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1. INTRODUCTION

A methodology to predict grain yield with incom-
plete weather data, based on the use of the Sirius crop
simulation model (Jamieson et al. 1998b, Jamieson &
Semenov 2000, Lawless et al. 2005) and the LARS-WG
stochastic weather generator (Semenov & Barrow
1997, Semenov et al. 1998, Semenov & Brooks 1999),
was described in Lawless & Semenov (2005). Predic-
tion of grain yield using a crop simulation model
requires weather input for the growing season. When
observed weather is available only for the beginning of
the growing season, then ‘synthetic weather’ should be
generated for the remaining part of the season. The
approach described in Lawless & Semenov (2005) sug-

gested use of a stochastic weather generator for this
purpose. A stochastic weather generator, calibrated for
a selected site using historical weather, is capable of
generating synthetic daily weather that is statistically
similar to observed weather. This means that a range
of statistical tests will show no significant differences
between historical and synthetic weather. Using the
generated ensemble as an input to a crop simulation
model, the site-specific distribution of the final grain
yield and other crop characteristics can be obtained. 

Weather generator time series are based exclusively
on the analysis of historical data and therefore incorpo-
rate substantial uncertainty associated with historical
climatology. However, availability of specific infor-
mation about future weather for the current growing
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season is likely to bring improvement in yield predic-
tions. One such possibility explored in this paper is the
use of seasonal forecasts. Seasonal forecasts, based on
coupled ocean–atmosphere climate models, are now
available at a number of operational meteorological
centres around the world (Palmer et al. 2004a, Saha
et al. 2006). Because signals arising from atmo-
sphere–ocean coupling processes are intrinsically
chaotic and sensitive to initial conditions (Palmer 1993),
an ensemble of forecasts with individual members dif-
fering by small perturbations to the starting conditions
of the atmosphere and oceans is used (Palmer 2001,
Palmer et al. 2005). Seasonal forecasts are not suitable
for direct use in crop simulation models because of
model biases and mismatch of spatial and temporal
scales (Challinor et al. 2005, Doblas-Reyes et al. 2006,
Ines & Hansen 2006). In order to be used in yield pre-
dictions, seasonal forecasts require downscaling to a
resolution suitable for crop simulation models. Down-
scaling can be achieved by linking a seasonal forecast
with a weather generator in a fashion similar to that
described by Barrow & Semenov (1995), Wilks (2002),
Hansen & Indeje (2004), and Feddersen & Andersen
(2005). 

The aim of our study was to investigate whether sea-
sonal forecasts can improve yield predictions in areas
where wheat is commonly grown. We selected 2 sites
for the study: Debrecen, Hungary and Lincoln, New
Zealand. The choice of sites was dictated by several
requirements: (1) sites should represent areas where
wheat is a major crop; (2) both models, Sirius and
LARS-WG, must be well validated for these sites; (3)
seasonal forecasts should demonstrate reasonable per-
formance at these locations; and (4) daily observed
weather should be available for the period 1979–2001.
All these requirements were satisfied for the selected
sites. The Sirius wheat simulation model and the
LARS-WG weather generator have been validated for
both sites (Jamieson et al. 1998b, Semenov et al. 1998,
Jamieson et al. 2000, Jamieson & Semenov 2000, Law-
less et al. 2005). The European Centre for Medium-
range Weather Forecasting General Circulation Model
(ECMWF GCM) was used for seasonal dynamical fore-
cast in our study and its performance at the 2 selected
sites was comparable with performance in neighbour-
ing regions. Mean Square Skill Score (MSSS) of the
ECMWF GCM model has values for 2 m temperature
between –0.1 and 0.1 in the Debrecen region, which
are similar or higher than values in most regions of
Western Europe. (www.ecmwf.int/research/demeter/
d/charts/verification). The MSSS values for 2 m temper-
ature in Lincoln are higher than in Debrecen, between
0.1 and 0.2. MSSS values for precipitation are low for
Western Europe and New Zealand, ranging between
–0.8 and –0.6.

2.  PERFORMANCE OF SEASONAL FORECASTS

We used a subset of seasonal predictions from
DEMETER, i.e. a series of seasonal ensemble predic-
tions from the ECMWF GCM model (Palmer et al.
2004b, Palmer et al. 2005). Each forecast ensemble
consisted of 9 members, each 6 mo long. Ensembles
were produced 4 times per year starting on 1 February,
1 May, 1 August and 1 November retrospectively for
1980–2001. The spatial resolution of the ECMWF atmo-
spheric model was 1.8 × 1.8° (latitude × longitude). Pre-
dictions consist of monthly anomalies of climatic vari-
ables with respect to 1980–2001 modelled averages. 

We used 3 statistics to compare the observed
meteorological variables with the seasonal forecasts:
anomaly ranges, temporal correlation and root mean
squared error (RMSE). For a seasonal forecast, an
anomaly range ARm,y was defined for a selected month
m and a selected year y, as the difference between
maximum and minimum values within an ensemble

ARm,y =  (max – min){Ak
m,y, k ≤ N } (1)

where Ak
m,y is the kth ensemble member for the month

m and the year y and N is the size of ensemble (in our
case N = 9). For observed weather only one ‘realiza-
tion’ of weather is available for each year and the
observed range ORm is defined for a selected month m
as a difference between monthly maximum and mini-
mum values over the whole range 1980–2001: 

ORm =  (max – min){Om,y, 1980 ≤ y ≤ 2001} (2)

where Om,y is a monthly anomaly for the month m and
the year y. We should emphasize that model anomalies
were computed with respect to the model ensemble
mean and observed anomalies with respect to the
mean observed weather for 1980–2001. Observed
ranges represent uncertainty in the historical climate;
model anomaly ranges represent uncertainty in sea-
sonal forecasts associated with imprecise knowledge
of initial boundary conditions and model parameters.
We should expect that a skilful seasonal forecast for a
given year will reduce the uncertainty embedded in
historical climatology, i.e. ARm,y ≤ ORm.

The temporal correlation was defined as a correla-
tion between the ensemble mean of model anomalies
and observed monthly anomalies for the 6 mo forecast
period. In a similar way, RMSE was calculated be-
tween the ensemble mean of model anomalies and ob-
served monthly anomalies for the 6 mo forecast period. 

We calculated the above statistics for monthly Tmax
and monthly total precipitation at 2 locations, Debrecen
and Lincoln. Observed ranges over the period of
1980–2001 in total monthly precipitation (Fig. 1a,c) and
ranges in mean monthly Tmax (Fig. 2a,c) are presented
for the 6 mo from February to July. We calculated model
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anomaly ranges for the forecast, which started on the 1st
of February for each year and plotted them in Figs. 1 & 2.
For precipitation in Lincoln, observed ranges are larger
than anomaly ranges for the seasonal forecast. As a
result, we can expect a reduction in uncertainty when
generating precipitation using the seasonal forecast data
(Fig. 1c). In Debrecen, the situation is different, i.e.
anomaly ranges derived from the seasonal forecast
dataset are in some cases larger then those from the
observed dataset (Fig. 1a). RMSE at both sites ranges
between 15 and 60 mm and the mean of correlation co-
efficients is close to 0 (Fig. 1b,d). We also computed
RMSE and correlation coefficients between an indi-
vidual ensemble member and observed data (not pre-
sented here). In this case the correlation coefficient did
not improve and RMSE was even higher. The relatively
high values for RMSE could be explained by the lack
of correlation between forecasted and observed data.

The mean of the observed range of maximum
monthly temperatures for 1980–2001 in Debrecen was
9.0°C with the maximum range of 13.7°C in February.
Ranges for model anomalies of Tmax are substantially
lower than ranges calculated for observed temperature
only for the 2 first mo, February and March. For the
remaining months, model anomaly ranges are similar
to observed ranges (Fig. 2a). For Lincoln, Tmax ranges
for model anomalies are consistently lower than ranges
for observed anomalies. Correlation coefficients and
RMSE for Tmax anomalies are presented in Fig. 2b,d
for Debrecen and Lincoln, respectively. In Lincoln
the mean RMSE is almost half of the mean RMSE
in Debrecen, i.e. 1.3 and 2.2, respectively, and the
mean correlation coefficient at both sites is 0.2. Based
on these statistics, the ECMWF GCM demonstrated
better skill in predicting Tmax in Lincoln than in
Debrecen.
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In conclusion, the ECMWF GCM skill in modelling
precipitation is limited at both sites. Although in Lin-
coln the ranges of model anomalies for precipitation
are lower than for observed anomalies, the prediction
accuracy is relatively poor (average RMSE ~33 mm).
The skill in predicting Tmax is better than in predict-
ing precipitation.

3.  LINKING SEASONAL FORECAST WITH A
WEATHER GENERATOR

The ECMWF seasonal forecast was provided as an
ensemble of monthly anomalies of meteorological vari-
ables at a coarse spatial resolution. To be useful for a
variety of applications,including agricultural and hydro-
logical models, monthly anomalies need to be down-
scaled to site-specific daily weather. One approach for
achieving this makes use of a stochastic weather gen-
erator. Weather generator parameters for a site can be
altered using anomalies from the seasonal forecast and

a new set of parameters can be used to generate
weather time series with statistical properties similar
to those of the seasonal forecast (Wilks 2002, Meza &
Wilks 2004, Feddersen & Andersen 2005).

In the present study, we use the LARS-WG stochastic
weather generator (Semenov et al. 1998, Semenov &
Brooks 1999). LARS-WG produces synthetic daily time
series of maximum and minimum temperature, precip-
itation and solar radiation. Precipitation occurrence is
modeled using the series approach (Racsko et al. 1991)
rather than the Markov chain model used in the
WGEN weather generator (Richardson 1981). Appen-
dix 1 gives a more technical description of LARS-WG.
Given several years of observed weather at a site s,
LARS-WG computes a set of site-specific parameters
WGs. These parameters are used by LARS-WG to
generate synthetic weather time series of a required
length with statistical properties similar to the
observed weather at a site. Information about future
weather, e.g. a seasonal forecast, can be used to
alter WGs parameters to allow generation of weather
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series with new statistical properties similar to that of
the future climate (Wilks 1992, Barrow et al. 1996,
Semenov & Barrow 1997, Wilks 2002). For a seasonal
forecast, we assume that every member SFy,k from the
ensemble Ey = {SFy,k,k = 1,...,N } is equally probable (Ey

is the seasonal forecast ensemble and y is a year). We
use each individual member of the seasonal forecast
ensemble SFy,k to adjust a set of parameters WGs, pro-
ducing a new set WGs,y,k specific to the site s and the
member SFy,k:

WGs,y,k =  adjust (WGs, SFy,k) (3)

The adjust (WGs, SFy,k) procedure is described in
Appendix 1. For site s and year y we calculate a
megaset WGSF

s,y = {WGs,y,k,k = 1,...,N }; each WGs,y,k cor-
responds to the ensemble member SFy,k. To generate
daily weather series of a length of Y years for the site s
and the year y, we select a random sequence of indices
{ki ∈{1,...,N }, i = 1,...,Y }, where ki = randi (N) are inde-
pendent and uniformly distributed values from
{1,...,N }. Then for each year i (i = 1,…,Y), we pick a set
of parameters WGs,y,ki

from the megaset WGSF
s,y and use

WGs,y,ki
to generate one year of daily weather. The pro-

cedure is repeated Y times until we generate Y years of
daily weather specific to the site s and the seasonal
forecast ensemble Ey.

4.  YIELD PREDICTIONS

A brief description of the Sirius wheat simulation
model, including Sirius parameterization for soils and
cultivars used in the present study, is given in Appen-
dix 2. Initially we ran Sirius with the fully observed
weather and computed the yield, which we called ‘the
model yield’. It is important to note that in our pre-
diction with incomplete weather, we compare pre-
dicted yields with the model yield, not with the
measured yield. We present some results on how well
Sirius can simulate measured yields in Appendix 2.

Where observed weather was not available for the
whole duration of the growing season, we generated
scenarios which consisted of a mixture of observed
weather from the beginning of growing season until a
specific date D and synthetic weather from that date D
until the end of the growing season generated by
LARS-WG. For our analysis, 2 dates—the early D1 and
late D2 forecast dates—were selected for each site,
coinciding with the beginning of 6 mo ECMWF fore-
casts (i.e. 1st February and 1st May at Debrecen; and
1st August and 1st November at Lincoln, to account for
the austral seasons). For each site s and each date D we
created 2 scenarios, WGs and WGSF

s,y: (1) in the WGs

scenario, observed weather was used up to the D date,
and synthetic weather thereafter generated by LARS-

WG using WGs parameters for the site, and (2) in the
WGSF

s,y scenario, observed weather was used up to the
D date, and synthetic weather generated by LARS-
WG, using parameters adjusted by the seasonal fore-
cast WGSF

s,y (as described in Section 3). Each generated
scenario consisted of 100 yr of daily weather, which
was used as an input to Sirius to calculate the distribu-
tion of yield. Results of simulations are presented in
Fig. 3a for the D1 date and 3b for the D2 date for De-
brecen and in Fig. 4a for D1 and 4b for D2 for Lincoln.
Following Lawless & Semenov (2005), we used the
mean yield, calculated for 100 yr of weather, as a pre-
dictor of model yield, i.e. the yield calculated by Sirius
using fully observed weather. In Figs. 3 & 4 we
included 99% confidence intervals (CIs) for the mean
values. It has been shown for Sirius that even small
random perturbations of the input and/or model para-
meters, e.g. 0.5% variation of the parameter value, can
lead to yield variations up to 0.25 t ha–1 (Brooks et al.
2001). Therefore, if the predicted yield falls within
±0.25 t ha–1 of the model yield, then we consider this
prediction successful.

CIs for the predicted mean yields could be consid-
ered as an indicator of prediction accuracy, and we
expect them to be smaller for the D2 date. At Lincoln,
CIs for the D2 date were about 50% smaller than for
the D1 date (Fig. 4); in comparison, at Debrecen, CIs for
the D2 date were only 15 to 20% smaller (Fig. 3). As
expected, correlation coefficients between yields sim-
ulated with observed weather and mean yields simu-
lated with WGS and WGSF

s,y scenarios were higher for
the D2 date than for the D1 date (Table 1). RMSE
decreased for the D2 date at Debrecen for both the WGs

(12%) and WGSF
s,y (21%) scenarios and at Lincoln only

for the WGs (12%) scenario. Correlation coefficients
between yields were noticeably higher at Lincoln and
tended to increase for the D2 date. Comparing correla-
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Table 1. Correlations with significance levels and RMSE be-
tween yields, simulated with observed weather, and mean
yields, simulated with WGs and WGSF

s,y scenarios, for 1980–2001
at Debrecen and Lincoln for early and late forecast periods

Forecast Ensemble Correlation with RMSE
period type significance level

Debrecen
Feb–Jul WG –0.35 (0.100)0 1.28

SF –0.05 (0.384)0 1.40

May–Oct WG 0.48 (0.025) 1.13
SF 0.45 (0.037) 1.10

Lincoln
Aug–Jan WG 0.37 (0.084) 1.12

SF 0.46 (0.032) 1.17

Nov–Apr WG 0.62 (0.002) 0.98
SF 0.46 (0.032) 1.19
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tions and RMSE from Table 1, we conclude that the use
of WGSF

s,y scenarios did not improve yield predictions
compared with predictions based on historical clima-
tology, i.e. WGs scenarios, at the 2 sites selected for
the study. 

Detailed analysis at Debrecen showed that there are
several years which produced model yield outliers
(high model yields for the years 1980, 1984, 1985 and
low model yields for 1990 and 2000). Yield predictions
for these years were poor for both WGs and WGSF

s,y

scenarios, and for both starting dates, D1 and D2

(Fig. 3a,b). These years are likely to be meteorologi-
cally unusual, making it difficult for the ECMWF GCM
model to make an accurate prediction.

Distributions of simulated yields for these years (see
above paragraph) for the D2 date are presented in
Fig. 5. In most cases model yields are situated near the
end of whiskers for both WGs or WGSF

s,y yield distribu-
tions, or even outside box-and-whisker plots. For all
5 yr the WGSF

s,y distributions have larger variances (on
average 40% more) than variances for the correspond-
ing WGs distributions. For example, for 1990 the stan-
dard deviation of WGSF

s,y yield distribution is 1.69 t ha–1

compared with 0.93 t ha–1 for the WGs yield distribu-
tion.

For the year 2000 the model yield was especially low
at 5.15 t ha–1. Wheat growth was severely limited by
water availability during May–August. Fig. 6a presents
cumulative monthly precipitation anomalies for 2000
for observed weather (solid line) and for 9 members of
the ensemble as predicted by the ECMFW GCM with
the start date 1 May 2000. In 2000 during May–August

the crop received substantially less precipitation than
was expected on average. However, the majority of the
ensemble members predicted relatively close-to-nor-
mal cumulative anomalies of precipitation for these
months, and only 2 members showed consistently low
amounts of precipitation. As a result, the mean WGSF

s,y

yield was 7.38 t ha–1 with the large standard deviation
1.69 t ha–1.
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The prediction based on the WGs scenario was even
worse for 2000. The observed amount of precipitation
in May–August 2000 was very low and extremely
unlikely. Fig. 6b shows observed cumulative monthly
precipitation anomalies starting from 1 May, for
1979–2001. The cumulative anomaly for 2000 was the
lowest of the whole set. The approach based on WGs

scenarios is, in principle, not effective in making
accurate predictions for such extreme situations.
The only way to improve the yield prediction for
this quite unusual year using the WGs approach would
be to increase the amount of observed weather avail-
able (shifting the D2 date to the later date in the
season).

5.  CONCLUDING REMARKS

Dynamic seasonal forecast at the 2 selected locations
has not improved yield predictions compared with an
approach based on historical climatology. This conclu-
sion is likely to be valid at other locations where the
seasonal forecast has similar skill. It is known that
seasonal forecast skill, expressed as the ranked proba-
bility score (RPS) (Epstein 1969), varies significantly
from area to area (Wilks & Godfrey 2002). For example,
it was shown for the probabilistic seasonal forecast of
the International Research Institute for Climate Predic-
tion (IRI), that the RPS skill score is significantly higher
for latitudes less than 30° compared with latitudes
more than 30° for temperature and precipitation for
Northern and Southern Hemispheres (Wilks & Godfrey
2002). A similar conclusion is valid for other seasonal
forecast models (Saha et al. 2006). We have tested
our approach only at 2 locations with latitudes 47.6° N
and 43.6° S, where the skill of seasonal forecast is
generally low.

We selected 2 sites, Debrecen and Lincoln, based on
our previous study, which investigated the lead time
for predicting yield using WGs scenarios at various
locations (Lawless & Semenov 2005). It was shown,
that for these sites, advanced prediction of grain yield
is difficult and the lead time for predicting yield with
probability of 0.8 using the WGs approach is about 45 d
before maturity for both sites (in comparison, at a dif-
ferent site—Rothamsted, UK—the lead time was 75 d,
Fig. 7). At Debrecen average maturity date for our sim-
ulations with WGs and WGSF

s,y scenarios was at the
beginning of August and at Lincoln average maturity
date was at the beginning of January. For the D2 sce-
narios, we attempted to predict yield approximately
90 d before maturity at Debrecen and 60 d before
maturity at Lincoln. The probability of successful yield
prediction for these dates—based on WGs scenarios—
is low: 0.3 for Debrecen and 0.45 for Lincoln (see

Fig. A1 in Appendix 2). Unfortunately, the use of WGSF
s,y

scenarios, based on the seasonal forecast, did not
improve the accuracy of yield predictions (Figs. 5b, 6b
and Table 1). 

We used a subset of the DEMETER seasonal fore-
casts. An alternative would be to use the full DEME-
TER multi-model seasonal forecast, which accounts for
modelling uncertainties that arise from fundamental
choices made when building the GCM, as well as from
the parameterization of processes unresolved at the
grid scale (Hagedorn et al. 2005). In a study on the pre-
diction of malaria epidemics, for example, a seasonal
forecast based on multi-model ensembles was used
(Thomson et al. 2006). A system was developed that
helped predict malaria risk in Botswana, adding up to
4 mo lead time over malaria warnings issued with
observed data. 

Some other methods for linking yield predictions
with dynamical seasonal forecasts—including selec-
tion of probability-weighted historic analogs, and sta-
tistical prediction by non–linear regression and sto-
chastic disaggregation—were examined for prediction
of field-scale maize yields in semi-arid Kenya as simu-
lated by the CERES–maize crop model with observed
daily weather (Hansen & Indeje 2004). Kenya is situ-
ated on the equator between latitudes 5° N and 5° S,
where skills of seasonal forecasts are much better, and
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Fig. 7. Cumulative distribution functions of lead time for
Sirius predictions of grain yield at 3 sites: Rothamsted, UK,
Debrecen, Hungary and Lincoln, NZ. For each observed year
the lead time for yield prediction is computed as the maxi-
mum number of days before maturity of unobserved weather
which has no affect on the accuracy of predictions (the 95%
confidence intervals of the mean yield estimate stays within
the tolerance range of the yield simulated with full observed 

weather). For details, see Lawless & Semenov (2005)
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all methods showed potential for translating seasonal
climate forecasts into predictions of crop responses.
Positive examples utilising seasonal forecasts for
regional yield predictions for wheat in Australia and
groundnut in India have also been reported (Hansen et
al. 2004, Challinor et al. 2005)

Another example of an application of the seasonal
forecast was reported in Cantelaube & Terres (2005),
where authors used the DEMETER seasonal forecast to
improve predictions of the Joint Research Centre crop
growth modelling system at the level of administrative
regions in Europe. One of their conclusions was that
‘reliable crop yield predictions can be obtained using
an ensemble multi–model approach’. However, this
conclusion was based on the analysis of only 4 growing
seasons, 1995–1998. Our analysis suggests that they
might have just been lucky selecting these years. In
our study, WGSF

s,y yield predictions outperformed WGs

predictions at Debrecen for 1995–1998 (Fig. 5b), but
not for the whole period 1980–2001.
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Appendix 1. A description of the LARS-WG stochastic weather generator

LARS-WG is based on the series weather generator
described in (Racsko et al. 1991) with a detailed descrip-
tion being given in Barrow & Semenov (1995), Semenov et
al. (1998), and Semenov & Brooks (1999). LARS-WG pro-
duces synthetic daily time series of maximum and mini-
mum temperature, precipitation and solar radiation. The
weather generator distinguishes dry and wet days
depending on whether or not the precipitation is >0. Pre-
cipitation is modelled using semi-empirical probability dis-
tributions for each month for the lengths of series of wet
and dry days and for the amount of precipitation on a wet
day. A semi-empirical distribution, E = {e0, ei; hi, i =
1,.…,10}, is a histogram with 10 intervals, [ei –1,ei), where
ei –1 < ei, and hi denotes the number of events from
the observed data in the i th interval. In the case of pre-
cipitation, e0 = 0. Minimum temperature, Tmax and radia-
tion are related to the amount of cloud cover, and so
LARS-WG uses separate wet and dry day distributions
for each of these variables. The normal distribution is
used for temperature variables with the mean and stan-
dard deviation varying daily according to finite Fourier
series of order 3. Time auto-correlations used for mini-
mum and Tmax are constant through the year for the par-
ticular site and the cross-correlation of the normalized
residuals from the daily mean is pre-set at 0.6. Semi-
empirical distributions with equal interval size are used
for solar radiation.

The absolute monthly anomaly for each individual
members of the seasonal forecast ensemble SF {pr,tn,tx,rd }
(pr: precipitation; tn, tx: Tmin and Tmax; rd: radiation)
is defined as the deviation of monthly values of the
member from the average values over the ensemble and
over all years for which seasonal forecast was available.
The ECMWF GCM seasonal forecast was available for
22 yr (1980–2001) and an ensemble size for each year

is 9. For our study we used anomalies for monthly total
precipitation, minimum and Tmax and radiation. 

To adjust the LARS-WG semi-empirical distributions for
precipitation and radiation we stretch the distribution,
changing the mean value according to the corresponding
anomaly. The end points of the adjusted distribution are
given by Ei and Hi respectively:

Ei = ρei

Hi = hi (i = 0, 1,...,10)

where ρ is a relative predicted change in mean value.
Anomalies from the seasonal forecast ensemble SF.pr and
SF.rd are given as absolute changes, therefore they were
converted into relative anomalies by calculating monthly
average precipitation and radiation from observed weather
for a site. On a number of occasions, negative anomalies for
precipitation have absolute values larger than the observed
monthly mean; in these cases, they were limited to reduce
the monthly mean value by 75%.

The shape of the daily temperature distributions for wet
and dry days are fixed as the normal distribution with the
values of mean and standard deviation changing daily and
calculated by a Fourier series ƒ(t) of order 3, so that

where t = Julian day, ω = 2π�365, aj and bj = Fourier coeffi-
cients.

To adjust a Fourier series for temperature, we calculated
new monthly mean temperature values by adding observed
monthly means and corresponding monthly mean anom-
alies, SK.tn or SK.tx, and recalculating Fourier coefficients
for new mean values.

The auto correlation coefficients (for minimum and Tmax
and radiation) were kept unchanged.

ƒ( ) cos( ) sin( )t a a j t b j tj j
j

= + +( )
=

∑1
2 0

1
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ω ω



Semenov & Doblas-Reyes: Seasonal forecast for yield prediction 81

Appendix 2. A description of the Sirius wheat simulation model

The Sirius wheat simulation model was used for quantify-
ing the utility of seasonal forecasts for predicting grain
yields (Jamieson et al. 1998b, Brooks et al. 2001, Lawless et
al. 2005). Sirius calculates biomass from intercepted photo-
synthetically active radiation (PAR) and grain growth from
simple partitioning rules, on a daily basis. Leaf area index
(LAI) is developed from a simple canopy model (Lawless et
al. 2005). Phenological development is calculated from the
mainstem leaf appearance rate and final leaf number, with
the latter determined by responses to daylength and vernal-
isation (Jamieson et al. 1998a). Effects of water and N
deficits are calculated through their influences on LAI
development and radiation-use efficiency (Jamieson &
Semenov 2000). Despite there being no calculation of tiller
dynamics, the model accurately simulates the behaviour of
crops exposed to a wide range of conditions. The model was
calibrated and validated for several modern wheat cultivars
and tested in many environments and climates, including
Europe, NZ, USA and Australia, and under conditions of
climate change (Fig. A1) (Wolf et al. 1996, Jamieson &
Semenov 2000, Jamieson et al. 2000, Ewert et al. 2002). 

Sirius requires certain data as input. It needs daily
weather data (minimum and Tmax, radiation, and rainfall).
It also requires a set of cultivar parameters, which includes
phyllochron, maximum canopy area, vernalisation rate
parameters, daylength sensitivity and grainfill kinetic
parameters. Sirius requires a description of the soil, in-
cluding moisture retention properties of the soil, since they
directly affect both water and nitrogen availability. And
finally Sirius needs a management file, which includes
sowing date, N applications and irrigations, and initial
inorganic N.

In the present study, we used cultivar parameters repre-
senting cultivar Mercia for Debrecen and cultivar Batten for
Lincoln, which were calibrated against agronomic experi-
mental data from the UK and New Zealand. The manage-
ment description consisted of a sowing date of 10th Novem-
ber for Debrecen and 10 May for Lincoln with an initial
amount of inorganic N in the soil of 100 kg ha–1, a single
mineral N application of 200 kg ha–1 3 mo after sowing. The

same soil description was used for both sites, corresponding
to a Lincoln shallow soil. The soil has an available water
capacity (AWC) of 135 mm with a percolation constant of
0.3 d–1 and saturated moisture content and drained upper
and lower limits of 44, 30 and 12% respectively over the
whole profile. The initial inorganic N was described as
being split over a 0.75 m profile, 80% in the top 0.25m, 10%
in the mid 0.25 m and the remainder in the bottom 0.25m.
Organic N content was 10 t ha–1 in Debrecen and 5 t ha–1 in
Lincoln with mineralization constants of 0.07 and 0.14 (kg
mineral N) (t organic N)–1 ha–1 d–1, for Debrecen and Lin-
coln, respectively.
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Fig. A1. Comparison between Sirius simulated and ob-
served wheat yields in diverse environments: rainshelter
experiment, Lincoln, NZ; nitrogen experiment, Brimstone,
UK; and nitrogen and water experiment, Maricopa, USA


