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Quantifying inherent predictability
and spatial synchrony in the aphid vector
Myzus persicae: field-scale patterns
of abundance and regional forecasting
error in the UK
James R. Bell,a* Suzanne J. Clark,b Mark Stevensc and Andrew Meadb

Abstract

Background: Sugar beet is threatened by virus yellows, a disease complex vectored by aphids that reduces sugar content. We
present an analysis ofMyzus persicae population dynamics with andwithout neonicotinoid seed treatment. We use 6 years' yel-
lowwater trap and field-collected aphid data and two decades of 12.2m suction-trap aphidmigration data.We investigate both
spatial synchrony and forecasting error to understand the structure and spatial scale of field counts and why forecasting aphid
migrants lacks accuracy. Our aim is to derive statistical parameters to inform regionwide pest management strategies.

Results: Spatial synchrony, indicating the coincident change in counts across the region over time, is rarely present and is best
described as stochastic. Uniquely, early season field populations in 2019 did show spatial synchrony to 90 km compared to the
overall average weekly correlation length of 23 km. However, 70% of the time series were spatially heterogenous, indicating
patchy between-field dynamics. Field counts lacked the same seasonal trend and did not peak in the same week. Forecasts
tended to under-predictmid-season log10 counts. A strongly negative correlation between forecasting error and the proportion
of zeros was shown.

Conclusion: Field populations are unpredictable and stochastic, regardless of neonicotinoid seed treatment. This outcome pre-
sents a problem for decision-support that cannot usefully provide a single regionwide solution. Weighted permutation entropy
inferred that M. persicae 12.2 m suction-trap time series had moderate to low intrinsic predictability. Early warning using a
migration model tended to predict counts at lower levels than observed.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Sugar beet (Beta vulgaris) accounts for 20% of the world's sugar
production.1 In England, 100 000 ha of arable land produces
8 million tons of beet annually, meeting more than half of
domestic sugar demand.2 However, in both the UK and across
the EU, yields are threatened by virus yellows (VY), a disease of
sugar beet that comprises a complex of Polerovirus and Clostero-
virus types that decrease the ability of the infected leaf to photosyn-
thesize, therefore reducing sugar yield.3,4 VY infection begins when
aphids vector the virus through the leaf tissues following seedling
emergence. Three weeks after transmission, symptoms are
expressed and yellowing of the leaves then follows.5

Beet mild yellowing virus (BMYV) and beet chlorosis virus
(BChV) are persistent and belong to the Polerovirus genus.
These viruses are vectored by two aphid species,Myzus persicae

(Sulzer) and, to a lesser extent, Macrosiphum euphorbiae
(Thomas).3,4 Although these two aphids remain infected with
these viruses for their whole lifespan, beet yellows virus (BYV),
a semi-persistent Closterovirus, is more damaging to UK agricul-
ture even though it only persists within the aphid host for a
matter of days.3,4 Again, the main vector is M. persicae, but
the aphid Aphis fabae (Scopoli) can also contribute to BYV
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transmission, acquiring the virus within a minimum of
5 minutes of feeding on an infected host, although the proba-
bility of successful transmission increases with time spent
feeding.6,7

VY impact on sugar beet production has been intensely studied
since the 1950s, but disease vector control was limited until the
1990s. Control of the main vector M. persicae by systemic use of
neonicotinoid seed treatments from the mid-1990s dominated
agricultural strategy until 2018, when the EU implemented a
change in regulations, effectively banning the active substances
imidacloprid, clothianidin and thiamethoxam.5,8 The change in
policy was driven by the negative impacts of these seed treat-
ments on pollinators, including sublethal changes in behavior of
honeybees and bumble bees.9,10 Growers experienced average
yield losses of 38% in the absence of the seed treatment in
2020, a loss which was valued at £43 million rising to 100% losses
in parts of Cambridgeshire.11,12

The ability to colonize numerous hosts without specialization is
key to understanding the threat posed by M. persicae, a highly
polyphagous aphid with over 40 plant families (>100 sp) within
its host range, including important crop families Amaranthaceae,
Asteraceae, Brassicaceae and Solanaceae.13,14 Most agricultural
“weeds” that are reservoirs of the virus (e.g. Capsella bursa-pastoris)
are widely distributed at the 1 km-grid scale and may act as effec-
tive “green bridges” into sugar beet, although a minority are other-
wise patchy and may be less important (e.g. Spergula arvensis).15,16

Since the 1960s, various decision support tools predicting the
impact of VY have been deployed to help sugar beet growers
reduce prophylactic use of insecticides.17,18 Harrington et al.17

was the first to produce a statistical forecast using aphid migra-
tion data from Rothamsted Insect Survey (RIS) 12.2 m suction-
traps. The migration model responses were first flight and log
total count to the 17th June, which were shown to be driven by
January–February mean temperatures. Harrington et al.17 showed
an association between the VY risk to sugar beet and migration
activity, with an elevated risk associated with earlier flights and
the associated higher log total counts.
Although the aphid migration component relates to the VY inci-

dence at a regional level18 andmigrating aphids across the 12.2 m
suction-trap network are highly synchronized,19,20,21,22 this does
not necessarily imply that the aphids at the field-scale are behav-
ing similarly.23 Hence, we investigate the spatial synchrony of the
aphid counts across the east of England using yellow water traps
(YWTs) and field counts, a network of traps that covers more than
100 000 ha of sugar beet and has been operational since 2014.
Whilst the null hypothesis is of spatial randomness, we anticipate
that neighboring fields will likely be more similar than those fur-
ther apart, whereby the strength of synchrony declines as a func-
tion of distance. Our research spans a period of neonicotinoid
seed treatment from 2014 to 2018 and then a shorter 2-year
period without seed treatment. We test the hypothesis that spa-
tial synchrony declines with distance. We also use generalized
additive mixed models (GAMMs) to support the spatial synchrony
analyses using the same YWT data, providing further insight into
the seasonal occurrence and spatial patterning in each year, test-
ing for the presence of spatial clines in abundance and for evi-
dence of temporal autocorrelation, which would reveal the level
of predictability of populations in time. We also conduct an anal-
ysis of the forecasting error associated with predicting the total
count of migrating aphids to 17th June using linear regressions
using the Brooms Barn suction-trap that heuristically informs an
approximate radius of 80 km around the trap (20 000 km2, 10%

of the land area of the East of England), subject to wind speed,
landscape and elevation change. Whilst there are strong relation-
ships between long-term aphid data from the RIS 12.2 m suction-
trap network and long-term weather data that demonstrate that
the timing of spring first flight migrations is predictable,17,21 we
assess the forecasting accuracy to predict numbers of aphids
against those that were subsequently observed in the 12.2 m
suction-trap at Brooms Barn, Suffolk. We attempt to explain the
discrepancy using model-free permutation entropy.24

2 MATERIALS AND METHODS
The study was conducted in the UK, in the main sugar-beet grow-
ing region that is spread across the East of England (52.623, 1.220)
and further north in East Midlands (53.089, −0.817) regions.

2.1 Yellow water traps
YWTs are an effective tool for monitoring aerial pest activity
within agricultural systems and have been used specifically to
study aphid migration and threats to crops since the 1950s.25,26

In each year from 2014 to 2019, a network of YWTs was
deployed, organized by BBRO and managed locally by British
Sugar plc contract managers or growers and agronomists across
East Anglia. In each field, three YWTs (27 cm ø, Flora Insect Trap),
adjusted continually to crop height and approximately 15 m dis-
tance apart, were located at least 15 m from the headland of the
sugar beet field (Fig. 1). Each trap was filled with water to which
a small amount of detergent was added. YWTs began operation
between mid-April and early May, depending on year, but always
before the aphid season began. Catches were collected every
Monday and Thursday throughout the aphid season; on those
days, the three trap catches within each field were amalgamated
to represent a field count and then sent to BBRO for identification.
Trapping lasted past peak aphid migration and when crops had
reached full canopy expansion, at which point they likely had
acquired mature plant resistance to feeding and aphids were no
longer monitored.
The field counts were treated as accumulated catches. These

were first apportioned pro rata to their component days and then
the daily counts were summed by week to give a total aphid
count per field-week (week 1 = 1–7 Jan, 2 = 8–14 Jan etc.). These
weeks were aligned with the 7-day periods that have historically
been used by the RIS since 1964, referred to as “standard” weeks.
Using the standard week approach, the season could be system-
atically assessed across years and sites. Specifically, the season
started particularly early in 2019, but in other years, aphids were
largely absent in weeks 17–18 and were not analyzed. In 2014
and 2019, the aphid season had finished by week 27, but in all
other years, aphids were recorded until week 29. Hence, the
YWT season in terms of start and end weeks contributing to spa-
tial analyses were: 2014 = 19–27; 2015–2018 = 19–29;
2019 = 17–27. Even then, the GAMMs were unable to process
2 weeks19,20 in 2015 because these data were too sparse to pro-
duce prediction surfaces (see Tables 1 and 3).

2.2 Crop inspections
In 2020, due to the coronavirus pandemic, YWT samples were not
able to be analyzed at BBRO labs, therefore an alternative survey
method was deployed. Forty-one sites across East Anglia were
managed by British Sugar contract managers and growers. At
the start of the survey period, two rows of 10 plants were selected,
at least 15 m from the field boundaries and at least 50 m apart.
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These same 20 plants were examined every Monday and
Thursday from 16 April to 2 July and the number of winged and
wingless aphids recorded. Twenty-three counts were recorded

in these 12 weeks, ending once the crop had reached full canopy
cover and the main aphid migration had ended. The same stan-
dard weeks procedure, described above, was used for these data.

Figure 1. Three yellow water traps (27 cm ø, Flora Insect Trap), spaced approximately 15 m apart and at least 15 m from any field margin. Traps were
continually adjusted to crop height throughout the season. Photo credit: BBRO.

TABLE 1. Summary of the multivariate and univariate spline correlograms used to generate annual and weekly YWT spatial synchrony parameters
including the local covariance function (LCF) and the correlation length (CorL)

YWT
2014 2015 2016 2017 2018 2019

Model type LCF CorL LCF CorL LCF CorL LCF CorL LCF CorL LCF CorL

Annual spatial synchrony 0.10 47.73 0.02 48.92 0.09 27.62 0.00 22.96 0.08 127.25 0.35 89.56
Weekly spatial synchrony
Week 18 0.50 48.24
Week 19 0.00 0.00 −0.15 0.00 −0.20 0.00 −0.19 0.00 0.73 64.66
Week 20 0.00 0.00 −0.01 0.00 0.16 59.03 0.28 37.22 0.58 58.80
Week 21 −0.01 8.80 0.10 52.26 0.09 39.67 0.05 28.50 0.84 71.30
Week 22 −0.06 0.00 0.31 56.45 −0.11 0.00 −0.08 0.00 0.13 48.63 −0.14 0.00
Week 23 0.48 60.32 0.04 47.80 0.04 11.51 0.01 119.22 −0.24 0.00 0.11 13.63
Week 24 −0.05 0.00 0.12 37.17 −0.13 0.00 −0.16 0.00 −0.02 0.00 −0.09 0.00
Week 25 0.02 18.52 0.09 38.01 0.00 −0.00 0.03 20.14 −0.02 0.00 −0.04 0.00
Week 26 0.14 22.38 0.10 50.15 0.04 48.22 −0.10 0.00
Week 27 −0.08 0.00 0.08 45.88 −0.66 0.00 −0.02 0.00
Week 28 0.00 0.00

Note: The peak in the weekly CorL is highlighted in bold and the average CorL across all annual models = 60.67 km and across weekly
models = 23.50 km. Grey boxes indicate data were too sparse to run a model.
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2.3 Suction-traps
Suction-traps continuously measure the aerial density of flying
aphids at the logarithmic mean height of aphid flight (12.2 m),
providing standardized daily records during the main aphid flying
season.21 The Brooms Barn 12.2 m suction-trap was used because
it is a long-running site in the center of the East Anglian sugar beet
growing region and has an unbroken time series. DailyM. persicae
counts from the core migration period between weeks 19–25
were used for each year between 2014–2021, matching the
YWT/crop inspection time series. We also used a much longer
time series from this trap (2002–2021) to estimate the forecasting
error between observed and predictedM. persicae logged counts.

2.4 Statistical methods
2.4.1 Spatial synchrony
Univariate andmultivariate spline correlograms were used to esti-
mate the spatial covariance in the weekly and annual M. persicae
YWT and crop inspection counts as a continuous function of dis-
tance for each year and for each week within each year between
2014 and 2020 (Fig. S1a). The R library ncf was used to produce
spline correlograms and the associated parameters that estimate
the strength of spatial synchrony underpinned by a cross correla-
tion approach.27 These parameters include the local covariance
function (LCF, the value at the intercept on the Y axis), the spatial
extent, measured in km along the entire length of the X axis, and
the correlation length (CorL, the value where the spline crosses
the X axis—zero correlation) measured in km (Fig. 2). Taken
together, these three parameters indicate whether spatial syn-
chrony is local or widespread and whether synchrony conforms
to theory (i.e. that spatial synchrony declines with distance, see
Fig. S1a) or opposes theory revealing stochastic local dynamics
that produce no such trend.27 This approach is relevant because
an understanding of spatial synchrony can inform the scale at
which sugar beet pests should be managed.

2.4.2 Spatial and temporal generalized additive mixed models
To estimate spatial terms and trends in the YWT and crop inspec-
tion data, we used the mgcv library for GAMMs alongside the
library gratia, that provides improved graphic performance for
mgcv.28,29 We fit year and week and produced two types of
models: i) a spatial model that included latitude and longitude
as Duchon smoothers by the factor YWT sampling week, setting
the knots to the maximum to represent detailed local trends,
and, ii) a seasonal model that captured the change over YWT sam-
pling weeks for each year using flexible cubic smoothers. Cubic
splines (bs = “cr”) were chosen for their flexibility when smooth-
ing time, whereas Duchon splines were chosen to reduce curling
(i.e., overfitting) at the edges of spatial boundaries.28

All models were fitted using Restricted Maximum Likelihood
(REML) assuming the negative binomial distribution for overdis-
persed data, typical of outbreaking populations. Optimal random
effects structures were investigated for each model using the
Akaike Information Criterion (AIC) alongside the appraise function
for model checking in the gratia library. The best performing ran-
dom effects structure was a simple site random effect term, cap-
turing elements of geography, management and other site
specific characteristics. The spatial model computes a random
coefficient for both continuous (time, space) and factor variables
(week) (Fig. S1a). From these two models we report the signifi-
cance of the smooth terms that are constrained such that they
each sum to a zero mean over the covariate values. As such, the
shape of this relationship can be deduced but this does not
extend to any systematic difference between temporal or spatial
means. Instead, a Wald zero-effect test is provided to indicate if
the smoother is equal to zero (i.e., p > 0.05). Significant p-values
indicate that the smoother has significantly departed from zero
and thus show a non-zero trend. In the spatial model, parametric
coefficients for the week factor estimate differences relative to the
first week of responses which naturally follow the seasonal spline,
but their use is otherwise limited. To assess model fit, we use the

TABLE 2. Combined summary of the generalized additive mixed models and multivariate and univariate spline correlograms for the 2020 crop
inspection data

Generalized Additive Model Spatial Synchrony

Model type χ2 p Dev Model type LCF CorL

Seasonal model: s(Time) 201.70 <0.001 53% Annual spatial synchrony −0.03 0.00
Spatial model by weeks Χ2 p Dev 61% Weekly spatial synchrony LCF CorL
s(Lon, Lat) May 4 Week 17 17.33 <0.05 May 4 Week 17 0.05 31.31
s(Lon, Lat) May 7 Week 18 8.27 0.261 May 7 Week 18 −0.13 0.00
s(Lon, Lat) May 11 Week 18 3.34 0.187 May 11 Week 18 −0.08 0.00
s(Lon, Lat) May 14 Week 19 6.02 <0.05 May 14 Week 19 0.03 84.83
s(Lon, Lat) May 18 Week 19 14.51 <0.001 May 18 Week 19 −0.05 0.00
s(Lon, Lat) May 21 Week 20 19.76 <0.001 May 21 Week 20 0.22 87.50
s(Lon, Lat) May 25 Week 20 2.89 0.235 May 25 Week 20 0.04 15.49
s(Lon, Lat) May 28 Week 21 4.93 0.085 May 28 Week 21 −0.07 0.00
s(Lon, Lat) Jun 1 Week 21 0.62 0.734 Jun 1 Week 21 −0.12 0.00
s(Lon, Lat) Jun 4 Week 22 1.05 0.592 Jun 4 Week 22 −0.05 0.00
s(Lon, Lat) Jun 8 Week 22 8.34 0.316 Jun 8 Week 22 −0.05 0.00
s(Lon, Lat) Jun 11 Week 23 0.61 0.738 June 11 Week 23 −0.06 0.00
s(Lon, Lat) Jun 15 Week 23 2.18 0.338 June 15 Week 23 −0.08 0.00

Note: “Dev” is the proportion of the total deviance explained by the full model with 61% representing theweeklymodel deviance explained. LCF is the
local covariance function, CorL is the correlation length and the peak in the weekly CorL is highlighted in bold.
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deviance that represents the proportion of the total deviance
explained by a model, a goodness-of-fit statistic based on the
model likelihood.
Discrete-time autocorrelation models were investigated to

examine whether temporal autocorrelation was present within
the residuals of the models (Fig. S1a). Using the gamm routine
that uses penalized quasi-likelihood, discrete-time autocorrela-
tion corAR1 parameters were estimated within the linear mixed-
effects model component (LME). Using AIC, the same model with
and without the corAR1 term were compared. We also supported
LME model interpretation with plots of temporal autocorrelation
using normalized residuals to understand if the autocorrelation
estimate at a given lag was significantly different from zero.

2.4.3 Forecasts and forecasting error
Historically, in early March each year, pre-season VY forecasts
have been issued by Rothamsted to the sugar beet industry and
growers drawing on previous daily suction-trap counts at Brooms
Barn, as shown by Harrington et al.17 The VY forecasts were driven
by predictions of both the first flight and the log10 total count to
the 17th June that together start the semi-mechanistic epidemio-
logical model18 (Fig. S1b). Predictions were based on a single tem-
perature driver, January–February mean temperature, which has
been shown formally to be an important biological driver.17,21

The predicted log10 total counts for 2002 to 2021 were deter-
mined using simple linear regressions that captured the relation-
ships between January–February mean temperatures and the
numbers of M. persicae caught at Brooms Barn by 17th June each
year (Fig. S1b). We evaluate the historical performance of this fore-
casting model using daily suction-trap data to calculate the fore-
casting error (FE). FE is apparent in predicting log total counts
(https://repository.rothamsted.ac.uk/), the sole focus of this paper
since first flights are well resolved. The difference is derived from

the 12.2 m suction-trap, and the predicted log count to the same
date from the linear model (Fig. S1a). Positive FE indicates under-
prediction (i.e., the predicted counts are smaller than the
observed values) and negative values indicate over-prediction, a
much rarer event (i.e. the predicted counts are larger than the
observed values).

2.4.4 Permutation entropy
Permutation entropy (PE) is a model-freemethod that was used to
provide some insight into the error associated with predicting
M. persicae abundance. PE quantifies the complexity of a time
series and is inversely related to predictability, as shown in
Fig. S1c. A refinement of PE that uses normalizedweighted ordinal
pattern distribution to distinguish between small-scale noise-
driven variation and large-scale system-driven variation, weights
each numerical phrase by its variance, producing an entropy
value between zero and one.24,30 We investigated the frequency
of short 3-day numerical phrases (Fig. S1c) in the R library stat-
comp using dailyM. persicae counts recorded by the Brooms Barn
12.2 m suction-trap during the core migration period between
standard weeks 19–25 for each year from 2002 to 2021. We then
correlate WPE values generated from the Brooms Barn time series
with FE, described above, and the proportion of zeros in the time
series. By doing so, the degree of FE may be better understood in
terms of levels of stochasticity and hence degree of intrinsic
predictability.24

3 RESULTS
3.1 Spatial analyses of YWT and crop inspection data
We show that field-scale spatial synchrony in YWT and crop
inspection data is rarely present. Among the univariate year-week
specific correlograms, spatial synchrony was only notable in the
2019 data and only for the first 4 weeks. The synchrony does
not extend beyond an average weekly correlation length of
23 km or an average annual correlation length of 60.67 km
(Tables 1, 2). The maximum correlation length within any year
does not peak in the same week and the local covariance function
that would indicate levels of covariance between neighboring
traps is often close to zero or at zero, inferring that traps appear
to be behaving individually or as a small local cluster (Tables 1,
2). Only in 2019 did YWTs produce a strong spatial synchrony sig-
nal, which spanned a maximum distance of 290 km (Fig. 2,
Fig. S2). For 2019, the mean annual local covariance function
(LCF) at the intercept on the Y-axis is 0.35, higher than for any
other year, and the correlation length (CorL) is 89.56 km
(Tables 1, 2). Although CorL was not as high as for 2018 (i.e.,
127.25 km), for that year the LCF is near zero and the 95% boot-
strapped confidence intervals overlap the zero horizontal thresh-
old, indicating no correlation. The lack of a relationship suggests
that the series is dominated by stochasticity with no synchrony
(Tables 1, 2, Fig. S2). Apart from 2019, a pattern of no correlation
or negative synchrony, indicates that traps further apart are more
likely to be spatially covariant than neighboring traps. This pattern
was common for both annual and weekly spatial synchrony mea-
sures across the YWT network (Tables 1, 2, Fig. 2, Figs. S2, S3). Even
after 4 weeks of spatial synchrony, the 2019 YWT weekly counts
subsequently decline into no correlation or negative synchrony
(Tables 1, 2, Fig. S3).
There was no common spatial pattern or trend that persisted

throughout the time series (Tables 2, 3, Fig. 3, S4). There was a ten-
dency for the season to begin with larger counts in the south

FIGURE 2. Regional measure of spatial synchrony using a multivariate
spline correlogram on 2019 data using 64 sites. The local covariance func-
tion (LCF) at the intercept on the Y-axis is 0.35, the correlation length (CorL)
is 89.56 km on the X-axis and the spatial extent is 0–290 km. Embedded is
a regional site map of the YWT network used to produce the model (pink
circles) and the location of suction-traps (maroon diamonds) in the sugar
beet region (south: Brooms Barn; north: Kirton). In this YWT network, the
min-max distance between any two traps is 0.29–287 km and the
mean 91 km.
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(2014, 2015, 2017–2019), although the 2016 and 2020 models
showed that these could equally come from the west or the north,
respectively (Fig. 3, S4). The total number of spatial terms that
are not significant and spatially heterogenous amount to 70%
of all the models tested. There were years in which spatial
splines did not significantly contribute to explaining any
variation in counts across the YWT network for any date in
2014, 2015 and 2018. Generally, there was a pattern for more
curvature in the isoclines as the season progressed for all years,
indicative of a high level of spatial heterogeneity, further

supporting the apparent lack of trend indicated by the syn-
chrony models (Tables 1,2, Fig. S4).

3.2 Within-season model
The seasonal model indicated that there was no one typical sea-
son that took a common form, either peaking in the same week
or having the same shaped spline (Fig. S5). Within 2019, logged
counts showed considerable variation and that is typical of all
years (Fig. 4). There is a tendency for Myzus numbers to accumu-
late for the first 3 weeks, reaching a peak soon after, though this

FIGURE 3. The 2019 detailed results for the generalized additive mixed model of weekly spatial pattern.

FIGURE 4. The Y-axis depicts the log10 counts of Myzus persicae as recorded by YWTs between weeks 17 and 27 during 2019, where high counts are
recorded in red and relatively low counts recorded in yellow. The plots show the generally low or zero values in week 17 and the subsequent population
collapse after week 25 at most sites.
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is not universal (Fig. 4). The 2019 seasonal GAMM suggests that
there may be two peaks on average in the 4th and 6th weeks fol-
lowed by a decline in numbers (Fig. S5).
We found extremely weak evidence for temporal autocorrela-

tion with a tendency to produce inflated AIC values when corAR1
was included (i.e., 2015–2017 and 2019 Table S1). Although the
AIC was smaller when a corAR1 process was included in 2014
and 2018, lag-wise 95% confidence intervals were not exceeded
when the corAR1 termwas absent from themodel. In 2015, a mar-
ginal autocorrelation of lag term at 7 weeks, effectively the entire
length of the season, was stronger when the corAR1 term was
included, and the model term was dismissed. In 2020, AIC indi-
cated that when a corAR1 process was included models per-
formed better. Temporal autocorrelation appeared for 3 weeks
in the normalized residuals ACF plot, although this lag marginally
overlapped 95% confidence intervals (Table S1). However, when a
corAR1 process was included, the corAR1 term introduced amuch
stronger lag of 2 weeks and a stronger lag term of 3 weeks com-
pared to a model without corAR1. Consequently, the corAR1 term
was dropped from all models.

3.3 Forecasts and forecasting error
Short 3-day numerical phrases had weighted permutation
entropy (WPE) values that ranged from 0.527 to 0.938, indicating
that these time series havemoderate to low intrinsic predictability
and hence moderate to high stochasticity. There was weak corre-
lation between FE and 3-day numerical phrases (Spearman rank
correlation, rs = 0.435, p = 0.055). The highest FE around 1.5 indi-
cate under prediction, and are associated with a wide range of

“proportion of zero” values (0.52–0.90). This underpins the rela-
tively weak correlation coefficient. However, the correlation
between FE and the “proportion of zeros” is strongly negative
(rs = −0.658, p = 0.001), indicating that at high FE values, the
“proportion of zeros” is very low. Figure 5 shows that the FE
does not closely follow the shape of the short 3-day WPE phrases.
When permutation entropy produces high WPE values (e.g.,
2008= 0.992, 2011= 0.938, 2021= 0.922), inferring lower intrinsic
predictability, FE is wide ranging (2008 = −0.390, 2011 = 0.653,
2021 = 1.190). Furthermore, Fig. 5 does not show a regime shift
after the withdrawal of neonicotinoids in 2018. Although WPE
values are high (i.e., 2018 = 0.917, 2019 = 0.883, 2020 = 0.834,
2021 = 0.922), these values alone are not exceptional (cf. 2008,
2011). However, taken together the series of 2018–2021 WPE
values is notable and perhaps indicative of heterogeneity in the
management and incidence of aphids.

4 DISCUSSION
4.1 Spatial ecology of M. persicae
We show little evidence of spatial synchrony in weekly or annual
counts of M. persicae and only weak effects of latitude and longi-
tude. Specifically, spatial synchronywas rarely present and did not
persist for more than 4 weeks or extend beyond an average
weekly correlation length of 23 km or an average annual correla-
tion length of 60 km. Instead, without temporal autocorrelation,
local spatial heterogeneity increases as the field season pro-
gresses. Only in 2019 did statistically significant spatial terms
and an overall spatial synchrony pattern emerge, largely as a
result of strong spatial synchrony in the first 4 weeks, that

FIGURE 5. Weighted permutation entropy and forecasting error (FE) forMyzus persicae derived from the Brooms Barn 12.2m suction-trap during the core
migration period (weeks 19–25 for each year) from 2002 to 2021. Short 3-day numerical phrases are colored orange and the proportion of zeros is colored
blue, and both are represented by Y1 axis. FE (Y2 axis), colored grey, is the difference between the log10 observed counts derived from the 12.2 m suction-
trap to the 17th June and the log10 counts to the 17th June that were predicted from simple linear regression models. Generally, there is a consistent
under-prediction of log10 counts, apart from 2006, 2008 and 2010 andmarginally in 2013when the linearmodel over-predicted (i.e. negative FE: predicted
counts exceeded observed values), see the patterns of accumulation each year (Fig. S1b).
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extended to 90 km. In summary, these results indicate the unpre-
dictability of aphid field counts across the region, that limit
regionwide strategies for control.
A general lack of synchrony contrasts with previous studies

using 12.2 m suction-traps.19,20,22,27,31,32 These studies are com-
pelling but raise the question as to why our results showed con-
trasting and asynchronous population fluctuations. Large-scale
synchrony does not necessarily imply that the aphids at the field
level are behaving similarly. We argue that because the scale of
the region under study was small (i.e. <300 km) compared to pre-
vious synchrony studies working at the national scale and beyond
(>800 km), weather variation would be unlikely to explain local
dynamics. Weather patterns did undoubtedly differ and this
may be most severely felt in the winter, when M. persicae would
likely suffer late winter frosts.23 However, during the period of
our study temperature did not present a limiting factor; the YWT
season started in May when days of ground frost rarely exceeded
10 days in total and the mean monthly temperature was at least
10 °C, well aboveM. persicae's lower walking temperature thresh-
old of 4 °C.33,34 At approximately 15–16 °C, M. persicae will take
flight and these conditions were met in our study from May
onwards whenmean daily maximum temperatures indicated that
this threshold was easily reached.34–36 Other meteorological fac-
tors may be more important than temperature alone. Behavioral
responses to wind conditions during flight are likely to explain
variation and potentially lack of synchrony between YWTs. Wind
speed and direction is very difficult to capture at the field scale,
though we know that behaviors termed “appetitive” flight over
distances of less than 100 m are strongly correlated with both
wind direction and speed.37 Close to the ground and below wind
speeds of 0.15 m/s, M. persicae will perform station keeping
behaviors – angular flight paths with seemingly random turns.38

Should wind speeds exceed flight speeds that are estimated to
be ≈0.41 m/s, individuals will fly downwind contributing little to
the direction and speed.37–39 Above 1 m/s, aphid flight becomes
increasingly rarely observed near the ground.
Each YWT was placed in a sugar beet field, one of the major

host plant associations ofM. persicae, and thus the feeding niche
was suitable and uniformly available across the trap network.
However, one major spring dispersal pathway into sugar beet
is via winter oilseed rape, a winter host that could provide a
green bridge into sugar beet and contribute local variation
depending on its availability. Cocu et al.20 showed that oilseed
rape was the only land use variable to link to M. persicae popula-
tions which explained 18% of the variation. However, the highly
polyphagous nature of M. persicae which has over 40 plant fam-
ilies (>200 sp) within its host plant range, may also explain differ-
ences between YWT catches.13,14 Most agricultural “weeds” are
hosts16,40,41 and whilst some are widely distributed at the
1 km-grid scale, such as the cosmopolitan Shepherd's Purse,
C. bursa-pastoris, others are much more patchy (e.g., Corn spurry,
Spergula arvensis L.) hence introducing host plant spatial hetero-
geneity.15 Beet clamps and weed beet that persist in the field are
also hosts and virus reservoirs,35 and whilst much has been done
to reduce these vector sources as part of a program of better
crop hygiene measures, local variation in weed beet and clamp
management may explain differences between YWT catches.12

Other factors that could contribute local variation were trap type
and height, but these were standardized a priori and back-
ground contrast ratios between soil and trap were broadly uni-
form given that most sugar beet growers drill their seed at a
similar time.42

4.2 Predictability of M. persicae numbers
To understand population change and evaluate our forecasting
approach, we used weighted permutation entropy, a model free
method to estimate time series complexity, intrinsic predictability
and levels of stochasticity.24 Overall, WPE indicates that
M. persicae time series are driven by stochastic forcing, particularly
when counts are high and zeros low, though different WPE values
can be associated with the same final accumulated count
(Fig. S1b). The stochastic component reduces the intrinsic predict-
ability and arises due to direct and indirect factors acting on each
individual aphid, but not it seems due to a regime change caused
by the withdrawal of neonicotinoids in 2018. These factors
include, but are not limited to, developmental time to wing pro-
duction, driven by temperature, the conditions at take-off, driven
by wind, light intensity, host plant type and quality amongst other
behavioral and atmospheric factors, particularly a temperature
flight threshold of 16–17 °C.36,43 Another stochastic element,
the probability of capture is not well understood42 and is likely a
function of the aforementioned above, and physiological factors
including fat reserves and exhaustion, as well as the strength of
atmospheric convection.44

4.3 Forecasting models: shortfalls and improvements
Whilst climate change is driving aphid migrations earlier, first
flights are easily predicted. However, there remains large scale
variation in log abundance over time.45 Our results show that sim-
ple linear regressions tend to under-predict log10 counts to the
17th June. It is clear that very short timescale population changes
are poorly explaining this pattern. However, within six genera-
tions, 318 750 000 descendants could be produced from just
one aphid, hence challenging any model.46

Our regression model could potentially be improved by includ-
ing a stochastic component, as suggested by Kindlmann and
Dixon,47 but predictions are then themselves stochastic. Small
catches at the start of the season are difficult to estimate and
the conditions during early population growth are likely to be crit-
ical when estimating abundance. This complexity may instead
favor the use of artificial neural networks (ANNs), though a suc-
cessful outcome is dependent on a large training dataset. Perhaps
one of the most successful aphid models has been for the grain
aphid, Sitobion avenae.48 However, we doubt whether even this
model could predict the fine scale spatial heterogeneity of YWT
M. persicae weekly counts, as captured by our mixed models.
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