising
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Figure 2 The contents of iron, zinc and phosphorus in white flour and wholemeal fractions from a transgenic wheat line expressing a vacuolar iron transporter

(TaVIT2) and control wheat grain. (a) Milling scheme used to prepare white flour fractions (breaks 1 and 2, reductions 1 and 2) from the transgenic line TaVIT2
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of these are mechanical treatments and fermentation.

Mechanical treatments, particularly micro-grinding,
have been discussed in a recent article in this journal

(Aslam et al. 2018). Plant cell walls are resistant to

digestion in the gastro-intestinal tract and therefore
mineral bioaccessibility from wheat aleurone cells may

be limited (Latunde-Dada et al. 2014; Edwards et al.
2015). Enzymatic treatment and micro-milling tech-
niques designed to disrupt the aleurone cell walls

enhance the release of iron from wheat flour during

in vitro digestion and increase iron uptake by intesti-
nal epithelial cells (Latunde-Dada et al. 2014). This

suggests that disruption of the aleurone cell walls may

be an effective approach to increase iron bioavailabil-
ity from wheat products.

Many microorganisms secrete phytase enzymes,

which can release minerals from phytate complexes,
particularly microorganisms present in sourdough sys-

tems (Katina et al. 2005; Rodriguez-Ramiro et al.
2017). Hence sourdough wholegrain products may
have increased mineral bioavailability. However,

whereas this approach may increase mineral bioavail-

ability in foods made from wholegrain and high
extraction flours, it is not relevant to white flour prod-

ucts which are dominant in most countries.

Future perspectives

Although transgenic strategies provide exciting oppor-

tunities to make dramatic increases in the contents

and bioavailabilities of minerals in white flour prod-
ucts, it must be borne in mind that transgenic crops

have limited acceptability by consumers and regula-

tory bodies, particularly in the European Union but
also in many less developed countries. Furthermore,

the recent (July 2018) ruling from the European Court

of Justice that gene-edited crops, which do not contain
foreign DNA, should be considered genetically modi-

fied organisms (GMOs) (https://bit.ly/2RZFzmB) sug-

gests that restrictions on growth and marketing are
unlikely to be relaxed in the near future.

Although conventional mutagenesis remains outside

GM legislation, most mutations result in loss, or
reduced, gene expression and the application of muta-

genesis to biofortification is therefore a challenge.

Nevertheless, this is likely to be the most promising
route for developing biofortified wheat in the future.

Elucidation of the pathways and mechanisms of iron

and zinc transport and deposition in the developing
grain should identify genes encoding key transporters,

or other factors, that can be downregulated or
switched off, to redirect minerals into the starchy

endosperm. This will be facilitated by the availability

of comprehensive libraries of wheat mutants (Krasi-
leva et al. 2017). Combined with conventional biofor-

tification and innovative processing this should

provide increased mineral bioavailability in a range of
wheat products, from white flour to wholemeal.
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