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18 Abstract

19 Fungicide resistance management principles recommend that farmers avoid splitting 

20 the total dose applied of a fungicidal mode of action (MoA) across multiple applications 

21 per season (‘dose splitting’). However, dose splitting may sometimes be needed to 

22 make another proven resistance management tactic - application in mixture with a 

23 different MoA - practically achievable, especially in cases where there are limited 

24 MoAs available for disease control. Variable effects of dose splitting on selection for 

25 resistance have been observed in field experiments, and its effect on selection for 
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26 partial resistance in fungal pathogens is not well studied. An improved understanding 

27 of whether the effect of dose splitting depends on fungicide properties and type of 

28 fungicide resistance is required. We developed a compartmental epidemiological 

29 model of septoria leaf blotch (STB) (Zymoseptoria tritici) to investigate the effect of 

30 dose splitting on selection for both complete and partial target-site and non-target-site 

31 resistance. To measure solely the effects of dose splitting, we restricted the analysis 

32 to solo fungicide application (solo use is not recommended in practice). Our results 

33 show variable effects of dose splitting: in general, it increased selection for both target-

34 site and non-target-site resistance. Within the range of dose response parameters 

35 expected for commercial fungicides, dose splitting increased selection most for partial 

36 resistance mechanisms that result in a reduction in fungicide efficacy at low fungicide 

37 concentrations but not at high concentrations. We predict that dose splitting of a 

38 succinate dehydrogenase inhibitor (SDHI) fungicide (solo) will increase selection for 

39 target-site and non-target-site resistance by between 20-35%.

40 1. Introduction

41 The effectiveness of fungicides for control of plant diseases is threatened by the 

42 evolution of resistance (Corkley et al., 2022). The risk of resistance is particularly high 

43 for polycyclic foliar fungal pathogens, such as septoria tritici blotch (STB) 

44 (Zymoseptoria tritici) in wheat, grey mould (Botrytis cinerea) in many hosts, potato late 

45 blight (Phytophthora infestans), and net blotch (Pyrenophora teres) and powdery 

46 mildew (Blumeria hordei) diseases of barley. These pathogens have large population 

47 sizes and many generations per year, enabling rapid evolution of resistance (Grimmer 

48 et al., 2015; McDonald et al., 2022), and have the potential to cause large economic 

49 losses. Fungicide resistance management tactics include minimising the dose and 

50 number of applications, and applying in mixture with a different mode of action (MoA) 
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51 (Corkley et al., 2022; Elderfield et al., 2018; Mikaberidze et al., 2017; van den Berg et 

52 al., 2016; van den Bosch et al., 2014a, 2014b). However, the number of effective MoA 

53 available for use is increasingly restricted by regulation (especially of multi-site 

54 fungicides) and resistance which has already evolved. This poses challenges for 

55 implementation of current resistance management strategies.

56 Fungicides with a MoA affecting a single pathogen target site are at particular 

57 risk of resistance development because a single point mutation affecting the target site 

58 gene (‘target-site resistance’) may confer a large fitness advantage. Target-site 

59 mutations may confer either complete or partial resistance. If a target-site mutation 

60 substantially prevents fungicide binding, for example through a change in the shape 

61 of the fungicide binding site, this can fully restore cellular or enzyme function and result 

62 in a high level of complete resistance. For example, the G143A mutation prevents 

63 quinone outside inhibitor (QoI) fungicides from binding to the cytochrome b 

64 mitochondrial protein, restoring its function in respiration (Dorigan et al., 2023). Target-

65 site resistance may involve a single point mutation, or a combination of multiple 

66 mutations on the target gene, each conferring partial resistance, but potentially leading 

67 to highly resistant phenotypes in combination. For example, Z. tritici has accumulated 

68 multiple mutations in the CYP51 gene, leading to gradually increasing levels of 

69 resistance to demethylation inhibitor (DMI) fungicides (Cools & Fraaije, 2013; Hawkins 

70 & Fraaije, 2021; Leroux & Walker, 2011). In addition to target-site mutations, other 

71 mechanisms of fungicide resistance in pathogens include target-site overexpression, 

72 and non-target-site resistance such as increased efflux, detoxification and alternative 

73 metabolism (Dorigan et al., 2023; Hawkins & Fraaije, 2021; Hu & Chen, 2021). These 

74 mechanisms may cause partially or highly resistant strains, especially in combination 

75 with one another or with target-site resistance. Metabolic resistance pathways such as 
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76 efflux pumps are also implicated in multi-drug resistant fungal strains (Kretschmer et 

77 al., 2009; Omrane et al., 2017; Patry-Leclaire et al., 2023).

78 To predict the impact of fungicide resistance management tactics on selection, 

79 it is helpful to consider pathogen epidemics in terms of the per capita rate of increase 

80 or ‘growth rate’ (r) of each strain: a number which combines the repeating stages of 

81 lesion establishment, growth and sporulation into a single measure of the success of 

82 a strain at a given point in time. Pathogen strains with resistance to the action of a 

83 fungicide have higher growth rates in the presence of that fungicide than strains that 

84 are sensitive to the fungicide. The greater the difference in the per capita growth rates 

85 of resistant and sensitive strains, the faster the rate of selection for resistance (van 

86 den Bosch et al., 2014a). The impact of any given fungicide dose on the per capita 

87 growth rate of a pathogen strain can be represented in models by its effect on 

88 important parts of the pathogen life cycle, such as a reduction in the pathogen 

89 transmission rate. Assuming that the applied dose decays exponentially over time, it 

90 is possible to track the ‘effective dose’ remaining at any point in time. The impact of 

91 the fungicide on the pathogen life cycle is greatest at high effective doses, where the 

92 maximum effect is defined by an ‘asymptote parameter’, and the rate at which the 

93 effect decreases with reducing fungicide doses is defined by a ‘curvature parameter’. 

94 The effect of resistance on the dose response to a fungicide may be observed either 

95 as a complete or partial reduction in the maximum effect of the fungicide on the 

96 pathogen growth rate even at very high effective doses, or as a reduction in the 

97 efficacy of lower effective doses of the fungicide. We will refer to these types of 

98 resistance as ‘asymptote shift’ and ‘curvature shift’ respectively, to reflect their effect 

99 on the fungicide dose response (Figure 1(a), 1(b)). Resistance resulting from an 

100 asymptote shift is sometimes referred to as ‘qualitative’ or ‘type I’ resistance, and 
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101 resistance resulting from a curvature shift as ‘quantitative’ or ‘type II’ resistance 

102 (Elderfield, 2018; Mikaberidze et al., 2017; Taylor & Cunniffe, 2023a), but the definition 

103 of these terms is not entirely consistent across the scientific literature. 

104 Let us consider which resistance mechanisms are likely to lead to either a 

105 partial asymptote shift or a curvature shift. Some fungicides bind competitively directly 

106 to the enzyme active site: for example, DMI fungicides bind competitively to the CYP51 

107 protein which catalyses a step in ergosterol biosynthesis (Hargrove et al., 2015), 

108 occupying the P450 active site and preventing substrate binding. A target-site mutation 

109 that causes a small to moderate reduction in the affinity of the enzyme for the fungicide 

110 will reduce fungicide efficacy at low fungicide concentrations, but not at high fungicide 

111 concentrations. This case is therefore best represented by a curvature shift. A 

112 curvature shift will also be representative of other resistance mechanisms that reduce 

113 fungicide efficacy at low fungicide concentrations but are overwhelmed by high 

114 fungicide concentrations. These may include target-site overexpression and non-

115 target-site, metabolic resistance mechanisms such as increased expression of efflux 

116 pumps and detoxification. A partial asymptote shift could result from a target-site 

117 mutation that reduces the maximum effect at any dose rate of fungicides which bind 

118 allosterically and non-competitively to an enzyme. These fungicides change the 

119 structure of the enzyme in a way that inhibits enzyme function or reduces access or 

120 binding of the substrate to the enzyme active site. An example is the cyanoacrylate 

121 phenamacril which is used against a number of Fusarium species (Wollenberg et al., 

122 2020). The maximum effect of these fungicides could be partially reduced by a target-

123 site mutation which changes the shape of the enzyme-fungicide complex, partially 

124 restoring enzyme function. 
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125 Multiple fungicide applications per year are often useful to avoid economically 

126 damaging epidemics of polycyclic foliar fungal pathogens such as Z. tritici. If the 

127 number of MoA available for programmes is limited, use of mixtures may require 

128 splitting the total dose of a fungicide across two or more applications, reducing the 

129 dose of each MoA per application but increasing the exposure time of the pathogen to 

130 each fungicide, with counteracting (but not necessarily equal) effects on selection for 

131 resistance. If resistance is evolving ‘concurrently’ to two or more MoA at the same 

132 time, this situation introduces complex trade-offs for resistance management. Whether 

133 ‘splitting and mixing’ is a good or a poor choice of strategy for management of 

134 concurrent evolution of resistance will depend on the balance between the effects of 

135 mixture and dose splitting on selection. However, variation in the effects of dose 

136 splitting is not well understood. van den Bosch et al. (2014a) hypothesise that dose 

137 splitting will, overall, increase selection for strains with an asymptote shift against a 

138 fungicide. They highlight several experimental studies that support this theory, but the 

139 effect of dose splitting on selection for partially resistant strains with a curvature shift 

140 has not been explicitly considered in previous modelling studies, to our knowledge. 

141 Field trials carried out between 2018 and 2020 to measure the effect of dose splitting 

142 on selection for SDH-mutants showed variable results (Paveley et al., 2020; Young et 

143 al., 2021). An improved understanding of how fungicide properties and type of 

144 resistance determine the effect of dose splitting on selection for resistant pathogen 

145 strains is needed to inform tactics for management of concurrent evolution of 

146 resistance.

147 To investigate the effect of dose splitting on selection, we developed a model 

148 of fungicide resistance evolution in Z. tritici. Zymoseptoria tritici is one of the most 

149 common, widespread and damaging pathogens affecting winter wheat crops in the UK 
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150 and worldwide. It has evolved resistance to QoIs, DMIs and SDHIs (Cools & Fraaije, 

151 2013; Dooley et al., 2016; Huf et al., 2018; Rehfus et al., 2018; Torriani et al., 2009), 

152 with a corresponding decline in disease control (Blake et al., 2018). The model 

153 simulates a typical UK epidemic of STB, describing the seasonal growth and 

154 senescence of the upper crop canopy of winter wheat under average temperature 

155 conditions in the UK, key processes in the pathogen life cycle (sporulation, infection 

156 and growth) and their interaction with fungicides. In the UK, initial infection of wheat 

157 crops by Z. tritici occurs in autumn or spring through airborne ascospores or by splash-

158 dispersed conidia from wheat stubble. After penetrating the leaf stomata, the fungus 

159 develops slowly during a symptomless latent period, following which necrotic lesions 

160 form on the leaf surface. These produce asexual haploid pycnidiospores which spread 

161 to the upper leaf canopy through contact and rain splash, driving the majority of 

162 secondary infections within the growing season with the potential for rapid increases 

163 in disease severity (Ponomarenko et al., 2011; Suffert et al., 2011). STB is associated 

164 with a reduction in crop quality and yield losses of up to 50% if uncontrolled (Fones 

165 and Gurr, 2015).

166 Through model simulations, we compared the effects on selection for a 

167 resistant Z. tritici strain of applying a fungicide solo in either a single application at full 

168 label rate or in two applications, each at half the full label rate. It should be noted that 

169 use of solo MoA is not recommended in practice. However, restricting the analysis to 

170 dose splitting of a solo fungicide enabled us to measure solely the effects of dose 

171 splitting, rather than the combined effects of ‘splitting and mixing’, giving a clearer 

172 picture of the drivers in variation of the effects of dose splitting. We used the model to 

173 investigate how the effect of dose splitting on selection for resistance depends on: (a) 

174 fungicide properties (foliar concentration half-life; asymptote and curvature dose 
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175 response parameters for the sensitive strain); (b) the type of resistance (asymptote 

176 shift or curvature shift); and (c) the magnitude of the asymptote or curvature shift.

177 2. Materials and Methods

178 2.1 Model background and approach

179 We follow the approach of (Hobbelen et al., 2011b), modelling the leaf area index (LAI; 

180 a dimensionless measure of leaf density, defined as the total amount of one-sided leaf 

181 area of the canopy (m2) per unit ground area (m2)) and infection by Z. tritici 

182 pycnidiospores on the top three leaves of the wheat canopy only. Yield loss due to Z. 

183 tritici occurs due to a reduction in healthy leaf area duration (HAD) and the resulting 

184 loss of interception of photosynthetically active radiation (PAR) on the upper three 

185 leaves during grain-filling: the level of disease on the upper canopy is a good predictor 

186 of yield loss (Parker et al., 2004; Shaw & Royle, 1989). Fungicide applications targeted 

187 against Z. tritici are therefore mostly applied to the upper leaf canopy. Although there 

188 will be some fungicide exposure on lower leaves, previous modelling results suggest 

189 that it is on the upper leaf canopy that selection for resistance primarily occurs (van 

190 den Berg et al., 2013).

191 The dynamics of the epidemic in the model are driven by the growth and 

192 senescence of the crop, which determines the leaf area available for infection, and the 

193 effect of a fungicide on the pathogen life cycle over time. The leaf area can pass 

194 sequentially through healthy, latent (infected but not yet sporulating), infectious 

195 (sporulating) and post-infectious stages; healthy and latent leaf area may also senesce 

196 due to leaf age. The infectious leaf area generates new infections on healthy leaf area. 

197 The model simulates the LAI of both the latent and infectious stages of a sensitive 

198 strain and a resistant strain of Z. tritici.
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199 Our model has the same functional form as one developed by Hobbelen et al. 

200 (2011a, b). However, the rate of senescence in that model was parameterised using 

201 data on spring barley (Hordeum vulgare) (Hobbelen et al., 2011a), and the simulated 

202 timing of crop senescence could impact on model predictions of the effects of dose 

203 splitting on selection for resistant strains. We therefore re-parameterised the model 

204 (see Section 2.3) using a dataset of green leaf area index (GLAI) and Z. tritici infection 

205 of the top three leaves of wheat crops from 14 site-years (Milne et al., 2003, described 

206 as ‘Data set 1’; te Beest et al., 2009).

207 2.2 Model equations

208 2.2.1 Growth and senescence of wheat leaf canopy

209 It is assumed that the growth rate of the total leaf area of the upper canopy is not 

210 affected by Z. tritici severity, so the total leaf area index (LAI) and uninfected healthy 

211 green leaf area index (GLAI) are tracked separately (Hobbelen et al., 2011b). In the 

212 absence of disease the rates of change of the total LAI (𝐴) and the total healthy GLAI 

213 (𝐻) are given by:

214
d𝐴
d𝑡 = 0,                    𝑡 < 𝑡0

𝛾(𝐴Max ― 𝐴), 𝑡 > 𝑡0
 (1)

215
d𝐻
d𝑡 = 𝛾(𝐴Max ― 𝐴) ― 𝛽(𝑡)(2)

216 where 𝛽(𝑡) =  
0,                                             𝑡 < 𝑡𝛽0

𝜏
𝑡 ― 𝑡𝛽0

𝑡𝛽𝑇 ― 𝑡𝛽0

+ 𝜑e𝜔 𝑡𝛽𝑇
―𝑡 ,𝑡𝛽0 ≤ 𝑡 ≤ 𝑡𝛽𝑇

(3)

217 where 𝑡0 is the time at which leaf 3 emerges and growth of the upper canopy 

218 commences, 𝐴Max is the maximum LAI, 𝛾 is the growth rate of the leaf area, 𝛽(𝑡) is the 

219 rate of senescence at time 𝑡, 𝑡𝛽0 is the time of onset of senescence, 𝑡𝛽𝑇 is the time at 

220 which the canopy has fully senesced, and 𝜏, 𝜑 and 𝜔 are coefficients controlling the 

221 rate at which senescence occurs in relation to the length of time after the onset of 
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222 senescence. Time is measured in degree days (base 0°C), ‘zero-degree days’ (see 

223 Section 2.3).

224 2.2.2 Infection of crop by Zymoseptoria tritici

225 The development of the STB epidemic is described in the model by tracking the LAI 

226 of latent and infectious lesions of the resistant and sensitive strains.

227 It is assumed that the epidemic on the upper leaves is initiated by an influx of 

228 spores from infectious lesions on lower leaves. The density of infectious lesions on 

229 lower leaves, 𝐶, diminishes over time at rate 𝜆, as lower leaves senesce and infectious 

230 lesions on the lower leaves reach the end of the infectious period. The LAI of infectious 

231 lesions on lower leaves at time 𝑡, 𝐶(𝑡), is calculated as:

232 𝐶(𝑡) =  𝐶0e―𝜆𝑡(4)

233 A fraction, 𝜃𝜌Start, of the initial influx 𝐶 from lower leaves is assumed to be spores of 

234 the resistant strain, with the sensitive strain fraction 𝜃𝜎Start = 1 ― 𝜃𝜌Start. It is assumed 

235 that 𝜃𝜌Start and 𝜃𝜎Start are not affected by fungicide application after the start of the 

236 model simulation at GS31. The initial influx is denoted as 𝐶𝜎 and 𝐶𝜌 for the sensitive 

237 and resistant strains respectively.

238 The influx of spores, 𝐶, and infectious LAI on the upper canopy, I, are converted 

239 into new latent lesions on the upper canopy, at transmission rate 𝜀, i.e. the overall rate 

240 at which infectious lesion density is converted into new latent lesions on a given 

241 density of healthy leaf area. Latent lesions mature into infectious, sporulating lesions, 

242 at a rate 𝛿, where 1/ 𝛿 is the average latent period. Infectious lesions die at a rate 𝜇, 

243 where 1/𝜇 is the average infectious period. Leaf senescence affects latent LAI, but not 

244 infectious LAI as the leaf tissue is already killed by the necrotic process of lesions 

245 becoming infectious (Hobbelen et al., 2011b; Kema et al., 1996). The following set of 

246 equations track the area index of healthy (𝐻), latently infected (𝐿) and infectious (𝐼) 
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247 leaf area over time, with 𝐿𝜌 and 𝐿𝜎 denoting the area index of latent lesions and 𝐼𝜌 and 

248 𝐼𝜎 the infectious area index of the resistant and sensitive strains respectively:

249
d𝐻
d𝑡 = 𝛾(𝐴Max ― 𝐴) ― 𝛽(𝑡)𝐻 ― 𝜀 𝐻

𝐴 (𝐶𝜎 + 𝐶𝜌 +  𝐼𝜎 + 𝐼𝜌(5)

250
d𝐿𝜎

d𝑡 = 𝜀𝜎
𝐻

𝐴 (𝐶𝜎 + 𝐼𝜎) ― 𝛿𝐿 ―  𝛽(𝑡)𝐿𝜎(6)

251
d𝐿𝜌

d𝑡 = 𝜀𝜌
𝐻

𝐴 𝐶𝜌 + 𝐼𝜌 ― 𝛿𝐿𝜌 ―  𝛽(𝑡)𝐿𝜌(7)

252
d𝐼𝜎 
d𝑡 = 𝛿𝜎𝐿𝜎 ― 𝜇𝐼𝜎 (8)

253
d𝐼𝜌

d𝑡 = 𝛿𝜌𝐿𝜌 ―  𝜇𝐼𝜌(9)

254 The final fraction of the resistant strain in the population at crop senescence, 𝜃𝜌End, is 

255 calculated as:

256 𝜃𝜌End =
𝐼𝜌(𝑡𝛽𝑇)

𝐼𝜌(𝑡𝛽𝑇) + 𝐼𝜎(𝑡𝛽𝑇)(10)

257 2.2.3 The effect of the fungicide on pathogen growth rate

258 Fungicide effects on the two strains of Z. tritici are simulated in the model through a 

259 dose-dependent reduction of pathogen life cycle parameters 𝜀 (transmission rate, 

260 Equations 6 and 7) and 𝛿 (the rate at which latent lesions are converted to sporulating 

261 lesions, Equations 8 and 9), slowing the rate of increase of the pathogen population. 

262 Single-site fungicides are assumed to reduce both the transmission rate and the rate 

263 of conversion of latent infections to sporulating lesions. The infectious period of 

264 sporulating lesions is assumed to be unaffected by fungicides.

265 The fungicide dose at time 𝑡, 𝐷(𝑡), is expressed as a proportion of the maximum 

266 permitted individual dose (as defined on the product label), 𝐷Max, and decays 

267 exponentially over time at rate 𝑣:

268 𝐷(𝑡) = 𝐷0𝑒―𝑣(𝑡―𝑡∗)(11)
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269 where 𝐷0 is the applied dose and 𝑡∗ is the time of application. 𝐷(𝑡) is the ‘effective 

270 dose’ referred to in Section 1.

271 The fungicide reduces the pathogen life cycle parameters 𝜀 and 𝛿 by a fraction 

272 𝑓(𝑡), which changes over time depending on the remaining fungicide dose, 𝐷(𝑡). The 

273 dose response of 𝑓(𝑡) to 𝐷(𝑡) (Figures 1(a), 1(b)) is described by a combination of an 

274 asymptote parameter, 𝑞, which is the maximum fractional reduction of the pathogen 

275 life cycle parameter (i.e. at infinite fungicide dose), and a curvature parameter, 𝑘, 

276 which defines how quickly the fractional reduction declines from the asymptote as 𝐷(

277 𝑡) decreases:

278 𝑓𝜎(𝑡) =  𝑞𝜎(1 ― 𝑒―𝑘𝜎𝐷(𝑡))(12)

279  𝑓𝜌(𝑡) =  𝑞𝜌(1 ― 𝑒―𝑘𝜌𝐷(𝑡))(13)

280 The asymptote parameters are denoted as 𝑞𝜎 and 𝑞𝜌, the curvature parameters as 𝑘𝜎 

281 and 𝑘𝜌, and the fractional reductions as 𝑓𝜎(𝑡) and 𝑓𝜌(𝑡) for the sensitive and resistant 

282 strains respectively. Each pathogen life cycle parameter affected by the fungicide is 

283 multiplied by (1 ― 𝑓(𝑡)) to represent the effect of the fungicide on the growth rate of 

284 the pathogen population. For example, the transmission rate of the sensitive strain at 

285 time 𝑡, 𝜀𝜎(𝑡), is calculated as:

286 𝜀𝜎(𝑡) =  𝜀0(1 ― 𝑓𝜎(𝑡)) = 𝜀0 1 ― 𝑞𝜎(1 ― 𝑒―𝑘𝜎𝐷(𝑡)) (14)

287 where 𝜀0 is the transmission rate in the absence of fungicides. It is assumed that there 

288 are no fitness costs of resistance. If 𝑓𝜎(𝑡) > 𝑓𝜌(𝑡), the density of the resistant strain 

289 will increase faster than the density of the sensitive strain, leading to an increase in 

290 the resistant strain fraction of the Z. tritici population.

291 2.2.4 Types of fungicide resistance

292 We simulate two types of fungicide resistance based on the nature of the shift in 

293 sensitivity to the fungicide (‘sensitivity shift’):
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294 • Asymptote shift, 𝜁𝑞: parameter 𝑞 is reduced relative to the sensitive strain.

295 • Curvature shift, 𝜁𝑘: parameter 𝑘 is reduced relative to the sensitive strain.

296 We describe the level of sensitivity shift as a percentage. For example, a 50% 

297 asymptote shift means that 𝑞𝜌 = 0.5𝑞𝜎. Partial resistance could take the form of either 

298 an asymptote shift or a curvature shift, or a combination of both. An asymptote shift 

299 means that the effect of any dose 𝐷(𝑡) against the resistant strain of the pathogen is 

300 reduced (Figure 1(a)). For a curvature shift, the instantaneous effect of a high dose of 

301 the fungicide may still be as potent, but at lower doses it is less effective against the 

302 resistant strain than against the sensitive strain (Figure 1(b)). The biological 

303 significance of asymptote and curvature shifts is discussed in Section 1.

304 A 100% asymptote and a 100% curvature shift are functionally identical: both 

305 represent strains that are completely resistant to the fungicide at any dose 𝐷(𝑡). 

306 Otherwise, for a given percentage sensitivity shift, an asymptote shift will result in a 

307 more highly resistant strain than the same level of curvature shift (as can be seen by 

308 comparing Figures 1(a) and 1(b)). The difference in the fractional reduction of the 

309 sensitive strain compared to the resistant strain, 𝑓𝜎(𝑡) ― 𝑓𝜌(𝑡), is greatest at high 

310 fungicide dose 𝐷(𝑡) for asymptote shifts, and greatest at intermediate fungicide dose 𝐷

311 (𝑡) for partial (<100%) curvature shifts (Figures 1(c), 1(d)).

312 2.2.5 Calculation of the selection coefficient

313 We used the selection coefficient, 𝑠, to compare the rate of selection for the resistant 

314 strain in each scenario simulated (Milgroom & Fry, 1988; van den Bosch et al., 2014a). 

315 The selection coefficient is defined as the difference in fitness between the resistant 

316 and sensitive strains due to the application of the fungicide, where fitness is measured 

317 by the per capita rate of increase, 𝑟, of a population:

318 𝑠 = 𝑟𝜌 ― 𝑟𝜎(15)
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319 where 𝑟𝜌 and 𝑟𝜎 are the average per capita rates of increase of the resistant and 

320 sensitive strains respectively over the course of the growing season. We calculate total 

321 selection between the start of the simulation, 𝑡0, and crop senescence, time 𝑡𝛽𝑇, 

322 denoting the total length of time simulated as 𝑇. Assuming exponential growth of the 

323 sensitive and resistant strains (in the absence of density dependence), the density of 

324 the sensitive strain and resistant strain at time 𝑡𝛽𝑇, denoted as 𝑃𝜎(𝑡𝛽𝑇) and 𝑃𝜌(𝑡𝛽𝑇) 

325 respectively, can be calculated as:

326 𝑃𝜎(𝑡𝛽𝑇) = 𝑃𝜎(0)𝑒𝑟𝜎𝑇(16)

327 𝑃𝜌(𝑡𝛽𝑇) = 𝑃𝜌(0)𝑒𝑟𝜌𝑇(17)

328 where 𝑃𝜎(0) and 𝑃𝜌(0) are the initial densities of the sensitive and resistant strain 

329 respectively at the start of the simulation.

330 Rearrangement of equations (16) and (17) for 𝑟𝜎 and 𝑟𝜌, and substitution of 

331 equation (15) gives:

332 𝑠 =
1
𝑇 ln

𝑃𝜌(𝑡𝛽𝑇)𝑃𝜎(0)
𝑃𝜌(0)𝑃𝜎(𝑡𝛽𝑇) (18)

333 This can also be expressed in terms of the population fractions of the resistant and 

334 sensitive strains, 𝜃𝜌 and 𝜃𝜎, at the beginning of the simulation and the end of the 

335 growing season:

336 𝑠 =
1
𝑇 ln

𝜃𝜌End𝜃𝜎Start

𝜃𝜌Start𝜃𝜎End
(19)

337 2.3 Model implementation and parameterisation

338 The model was implemented in MATLAB R2022b (The MathWorks Inc., 2022) using 

339 built-in function ‘ode45’ for the solution of the ordinary differential equations.

340 The model was parameterised using data on GLAI and Z. tritici infection over 

341 time from field trials of wheat crops grown with and without fungicide application, 

342 recorded over 14 site-years between 1993 and 1995 in England, United Kingdom, and 
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343 corresponding daily weather data from meteorological stations within one kilometre of 

344 the site (Milne et al., 2003, described as ‘Data set 1’; te Beest et al., 2009). We refer 

345 to data from these trials as ‘Dataset 1’. For each site-year, Dataset 1 includes data on 

346 four cultivars (Riband, Apollo, Slejpner and Haven), with four replicates per cultivar.

347 We chose to follow previous models (Elderfield et al. 2018; Hobbelen et al. 

348 2011b; van den Berg et al. 2013) in parameterising the model on a zero-degree days 

349 scale. Weather data for the sites was used to calculate both the thermal time (degree 

350 days base 0°C) and photo-vernal-thermal time (base 1°C) since sowing (Milne et al., 

351 2003; Weir et al., 1984) corresponding to each observation date. The photo-thermal-

352 vernal time gave a more consistent profile for the timings of the upper canopy growth 

353 and senescence than thermal time (see Figure A.1.2 in Supporting Information A.1 for 

354 further details). Using linear regression, we derived a relationship between thermal 

355 time and photo-thermal-vernal time, 𝑡𝑝𝑣𝑡, and used this to convert 𝑡𝑝𝑣𝑡 to the average 

356 thermal time in zero-degree days, 𝑡:

357 𝑡 = 1.204𝑡𝑝𝑣𝑡 + 778.6(20)

358 Dataset 1 was used to estimate the average number of zero-degree days per day, 𝑧. 

359 We assumed that data from field plots that received a fungicide programme 

360 designed to provide full protection against disease (Milne et al., 2003) are 

361 representative of canopy growth in the absence of disease. We used these data to 

362 estimate the parameters controlling the growth and senescence of the wheat canopy: 

363 𝑡0, 𝑡𝛽0, 𝑡𝛽𝑇, 𝐴Max, 𝛾, 𝜏, 𝜑 and 𝜔 (defined in Section 2.2.1). The mean GLAI of the top 

364 three leaves at each observation time point was calculated for each site-year from 

365 data from all four cultivars and replicates in Dataset 1. The parameters were fitted to 

366 data pooled from six site-years with maximum observed GLAI ranging from 3.76 to 

367 4.90 (Cambridgeshire-1994, Devon-1994, Devon-1995, Kent-1995, Norfolk-1994, 
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368 Norfolk-1995), using least squares optimisation (lsqcurvefit, MATLAB 2022b; further 

369 details in Supporting Information A.1). Model zero-degree days were mapped to 

370 growth stages on Zadoks’ scale (Zadoks et al., 1974), based on the fitted values of 𝑡0, 

371 𝑡𝛽0, 𝑡𝛽𝑇 and the estimated phyllochron length (see Supporting Information A.1 for 

372 further details).

373 We estimated Z. tritici life cycle parameters 𝛿, 𝜇 and 𝜆 (defined in Section 2.2.2) 

374 based on data from a literature search (Table 2). In combination with 𝐶0 (Equation 4) 

375 and 𝜀0 (Equations 6, 7, 14), these parameters describe the infection of crop by Z. tritici 

376 in the absence of a fungicide. We estimated values for 𝐶0 and 𝜀0 using data on STB 

377 epidemic progress (% severity) (Dataset 1) on untreated plots on which the maximum 

378 severity of the STB epidemic exceeded 5% and the maximum cumulative severity of 

379 yellow rust, brown rust and powdery mildew did not exceed 15%. Data from cultivars 

380 that were considered moderately resistant at the time the trials were carried out were 

381 used to estimate 𝜀0. Data from six site-years (Devon-1994, Devon-1995, Hampshire-

382 1995, Herefordshire-1994, Herefordshire-1995, Kent-1994) fitted these criteria. We 

383 fitted separate values of 𝐶0 and 𝜀0 for each site-year-cultivar combination using least 

384 squares optimisation and calculated the average of these values (further details in 

385 Supporting Information A.1).

386 We used data from AHDB Fungicide Performance trials (AHDB, 2024a) on the 

387 observed dose response of STB severity to fluxapyroxad and isopyrazam from 2011-

388 2012 (Dataset 2) to estimate indicative values of 𝑞𝜎 and 𝑘𝜎 for SDHI fungicides (see 

389 Supporting Information A.1 for further details), using an estimate of 𝜈 based on a 

390 literature search (Table 2).

391 2.4 Model simulations of dose splitting
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392 We investigated the impact of dose splitting on selection for resistant strains with either 

393 an asymptote shift or a curvature shift (either partial or complete resistance), for a 

394 range of values of the fungicide parameters 𝑞𝜎, 𝑘𝜎 and 𝜈 (Table 1). We compared 

395 selection for the resistant strain following a single application of the fungicide at full 

396 label rate, 𝐷Max, at either growth stage 32 (GS32) or GS39, to selection for the resistant 

397 strain following a ‘split dose’ application of 0.5𝐷Max at both GS32 and GS39. In all 

398 simulations, the total dose applied to the upper leaf canopy, 𝐷Total, was equal to 𝐷Max.

399 The foliar concentration half-lives of fungicide products can be very variable 

400 depending on the crop and environmental conditions (Fantke et al., 2014). We 

401 simulated three values of 𝜈 (Table 1), equivalent to foliar half-lives of 3 days, 6 days 

402 and 12 days; SDHI fungicides such as fluxapyroxad, penthiopyrad and fluopyram have 

403 an average half-life of approximately 6 days (Fantke et al., 2014; He et al., 2016; Noh 

404 et al., 2019). Figure 2 illustrates the effect of the decay rate on the simulated fungicide 

405 dose 𝐷(𝑡) and fractional reduction 𝑓(𝑡) over time following single and split dose 

406 applications.

407 We included very low and high values of parameters 𝑞𝜎 and 𝑘𝜎 in the analysis 

408 to understand the extremes of the range of possible effects of dose-splitting. In 

409 practice, these parameter values are unlikely in a commercially available fungicide: 

410 fungicides with very low values of 𝑞𝜎 or 𝑘𝜎 would not be effective, whilst very high 

411 values are more likely to be associated with an unacceptable toxicity profile. We 

412 compared our results to those obtained using our fitted parameter values for SDHI 

413 fungicides to understand the most likely range of effects of dose splitting on selection 

414 for resistance to commercial fungicides.

415 We assumed that 𝜃𝜌(0) =  0.01, i.e. 1% of the inoculum initiating the epidemic 

416 was the resistant Z. tritici strain, whilst the remaining 99% of the population was 
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417 sensitive to the fungicide. The simulations were run for a single growing season from 

418 the start of the leaf growth of the upper canopy, 𝑡0, to complete canopy senescence, 

419 𝑡𝛽𝑇. For each combination of parameter values simulated, the selection coefficient for 

420 the resistant strain, 𝑠, was calculated (Equation 19). The percentage change in the 

421 selection coefficient due to dose splitting, 𝜂, was then calculated as:

422 𝜂 =  100 ×
(𝑠Split ― 𝑠Single)

𝑠Single
(21)

423 where  𝑠Single is the selection coefficient for a single application at 𝐷Total and 𝑠Split is 

424 the selection coefficient for the resistant strain for a split dose application.

425 3. Results

426 3.1 Model parameterisation

427 The fitted model parameters are summarised in Table 2. The model fit to observed 

428 GLAI in the absence of disease was good (Figure 3(a); n=76, R2 = 76.9%, RMSE = 

429 0.76). For the cultivar-site-year combinations used to fit 𝜀0, the transmission rate in the 

430 absence of fungicide, the overall fit to observed disease severity progress was 

431 excellent (n=293, R2 = 88.4%, RMSE = 2.8%); fitted values of 𝜀0 ranged from 0.0136 

432 to 0.0364, with a mean value of 0.0211. In the absence of a fungicide, the model 

433 predicts STB severity of 9.5% (Figure 3(b)) at GS75 (medium milk), which is 

434 approximately equivalent to the expected average severity on a cultivar with an AHDB 

435 resistance rating of 6 (AHDB, 2024b).

436 3.2 Effect of dose splitting on selection for fungicide resistance

437 For the range of parameter values simulated (Table 1), we show results for both the 

438 overall magnitude of selection, measured by the selection coefficient s (Section 

439 2.2.5), and the percentage change in selection due to dose splitting, 𝜂 (Equation 21). 

440 When describing the baseline level of efficacy of a fungicide in Sections 3.2.1 and 

441 3.2.2, we refer to the dose response against the sensitive strain, notated as 𝑞𝜎 and 
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442 𝑘𝜎 for the asymptote and curvature parameter respectively. For a resistant strain with 

443 an asymptote shift, 𝜁𝑞 > 0 but no curvature shift i.e. 𝜁𝑘 = 0, note that 𝑘𝜌 = 𝑘𝜎. For a 

444 resistant strain with a curvature shift 𝜁𝑘 > 0 but no asymptote shift, 𝑞𝜌 = 𝑞𝜎.

445 3.2.1 Magnitude of selection

446 The magnitude of selection for fungicide resistance, measured by the selection 

447 coefficient s, increased for both single and split dose fungicide applications with 

448 increasing values of the asymptote parameter, 𝑞𝜎, curvature parameter, 𝑘𝜎, asymptote 

449 shift, 𝜁𝑞 or curvature shift, 𝜁𝑘, and with decreasing values of the decay rate, 𝜈 (Figure 

450 4). This means that a strain with resistance against a highly effective fungicide (with 

451 high values of 𝑞𝜎, 𝑘𝜎 and a relatively low value of 𝜈) would spread more quickly if the 

452 fungicide was applied, compared to a strain with resistance against a fungicide with 

453 lower efficacy. The greater the effect of a fungicide on the growth rate of the sensitive 

454 strain, the greater the maximum magnitude of the cumulative difference in growth rates 

455 between the resistant and sensitive strains when the fungicide is applied. More highly 

456 resistant strains (higher values of 𝜁𝑞 or 𝜁𝑘) will also spread more quickly, as they have 

457 higher growth rates in the presence of a fungicide relative to the sensitive strain.

458 As noted in Section 2.2.4, either a 100% asymptote shift or 100% curvature 

459 shift leads to a strain that is completely resistant to the fungicide at any dose 𝐷(𝑡), and 

460 an identical value of s for a given combination of 𝑞𝜎,𝑘𝜎 and 𝜈. For a given sensitivity 

461 shift percentage less than 100% (e.g. 50% or 90%), s is higher for an asymptote shift 

462 than for the same level of curvature shift, as the asymptote shift corresponds in a more 

463 highly resistant strain, leading to a greater cumulative difference in growth rates 

464 between the resistant and sensitive strain when fungicide is applied.

465 For partial and complete asymptote shifts, s was consistently higher for split 

466 dose applications than for single applications.
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467 3.2.2 Effect of dose splitting on selection for resistance, 𝜂

468 The values of the asymptote parameter, 𝑞𝜎, and asymptote shift, 𝜁𝑞, have very little 

469 impact on the percentage change in the selection coefficient s (𝜂 in Equation 21) as 

470 a result of dose splitting (Figure 5). 𝑞𝜎 also has very little impact on 𝜂 for a curvature 

471 shift (Figure A.2.1, Supporting Information A.2). This is because 𝑞𝜎 and 𝜁𝑞 do not 

472 affect the length of time for which there is a difference in the level of control exerted 

473 by single and split dose applications. The curvature parameter, 𝑘𝜎, and the decay 

474 rate, 𝜈, together control the value of 𝜂, in combination with the curvature shift, 𝜁𝑘, 

475 where relevant (Figure 6).

476 For any asymptote shift, dose splitting increased selection for resistance. The 

477 value of 𝜂 for an asymptote shift varied from <5% to 40%, depending on the values 

478 of 𝑘𝜎 and 𝜈 (Figure 6(a)-(c)). Our results suggest that splitting the dose of a solo 

479 SDHI across two applications rather than making a single application at full dose rate 

480 could increase selection for a strain with an asymptote shift to the SDHI by 

481 approximately 20%. 

482 For curvature shifts, 𝜂 varied from -20% to 80% (Figure 6(d)-(f)), indicating 

483 that dose splitting can reduce selection for partially resistant strains in some cases, 

484 but in other cases it may lead to a large increase in selection for resistance, 

485 dependent on the values of 𝑘𝜎, 𝜈 and 𝜁𝑘. The value of 𝜂 increased with the curvature 

486 parameter, 𝑘𝜎, reaching an asymptote at high values of 𝑘𝜎 when the fungicide half-

487 life was short (Figure 6(d)).  For longer fungicide half-lives, the value of 𝜂 initially 

488 increased with 𝑘𝜎 to a maximum, then decreased at very large values of 𝑘𝜎 (Figure 

489 6(f)). For larger curvature shifts, 𝜁𝑘, the 𝜂-values approach the curves for asymptote 

490 shifts (Figure 6(a)-(c)). For smaller curvature shifts, 𝜁𝑘 <50%, 𝜂 initially increased 

491 with 𝑘𝜎, to a maximum at approximately 5≤𝑘𝜎≤10, and then decreased again for 
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492 larger values of 𝑘𝜎. For small curvature shifts, 𝜁𝑘, large curvature parameters, 𝑘𝜎, 

493 and longer fungicide half-lives, 𝜂 approached zero or even became negative. Our 

494 results suggest that dose splitting of a solo SDHI application would increase 

495 selection for a strain with a curvature shift to the SDHI by approximately 20-35%, 

496 with smaller curvature shifts falling towards the upper end of this range.

497 Dose splitting will increase selection for resistance if it leads to a larger 

498 difference in the growth rates of the sensitive strain and resistant strain for a longer 

499 time than a single application, i.e. if it increases the overall sum of the differences in 

500 fractional reduction, ∑𝑇
𝑡=0  𝑓𝜎(𝑡) ― 𝑓𝜌(𝑡) . For an asymptote shift, the maximum 

501 difference in the growth rates of the sensitive strain and the resistant strain occurs at 

502 high fungicide doses, 𝐷(𝑡), for which the fractional reduction 𝑓𝜎(𝑡) is close to the 

503 maximum (as defined by the asymptote 𝑞𝜎) (Figure 1(c)). For a curvature shift, dose 

504 response curves for sensitive and resistant strains converge at high values of 𝐷(𝑡). 

505 The maximum difference in the fractional reduction and resulting growth rates of the 

506 sensitive strain and a resistant strain with a curvature shift occurs at intermediate 

507 fungicide dose 𝐷(𝑡) (Figure 1(d)). As discussed by Taylor & Cunniffe (2023b), the 

508 effect of dose-response convergence on selection must be considered not only at 

509 the applied dose, but across the full time span of fungicide decay. Dose splitting 

510 increases the length of time that the pathogen is exposed to intermediate fungicide 

511 doses, which therefore increases ∑𝑇
𝑡=0  𝑓𝜎(𝑡) ― 𝑓𝜌(𝑡) . The results in Figure 6 can be 

512 understood by considering how the values of 𝑘𝜎, 𝜈 and 𝜁𝑘 affect the size and 

513 duration of the difference in the growth rates of the sensitive and resistant strain, for 

514 single and split dose applications.

515 Effect of decay rate, 𝜈
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516 For both asymptote shifts and curvature shifts, 𝜂 was higher for larger values of 𝜈 

517 (Figure 6). If the decay rate is high, the effect of a single application dissipates quickly, 

518 so a split dose application is likely to double the exposure time. If the decay rate is 

519 low, the effect of a single application at full dose rate will last for longer, so there is 

520 less difference in exposure time compared to the split dose application.

521 Why does 𝜂 increase with 𝑘𝜎 for asymptote shifts?

522 For small values of the curvature parameter 𝑘𝜎 (approx. <4), the maximum reduction 

523 of the sensitive strain life cycle parameters is only achieved at a high fungicide dose, 𝐷

524 (𝑡), and the fractional reduction reduces quickly as 𝐷(𝑡) decreases (Figure A.2.2(a), 

525 Supporting Information A.2). Therefore, the higher maximum dose applied in the single 

526 application initially achieves a much higher fractional reduction than the split dose 

527 application. Larger corresponding differences in the growth rates of the resistant and 

528 sensitive strain partially counterbalance the increased selection from the increased 

529 exposure time in the split dose application. The rate of selection from either a single 

530 or split dose application is therefore relatively similar for small values of 𝑘𝜎, resulting 

531 in small values of 𝜂.

532 As 𝑘𝜎 increases, the fractional reduction remains close to the maximum 

533 fractional reduction even at lower fungicide doses ≤ 0.5 𝐷𝑀𝑎𝑥, so at lower values of 𝐷

534 (𝑡), differences in the growth rates of the resistant and sensitive strain are similar to 

535 the difference at the full dose rate (Figure A.2.2(b), Supporting Information A.2). The 

536 effect of the increased exposure time from the split dose therefore dominates at higher 

537 values of 𝑘𝜎, resulting in higher values of 𝜂.

538 Why does 𝜂 exhibit a maximum vs. 𝑘𝜎 for asymptote shifts when 𝜈 is low?

539 If 𝑘𝜎 is large and 𝜈 is low, the effect of a single application persists close to the 

540 maximum fractional reduction for a long time (Figure 2(f); Figure A.2.2(c), Supporting 
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541 Information A.2), which shifts the point at which there is a large difference in the 

542 fractional reduction from the single application and the split dose application later in 

543 the season. Since canopy senescence begins to restrict the growth rates of both the 

544 resistant and sensitive strains later in the season, the value of 𝜂 is reduced relative to 

545 the maximum at intermediate values of 𝑘𝜎 and lower values of 𝜈. However, the effect 

546 of dose splitting may still be larger than for small values of 𝑘𝜎.

547 Why does 𝜂 increase with 𝑘𝜎 more for curvature shifts than for asymptote shifts?

548 As 𝑘𝜎 increases, the dose response curve for the sensitive strain becomes more 

549 steeply curved, resulting in a decrease in the fungicide dose 𝐷(𝑡) at which the 

550 difference 𝑓𝜎(𝑡) ― 𝑓𝜌(𝑡) is maximised for a curvature shift. The larger the value of 𝑘𝜎 

551 and the smaller the value of 𝜁𝑘, the lower the dose 𝐷(𝑡) at which the difference 𝑓𝜎(𝑡) ―

552 𝑓𝜌(𝑡) is maximised (Figure 1; Figure A.2.2(d)-(f), Supporting Information A.2), as 

553 resistant strains with a small curvature shift are still well controlled at high fungicide 

554 doses.

555 For very small values of 𝑘𝜎, the maximum difference in growth rates occurs at 

556 higher values of 𝐷(𝑡) > 0.5𝐷𝑀𝑎𝑥, which may not be reached using a split dose 

557 application. The maximum difference in growth rates is reached by the higher dose 

558 rate of the single application, partially counterbalancing the increased exposure time 

559 from the split dose application. Therefore 𝜂 is small for small values of 𝑘𝜎 for a 

560 curvature shift. For larger values of 𝑘𝜎, the maximum difference in growth rates occurs 

561 at values of 𝐷(𝑡) < 0.5𝐷𝑀𝑎𝑥. A split dose application keeps 𝐷(𝑡) close to the level that 

562 maximises 𝑓𝜎(𝑡) ― 𝑓𝜌(𝑡) for longer. In combination with the effect of increased 

563 exposure time, a split dose application increases selection more for strains with a 

564 curvature shift than for strains with an asymptote shift for intermediate values of 𝑘𝜎.
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565 Why does 𝜂 become negative for small curvature shifts, large values of 𝑘𝜎 and small 

566 values of 𝜈?

567 If 𝑘𝜎 is large and 𝜁𝑘 is small, the maximum difference in growth rates occurs at very 

568 small values of 𝐷(𝑡) < 0.1𝐷𝑀𝑎𝑥 (Figure A.2.2(f), Supporting Information A.2). If the 

569 decay rate, 𝜈, is also small, low values of 𝐷(𝑡) are not reached for a split dose 

570 application until late in the season, when canopy senescence restricts the growth rates 

571 of both the resistant and sensitive strains, leading to low or even negative values of 𝜂 

572 for large values of 𝑘𝜎 combined with small values of 𝜈 and small values of 𝜁𝑘.

573 It is important to note that our results do not suggest that there would be no 

574 selection for resistance in cases where 𝜂 was close to 0 or even negative: on the 

575 contrary, selection for resistance will usually be strong in cases with large values of 𝑘𝜎 

576 and small values of 𝜈 (Figure 4), as resistance against a very effective fungicide gives 

577 a strong fitness advantage. However, in these cases dose splitting may have little 

578 effect on the strength of selection for resistance, or may even slightly decrease 

579 selection relative to a single application.

580 4. Discussion

581 Dose splitting is likely to increase selection for both target-site and non-target-site 

582 resistance. Our results suggest that the percentage increase in selection due to dose 

583 splitting, 𝜂, is likely to be particularly large for resistance mechanisms that cause a 

584 curvature shift, where the effect of the fungicide is reduced at lower concentrations but 

585 not at high concentrations. These mechanisms could include non-target-site 

586 resistance, target-site overexpression, and target-site mutations that affect fungicide 

587 competitive binding rates. Our results also support the hypothesis of van den Bosch 

588 et al. (2014a) that dose splitting will increase selection for target-site mutations that 

589 cause an asymptote shift.
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590 We show that the effects of dose splitting can be very variable for both target-

591 site and non-target-site resistance. The largest increases in selection due to dose 

592 splitting are likely to occur for fungicides with a steeply curved dose response curve 

593 (i.e. high values of 𝑘𝜎) and a relatively short half-life (i.e. high values of the decay rate, 

594 𝜈). In these cases, dose splitting should be considered high-risk for both target-site 

595 and non-target-site resistance. Our analysis focused on dose splitting of a solo MoA, 

596 whereas resistance management guidelines recommend application in mixture with 

597 other MoA; mixture may reduce selection for resistance and change the measured 

598 effects of dose splitting (Young et al., 2021). Where use of mixture requires ‘splitting 

599 and mixing’ due to limited numbers of effective MoAs for use in disease control, careful 

600 choice of mixture partners will be needed for fungicides for which dose splitting is high-

601 risk for resistance evolution.

602 We found a small range of parameter values – fungicides with a large curvature 

603 parameter and a low decay rate – for which dose splitting could reduce selection for a 

604 resistant strain with a small curvature shift. However, these parameter values are 

605 relatively unlikely for a commercial fungicide, unless a high level of persistence could 

606 be achieved without associated environmental toxicity that would prevent regulatory 

607 approval. We used SDHI fungicides as an example of a commercial MoA currently 

608 available to growers. Our results suggest that dose splitting of an SDHI fungicide 

609 applied solo will increase selection for resistance by 20-35%.

610 Our results suggest that variability in fungicide decay rates between years and 

611 sites due to differing environmental conditions is likely to contribute to the variable 

612 selection for SDH-mutants observed in field experiments on dose splitting (Paveley et 

613 al. 2020; Young et al. 2021). We modelled the effect of a 4-fold change in fungicide 

614 half-life, which is well within the maximum range observed in field conditions (Fantke 
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615 et al., 2014). Our results suggest that for a fungicide with 𝑘𝜎 =  10, the variation in 

616 decay rates could account for the variation in the percentage effect of dose splitting 

617 on selection, 𝜂, in the range 10-40% for an asymptote shift, or 0-70% for a curvature 

618 shift (Figures 6(b), 6(e)). The statistical power or field trials to detect the lower end of 

619 this range may be limited due to experimental noise, but our results confirm that dose 

620 splitting tends to increase selection for resistance.

621 There is a strong covariance between the fitted values of 𝑘𝜎, 𝑞𝜎, and 𝜈 for the 

622 SDHI fungicide, increasing uncertainty in the estimation of these parameters and the 

623 consequences of dose splitting. We also assumed that 𝑘𝜎 and 𝑞𝜎 were the same for 

624 the fractional reduction of the transmission rate and the rate of conversion from latent 

625 to infectious leaf tissue. Measures of fungicide foliar half-life for each trial, and 

626 laboratory investigation of the effects of different fungicide dose rates on life cycle 

627 parameters such as latent period, could provide valuable additional evidence to inform 

628 these parameter values.

629 In our study we assumed negligible fitness costs of fungicide resistance, which 

630 is often the case (Hawkins & Fraaije, 2018; Mikaberidze & McDonald, 2015). However, 

631 fitness costs may sometimes suppress the growth rate of the resistant strain to a level 

632 below the growth rate of the sensitive strain. This can occur in the absence of 

633 fungicide, at low fungicide doses for an asymptote shift (Mikaberidze et al., 2017), or 

634 at high fungicide doses for resistant strains with a small curvature shift. Fitness costs 

635 have been reported for some target-site and non-target-site mutations; conversely, 

636 resistant strains can also have increased virulence relative to wild-type strains 

637 (Dorigan et al., 2023).

638 We did not explicitly model polygenic resistance, where resistance is conferred 

639 by multiple genes and the degree of resistance can build up gradually over time as 
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640 resistance mutations accumulate. At the population level, this process leads to a 

641 continuous distribution of resistance phenotypes across strains, with the average 

642 levels of resistance increasing over time as selection for resistance continues (Shaw, 

643 1989; Taylor & Cunniffe, 2023a). The difference between the dose response curves 

644 of partially-resistant strains may be analogous to a small curvature shift in our model, 

645 meaning that dose splitting could strongly increase the rate of selection for polygenic 

646 resistance.

647 The variable effect of dose splitting complicates management of resistance 

648 evolving ‘concurrently’ to two or more MoA at the same time. Use of mixtures may 

649 require splitting the total dose of a fungicide across two or more applications, due to a 

650 limited number of MoA available. The balance between the effects of mixture and dose 

651 splitting on selection for resistance will change depending on fungicide properties and 

652 resistance type and strength, and the optimal strategy to slow evolution of resistance 

653 to one fungicide may not be the optimal strategy for another fungicide. The efficacy of 

654 the fungicide programme also needs to be considered and, where relevant, the effects 

655 of sexual reproduction of the pathogen.

656 Previous modelling studies found that if it is necessary to combine two high-risk 

657 fungicides in a programme, mixture rather than alternation or concurrent use will 

658 generally present the best strategy to maximise the length of time that effective 

659 disease control can be maintained (Elderfield, 2018; Hobbelen et al., 2013). However, 

660 Eldferfield (2017) found that alternation may be a better strategy against strains with 

661 a small curvature shift. Experimental evolution in vitro on sensitive isolates of Z. tritici 

662 using mixtures of high-risk fungicides showed that the success of mixture in delaying 

663 resistance depended strongly on the mixture components, and some reduced-dose 

664 mixtures selected for generalist, multi-drug resistance (Ballu et al., 2021). These 
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665 results may be explained by our finding that dose splitting increases selection more 

666 for strains with a small curvature shift – representative of non-target-site resistance – 

667 than for strains with an asymptote shift.

668 Since the balance between the effects of mixture and dose splitting on selection 

669 for resistance will differ for asymptote and curvature shifts, this could introduce trade-

670 offs between tactics to reduce selection for large, target-site, asymptote shifts and 

671 alternative tactics to limit incrementally increasing levels of resistance due to 

672 mechanisms that cause a curvature shift. These trade-offs appear to occur in weed 

673 management, where use of herbicide mixtures is associated with lower prevalence of 

674 target-site resistance, but higher prevalence of metabolic resistance (Comont et al., 

675 2020). Fungicide resistance management strategies have tended to focus on large 

676 asymptote shifts associated with target-site mutations, as these can lead to a rapid 

677 loss of fungicide efficacy, for example as experienced in QoI fungicides for multiple 

678 pathogens (Grimmer et al., 2015). Due to their large effects, target-site mutations that 

679 result in an asymptote shift are more likely to be quickly identified and studied than 

680 individual non-target-site resistance mechanisms which may be overlooked due to the 

681 small effects of each gene (Hu and Chen, 2021). However, in combination with target-

682 site resistance, non-target-site mechanisms may contribute to highly resistant MDR 

683 strains (Omrane et al., 2017). Synergistic interactions between resistance 

684 mechanisms could enhance the overall impact of non-target site resistance: for 

685 example, increased efflux reduces the cellular fungicide concentration and could 

686 therefore increase the effect of a target-site mutation that causes a partial curvature 

687 shift. Wherever possible, tactics should be chosen for their effectiveness against both 

688 target-site and non-target-site resistance.
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922 compared to a resistant strain with an asymptote shift or a curvature shift respectively. 

923 Dose response shown for a fungicide with 𝑞𝜎 = 0.75,𝑘𝜎 = 10. Solid black line: dose 

924 response of sensitive strain. Dashed orange line: 𝜁𝑞 = 50%. Dotted purple line: 𝜁𝑞 = 90

925 %. Solid orange line: 𝜁𝑘 = 50%. Dashed purple line: 𝜁𝑘 = 90%.

926 FIGURE 2: Effect of decay rate 𝜈 on the simulated fungicide dose, 𝐷(𝑡), and fractional 

927 reduction, 𝑓(𝑡), over time following single (solid black line) and split dose (blue dashed 

928 line) applications of a fungicide with 𝑞 = 0.75,𝑘 = 10. (a), (b) and (c) show 𝐷(𝑡) for 𝜈 =  

929 0.016 𝑡―1, 𝜈 =  0.008 𝑡―1 and 𝜈 =  0.004 𝑡―1 respectively, corresponding to foliar half-

930 lives of 3, 6 and 12 days respectively. (d), (e) and (f) show 𝑓(𝑡) for 𝜈 =  0.016 𝑡―1, 𝜈 =  

931 0.008 𝑡―1 and 𝜈 =  0.004 𝑡―1 respectively.
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932 FIGURE 3: Model simulation of the growth, senescence and infection by Z. tritici of the 

933 upper wheat canopy. (a) Model simulation of healthy LAI in the absence of disease 

934 (solid line) and observed green leaf area index (GLAI) measurements used for 

935 parameterisation of wheat canopy (points) (n=76, from 6 sites from Dataset 1). The 

936 simulated timings of growth stages 32, 37, 39, 61 and 75 are indicated (blue arrows). 

937 (b) Model simulation of healthy (not latently infected) LAI in the presence of Z. tritici, 

938 latently infected LAI and infectious LAI for an average untreated epidemic of STB in 

939 the UK.

940 FIGURE 4: Effect of fungicide properties and resistance type on magnitude of 

941 selection for a resistant strain. Variation in selection coefficient, 𝑠 with (a) asymptote 

942 parameter, 𝑞𝜎; (b) curvature parameter, 𝑘𝜎; (c) decay rate, 𝜈; (d) asymptote shift, 𝜁𝑞; 

943 and (e) curvature shift, 𝜁𝑘. Only one parameter varied at a time: 𝜈 =  0.008 for (a), (b), 

944 (d) and (e); 𝑞𝜎 =  0.75 for (b)–(e); 𝑘𝜎 =  10 for (a) and (c)–(e); 𝜁𝑞 =  100% for (a)–(c) 

945 and 0% for (e); 𝜁𝑘 =  0% for (a)–(d). 𝑠 measures the magnitude of selection for a 

946 resistant strain.

947 FIGURE 5: Negligible effect of asymptote parameter, 𝑞𝜎, and asymptote shift, 𝜁𝑞 on 𝜂, 

948 the percentage change in selection due to dose splitting. Variation in 𝜂 with (a) 𝑞𝜎 and 

949 (b) 𝜁𝑞 for 𝑘𝜎 =  1, 2, 5 and 10. (c) Variation in 𝜂 with 𝑞𝜎for decay rates 𝜈 = 0.004 𝑡―1, 

950 0.008 𝑡―1  and 0.016 𝑡―1. 𝜂 is measured as the percentage change in selection as a 

951 result of splitting a total fungicide dose 𝐷𝑇𝑜𝑡𝑎𝑙 over two applications of 0.5𝐷𝑀𝑎𝑥 at GS32 

952 and GS39.

953 FIGURE 6: Percentage change in selection, 𝜂, as a result of dose splitting for a range 

954 of parameter values: curvature parameter, 𝑘𝜎, decay rate, 𝑣, and levels of sensitivity 

955 shift, 𝜁𝑞 and 𝜁𝑘. Dose splitting simulated as two applications of 0.5𝐷𝑀𝑎𝑥 at GS32 and 
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956 GS39, compared to a single application of 𝐷𝑀𝑎𝑥 at GS32. (a), (b) and (c) show the 

957 effect of 𝑘𝜎 on 𝜂 for a resistant strain with an asymptote shift, 𝜁𝑞, for fungicide decay 

958 rates 𝜈 =  0.01605 𝑡―1,  𝜈 =  0.008 𝑡―1, and 𝜈 =  0.004 𝑡―1 respectively, corresponding 

959 to foliar half-lives of 3, 6 and 12 days respectively. (d), (e) and (f) show the effect of 𝑘𝜎 

960 on 𝜂 for a resistant strain with a curvature shift, 𝜁𝑘, for fungicide decay rates 𝜈 =  0.016 

961 𝑡―1, 𝜈 =  0.008 𝑡―1, and 𝜈 =  0.004 𝑡―1 respectively. Results shown for asymptote 

962 parameter 𝑞𝜎 =  0.5; the effect of 𝑞𝜎 on 𝜂 is very small (see Figure 5).
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TABLE 1: List of parameter values simulated. All combinations of 𝑞𝜎, 𝑘𝜎 and 𝜈 values 
simulated for each value of 𝜁𝑞 and 𝜁𝑘 listed.

Parameter Description Values simulated
𝐷Total

Total fungicide dose applied 
to upper leaf canopy 1, i.e. 𝐷Max

𝜃𝜌Start

Initial fraction of inoculum 𝐶 
that is resistant 0.01

𝑞𝜎
Asymptote of fungicide dose 
response (sensitive strain) 0.05, 0.1, 0.25, 0.5, 0.75, 0.8, 0.95, 1

𝑘𝜎
Curvature of fungicide dose 
response (sensitive strain)

0, 0.25, 0.5, 0.75, 1, 1.5, 2, 4, 5, 7.5, 
10, 15, 20, 30

𝜈 Decay rate (𝑡―1) 0.01605, 0.00802, 0.00401

𝜁𝑞
Asymptote shift of resistant 
strain 0, 1, 5, 10, 25, 50, 75, 90, 100

𝜁𝑘
Curvature shift of resistant 
strain 0, 1, 5, 10, 25, 50, 75, 90, 100

GS32 Timing of GS32 application
(zero-degree days) 1495

GS39 Timing of GS39 applications
(zero-degree days) 1653
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TABLE 2: Fitted parameter values. Time, 𝑡 is measured in degree days (base 0°C) 
after sowing. aEstimate based on ‘Data set 1’ from Milne et al., 2003; bShaw, 1990; 
Suffert et al., 2013; cBoixel, 2020; Eyal, 1971; dHobbelen et al., 2011b; eEstimate 
based on data from AHDB Fungicide Performance field trials; fFantke et al., 2014; 
He et al., 2016; Noh et al., 2019.

Parameter Definition Units Fitted 
value Source

𝑡0, GS31 Timing of start of growth of leaf 3 𝑡 1396 a
GS32 Timing of GS32: leaf 3 fully emerged 𝑡 1495 a
GS37 Timing of GS37: leaf 2 fully emerged 𝑡 1574 a
GS39 Timing of GS39: flag leaf fully emerged 𝑡 1653 a

𝑡𝛽0, GS61 Timing of anthesis & start of leaf 3 
senescence 𝑡 1891 a

𝑡𝛽𝑇, GS87 Timing of end of grainfill & complete 
senescence of wheat canopy 𝑡 2567 a

𝐴Max Maximum leaf area index of top three 
leaves of the wheat canopy - 4.438 a

𝛾 Growth rate of leaf area 𝑡―1 0.0082 a
𝜏 𝑡―1 0.0028 a
𝜑 𝑡―1 0.704 a
𝜔 

Coefficients controlling the rate of 
senescence over time, in relation to the 
length of time after the onset of 
senescence 𝑡―1 0.314 a

1/𝛿 Average latent period 𝑡 350 b
1/𝜇 Average infectious period 𝑡 600 c

𝐶0 
Initial density of infectious lesions on 
the lower leaves - 0.0144 a

𝜆 Rate at which 𝐶(𝑡) decreases 𝑡―1 0.00897 d
𝜀0 Transmission rate - 0.0211 a
𝑧 Number of zero-degree days per day 𝑡 14.4 a

𝑞𝜎 Asymptote parameter for an SDHI 
fungicide (against sensitive strain) - 0.569 e

𝑘𝜎 Curvature parameter for an SDHI 
fungicide (against sensitive strain) - 9.9 e

𝜈 Decay rate for an SDHI fungicide 𝑡―1 0.00802 f
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