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Abstract 
Over the last few years, the question of whether soil carbon sequestration could contribute 
significantly to climate change mitigation has been the object of numerous debates. All of these 
debates so far appear to have entirely overlooked a crucial aspect of the question. It concerns 
the short-term mineralization kinetics of fresh organic matter added to soils, which is 
occasionally alluded to in the literature, but is almost always subsumed in a broader modelling 
context. In the present article, we first summarize what is currently known about the kinetics 
of mineralization of plant residues added to soils, and about its modelling in the long run.  We 
then argue that in the short run, this microbially-mediated process has important practical 
consequences that cannot be ignored. Specifically, since at least 90% of plant residues added 
to soils to increase their carbon content over the long term are mineralized relatively rapidly 
and are released as CO2 to the atmosphere, farmers would have to apply to their fields 10 times 
more organic carbon annually than what they would eventually expect to sequester. Over 
time, because of a well-known sink saturation effect, the multiplier may even rise significantly 
above 10, up to a point when no net carbon sequestration takes place any longer. The 
requirement to add many times more carbon than what one aims to sequester makes it 
practically impossible to add sufficient amounts of crop residues to soils to have a lasting, non-
negligible effect on climate change. Nevertheless, there is no doubt that raising the organic 
matter content of soils is desirable for other reasons, in particular guaranteeing that soils will 
be able to keep fulfilling essential functions and services in spite of fast-changing 
environmental conditions. 
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Introduction 

Amidst eerily orange skies caused by vast wildfires sweeping though California, Greece, and 
Siberia, unprecedented droughts in many parts of the world, devastating floods in Belgium, 
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Germany and the U.S., and ice sheets in Greenland and at the poles disappearing much faster 
than predicted, the Intergovernmental Panel on Climate Change (IPCC) has recently released 
the first part of its eagerly awaited 6th Assessment Report. One of its key messages is that it is 
becoming extremely urgent to take drastic action to prevent global heating from reaching the 
1.5C threshold beyond which one should expect irreversible “tipping points” and severe 
exponential damage to the environment. In the worrisome “race against time” with which we 
are faced, governments have tended so far to be painfully slow at adopting measures to reduce 
greenhouse gas emissions, prompting some researchers to devise alternative approaches that 
currently seem politically or economically more palatable.  

In that context, a large body of literature has been devoted in the last 2 decades to the 
removal of carbon dioxide from the atmosphere via carbon sequestration in soils, in particular 
through the incorporation of fresh organic matter (e.g., crop residues, green manure). The 
associated agricultural practices are broadly referred to as “regenerative” or “conservation” 
agriculture. The economic feasibility of this approach, as well as the extent to which it could 
remove enough carbon from the atmosphere to have an effect on climate change in the long 
run, have been the object of intense debates among soil researchers in the last few years (e.g., 
Powlson et al., 2011; White and Davidson, 2016a,b; Sanderman et al., 2017; van Groeningen et 
al., 2017; Rumpel et al., 2018; Amundson and Biardeau, 2018, 2019; Poulton et al, 2018; Baveye 
et al., 2018a; Loisel et al., 2019; Baveye et al., 2020; Amelung et al., 2020; Ranganathan et al., 
2020).  

A striking feature of these debates, and particularly of those concerning the reaction of 
farmers toward proposed soil carbon sequestration schemes, is that a crucial aspect of the 
whole topic appears to have been so far entirely overlooked. This “blind spot” or “untold 
story” concerns the short-term mineralization kinetics of fresh organic matter added to soils, 
which is occasionally alluded to in the literature, but almost always in a broader modelling 
context. However, this aspect has important practical consequences that we shall analyse in 
detail below, for the very first time as far as we are aware. Before we get to the gist of this 
article, it is useful to set the stage to first review in some detail the relevant background 
concerning what is currently known about the mineralization of fresh organic matter, and how 
this information has been used in models. 

Mineralization kinetics: Patterns and inherent complexity 

The scholarly literature provides a wealth of information concerning the temporal dynamics 
following the addition to soils of individual inputs of fresh organic residues, comprising a 
combination of any above-ground residues not removed (e.g., cereal straw), stubble or stover, 
roots,  and root exudates. These residues can result from agricultural practices in the field 
itself, as well as be derived from plants grown elsewhere. Starting with Jenny (1941), 
researchers have for decades gathered extensive data on the topic, not only in temperate 
climates, but also in the tropics and in arid regions (e.g., Hénin and Dupuis, 1945; Smith et al., 
1951; Laudelout and Meyer, 1951; Hans and Evans, 1957; Hénin et al., 1959; Jenkinson, 1965, 
1971, 1977, 1990; Jenkinson and Ayanaba, 1977; Jenkinson and Rayner, 1977; Gonzalez and 
Sauerbeck, 1982; Mann, 1986; Blet-Charaudeau et al., 1990; Laudelout, 1993; Poeplau et al., 
2011; Soudi et al., 2020; Smith et al., 2020; Wieismer et al., 2020; Bhattacharyya et al., 2021). The 
method of choice in much of this research has been to label organic matter isotopically with 
either 14C or 13C, then monitor the progressive decay of a single batch of that material over 
time after its incorporation into soils. The general picture that emerges from this work, 
illustrated for temperate-zone soils in Figure 1, is that the largely microbially-mediated 
mineralization of fresh organic matter added to soils typically exhibits an L-shaped pattern, 
which can be described mathematically by a first-order kinetic equation, or a set of such 
equations associated with different classes of organic matter. Overall, if one disregards the 
somewhat arbitrary split of organic matter into “pools”, the message of Figure 1 is that 



  

mineralization tends to be very intense soon after incorporation of organic matter into soils, 
then progressively slows down until one reaches a stage where little further mineralization 
occurs, and the organic matter that remains is, if not “sequestered”, at least stabilized and no 
longer accessible to either microorganisms or their exoenzymes (Dungait et al., 2012). This is 
why the so-called stabilized pool accumulates and accounts for the largest proportion of 
organic carbon in soil. This model, which is based on observations of mass loss or decay 
following a single addition of organic residues, does not reveal turnover within the stabilized 
fraction but it does accurately convey the kinetics of materials associated with different states 
of decay. 

In Fig. 1, this sequence of events is depicted as taking place over a 30-year span. Half of 
the added organic input is mineralized after a little over a year, 80% is gone after 7 years, and 
the amount of organic matter remaining after 30 years is only one tenth of that applied. In 
some cases, even in temperate regions, mineralization occurs much faster. Jenkinson (1990), 
for example, reported that in the case of a sandy soil in the United Kingdom containing 10.7% 
clay, left fallow after incorporation of labelled ryegrass residues, 65% of the ryegrass was 
mineralized within the first 6 months, with only 10% of the 14C label still present after 10 years. 
Intuitively, one would expect that in regions of the world where mean annual temperatures 
are higher than in temperate zones and therefore microbial activity is enhanced, 
mineralization would be even more rapid. Indeed, in a soil in Ibadan (Nigeria) with a mean 
annual temperature of 26C, Jenkinson (1990) reported that 90% of labelled ryegrass 
incorporated into the soil decomposed after a mere 5 years. 

Aside from soil temperature and hydrology, which clearly influence the rate of 
mineralization of organic matter, many other factors also exert an effect on the kinetics of the 
process. Wiesmeier et al. (2019) and Basile-Doelsch et al. (2020) have reviewed some of these 
additional factors in detail. They include the nature (biodegradability) of organic matter, the 
partial pressure of oxygen, soil particle size, mineralogy of the soil solid particles, soil pH and 
the nature of ions in the soil solution, the availability and abundance of N, P, and S, microbial 
and faunal biodiversity, as well as biotic and abiotic interactions. The latter occur for example 
in the priming process, when root exudates promote carbon loss by releasing organic 
compounds from protective association with minerals, or when changes affecting the 
composition of exchangeable cations on soil colloids influence the retention of organic matter 
(e.g., Julien and Tessier, 2021; Possinger et al., 2021). Broadly speaking, interactions among 
factors influencing the kinetics of mineralization of organic matter seem to be the rule (Cotrufo 
et al., 2015), and the resulting, daunting complexity of the system has so far hindered 
researchers’ attempts to quantify the effect of individual factors (Basile-Doelsch et al., 2020). 
In order to improve the still relatively high uncertainty associated with predictions of 
mineralization kinetics, some researchers (see review in Baveye et al., 2018b) have argued that 
investigations of the mineralization kinetics of fresh organic matter should no longer rely 
solely, as it did in the past, on bulk (macroscopic) measurements of soil parameters, like their 
organic matter content, texture, or the density of their microbial population. A key reason for 
this is the large spatial heterogeneity of soils that exists at the microscale and is now becoming 
increasingly understood through new imaging techniques (e.g. Baveye et al., 2018b; Bacq-
Labreuil et al, 2018; Powlson and Neal, 2021). Evidence suggests that microscale information 
about the relative spatial distribution of organic matter, mineral complexes, and decomposer 
organisms must be obtained to understand the kinetics of decay (e.g., Falconer et al., 2012; 
Portell et al., 2018; Chakrawal et al., 2020; Shi et al., 2021; Mbé et al., 2022). The geometry of 
the pore space in many soils may be so convoluted as to preclude microorganisms, and even 
their exoenzymes, access to potential substrates. These insights are increasingly reflected by a 
new generation of mathematical models that take the microscale heterogeneity of soils 
explicitly into account when describing the fate of organic matter (e.g., Falconer et al., 2015; 
Vogel et al., 2015; König et al., 2020; Golparvar et al., 2021; Pot et al., 2022). 



  

Modeling over the long run 

Early on in the research on the mineralization of added organic matter, Hénin and Dupuis 
(1945) initiated a trend to view measured data on the kinetics of mineralization, not so much 
as useful information in its own right, but more as a stepping stone toward estimating the 
build-up of soil organic matter over time after many successive yearly additions of fresh 
organic matter into soils. This perspective made eminent sense in the past. It remains relevant 
to climate change mitigation and can address farmers’ practical concerns. Many farmers 
wonder whether it is feasible to increase the organic matter content of their soils back to levels 
present 40 or 50 years ago. They also wonder how much carbon would need to be sequestered 
to recover soil functions lost due to organic matter depletion and, how those amounts align 
with carbon farming targets proposed to offset climate change. 

In the past, a number of experiments have been carried out to try to answer these kinds 
of long-term questions. For example, Franzluebbers et al. (2012) summarize graphically 
various experiments on pasture management in Georgia and Texas and observe that 10 years 
after conversion of an arable cropping system into perennial grassland —one of the fastest 
agricultural practices to sequester carbon in soil — the rate of C accumulation down to a depth 
of 20 cm drops by half, and after 20 years, it is only 0.2 Mg ha−1 y−1, i.e., a quarter of its initial 
value of 0.8 Mg ha−1 y−1. After 50 years, the rate is virtually zero, and a new soil equilibrium is 
reached. Similar observations were made in the Hoosfield Experiment at Rothamsted 
Research, UK, where a large rate of manure has been applied to one treatment every year since 
1852. During the first 20 years, soil organic carbon increased at an average annual rate of 18‰ 
but by 100 years the rate of increase had declined to almost zero (1-2‰ annually; Poulton et 
al, 2018). Observations of that nature, which Smith (2016) has described as evidence of “sink 
saturation”, suggest that the potential of soils to sequester additional carbon may only exist 
for a limited period.  

As revealing as this type of data is, the changing climate makes it challenging to 
extrapolate to the longer term, especially to 70 or 80 years ahead, at the end of the century. In 
principle, mathematical models of soil organic carbon dynamics may have the capacity to help 
appreciably in this area, as long as we are able to make them account for all the different 
factors, many of which are influenced directly by climate change, that affect the short-term 
dynamics of organic matter mineralization. Over the years, several models of the long-term 
dynamics of soil organic matter have been developed. These models incorporate kinetic 
expressions, usually first-order, that encapsulate the dynamics depicted in Figure 1, but 
integrate its effect over multiple years. Arguably the most popular among them are CENTURY 
(Parton et al. 1994), C-TOOL (Taghizadeh-Toosi et al., 2014), ICBM (Andrén and Kätterer 
1997), ROTH-C (Coleman and Jenkinson, 2005) and YASSO07 (Tuomi et al., 2011). All assume 
that soil organic matter can be attributed to distinct pools, with different chemical and 
dynamic properties, though this is recognized as a simplification of reality. The number of 
these pools is either 3 (C-Tool and ICBM), 5 (RothC and YASSO07), or 8 (Century). 

In spite of the fact that they ignore many aspects of the dynamics of organic matter in soils 
(e.g., the impact of microscale heterogeneity or the biodiversity of the organisms involved), 
these and similar models have produced useful insights. A particularly telling example is 
afforded by the very comprehensive analysis carried out recently by Riggers et al. (2021) in the 
context of German croplands, to determine the extent to which changing climate in decades 
ahead could affect soil organic carbon stocks. These authors considered 3 different climate 
change scenarios between 2014 and 2099, as well as a scenario assuming no future climate 
change. They used 5 distinct methods to estimate organic carbon inputs based on crop yields 
and crop-specific parameters, and adopted a multi-model ensemble consisting of five different 
SOC models to predict the organic carbon input required to reach specific SOC stocks in soils 
at the end of the 21st century. Their simulation results suggest, among other things, that organic 



  

carbon input to the soil in 2099 needs to be between 51 and 93% higher than what it is today 
just to maintain SOC stock levels at their current value. Riggers et al. (2021) conclude that 
“under climate change increasing SOC stocks is considerabl[y] challenging since projected 
SOC losses have to be compensated first before SOC build up is possible. This would require 
unrealistically high OC input increases with drastic changes in agricultural management.” 

As compartment models are improved in years ahead and new, more mechanistic types 
of model emerge, future simulations are likely to include aspects that so far have not been 
taken into account, like the effect of erosion on the long-term dynamics of soil carbon stocks.  
One of the consistent predictions climate modelers have made over the last decade is that 
climate change will result in less frequent but more intense rainfall events in many parts of the 
world (e.g., Trenberth et al., 2003; Baveye et al., 2020, and references cited therein). This will 
undoubtedly affect the amount of erosion of soils, not only as a result of heavy downpours 
during rainfall events, but also via the effect of winds during dry spells between them (e.g., 
Nearing et al., 2004; Morán-Ordóñez et al., 2020). The effect that enhanced erosion will have 
on soil carbon stocks remains a matter of continued debate, yet will need to be included at 
some stage in future simulations like those of Riggers et al. (2021).   

 Practical challenges in the short run 

There is no doubt that the research on the long-term modeling of the evolution of soil carbon 
stocks and soil carbon sequestration should and will continue in years to come. Among other 
reasons, decision-makers need to assess whether soils will be able in 20 or 50 years to 
satisfactorily fulfill a number of their current functions, e.g., the storage of water to make it 
available to plants, or the recharge of aquifers (e.g., Baveye et al., 2020). If, because of a 
weakened architecture due to a depleted carbon stock, soils will not be able to absorb the more 
intense rains that may become routine in a decade or two, plans need to be made immediately 
to build bigger retention dams or redesign bridges to cope with potential flash floods. Many 
of these building projects require years or even decades to complete. 

The focus on long-term trends predicted with computer models has unfortunately led 
researchers to overlook realities that will pose significant challenges to farmers who are asked 
to participate in carbon capture schemes. These challenges stem from the short-run 
mineralization kinetics exhibited in Figure 1, which ultimately raises a number of very 
practical issues. Clearly, if we expect farmers to sequester an amount x of carbon in their soil, 
for example the 0.4% yearly increment that is targeted by the “4 per 1000” initiative, they need 
to add ten times that amount of C in some way. Specifically, to eventually sequester 0.5 
tons/ha of carbon in his/her soil via the addition of a single supply of fresh organic matter, a 
farmer has to add 10 times that amount, or 5 tons/ha, knowing that 90% of the carbon this 
added organic matter contains will be used by perpetually hungry microorganisms and will 
be released relatively rapidly to the atmosphere! In other words, instead of talking to farmers 
about a “4 per 1000” target, one should really present it to them as a “40 per 1000” one, since 
they would have to increase the carbon input every year by that amount, in order to effectively 
increase the amount of soil carbon eventually sequestered by 0.4% annually. This proposition 
is entirely unrealistic practically, and not just because it would be impossible to come up with 
enough crop residues to meet the demand, but also because the nitrogen requirement that this 
would create would be unmanageable. Van Groeningen et al. (2017) estimated that to 
sequester in agricultural soils the 1200 Tg C yr-1 called for globally by the “4 per 1000” initiative 
would require 100 Tg N yr-1, which is much larger than the rate of ~30 Tg N yr-1 at which 
nitrogen is considered to accumulate in global cropland residues. If we reflect in terms not of 
the amount of carbon that eventually gets sequestered but of the quantity that needs to be 
added to soil annually, the latter would be of the order of 12,000 Tg C yr-1 to meet the same 
targeted sequestration. The amount of nitrogen that would be involved would likely be less 



  

than 10 times the figure suggested by Van Groeningen et al. (2017), but it would still be many 
more times that in current cropland residues globally! 

The discussion so far has been based on a simplified model that uses a ratio of 10:1 
between the amount of carbon added to soil in fresh organic matter to the carbon eventually 
sequestered in the soil, in line with Figure 1. Evidence however tends to suggest that this value 
of 10 may be conservative, and that the real ratio is likely to change upward over time. Indeed, 
the capacity of a soil to sequester carbon has been shown to decrease over time and to 
effectively vanish at the stage of “sink saturation” (e.g., Franzluebbers et al., 2012; White and 
Davidson, 2016a; Smith, 2016; Baveye et al., 2018b; Poulton et al., 2018). Beyond the stage of 
saturation, since soil carbon sequestration is reversible (Smith, 2012), it is necessary to keep 
adding plant residues to soils to maintain the benefits associated with the level of carbon 
sequestration that has been achieved. Further research is needed to assess how graphs like that 
of Figure 1 change over time as one gets closer to the “sink saturation” point, but it seems 
logical to assume that the ratio of added to sequestered carbon rises significantly above 10 
within a few years, rendering any “soil carbon sequestration for climate mitigation” scheme 
even less feasible in practice over the long-term than the above calculations indicate. The fact 
that Jenkinson (1990) observed in a sandy soil in the U.K. mineralization kinetics much faster 
than that depicted in Fig. 1 may have been due in part to this sink saturation process. Further 
research will be needed to understand it more fully. 

Take-home message 

Much of the literature on soil carbon sequestration over the last 20 years, and especially in the 
last 6 years, since the COP 21 meeting, has suggested that, via this “silver bullet”, the 
agricultural sector could have a significant role to play in the mitigation of climate change. 
This perspective ignores the fact that most of the organic matter added to soils in order to 
increase the amount of carbon that is sequestered is quickly mineralized by soil organisms and 
returned to the atmosphere as CO2. Back-of-the-envelope calculations that take this process 
into account show readily that farmers cannot practically come up with the large amount of 
fresh organic plant residues that would be needed on a yearly basis for soil carbon 
sequestration in arable agricultural soils to make a substantial contribution to mitigating 
climate change. 

In that context, since it is not reasonable to ask of soil carbon sequestration to compensate 
all of the greenhouse gas emissions of other anthropogenic sectors, it is wise to scale down the 
expectation of what agriculture can practically achieve in years to come in relation with 
climate change mitigation.  A still daunting, but perhaps more realistic objective in that respect 
might be for agriculture to become a zero emitter of greenhouse gases. This would require 
interdisciplinary research scrutinizing many aspects of agriculture jointly, not just what 
happens to organic matter in soils. Concomitantly, one should also ensure that soils will be 
sufficiently resilient to adapt to a rapidly changing climate in the near future, and still be able 
to fulfill their essential functions, on which humanity depends crucially. Based on what we 
know at this stage, this means that we need to make sure that the organic matter content of all 
agricultural and forest soils, including degraded ones, are restored to a suitable level. Since 
many of the very complex processes involved still remain poorly understood, further basic 
research is needed to make progress in this respect in a timely fashion. In terms of 
communication efforts in which the soil science community should engage in the near future, 
probably the most urgent, given the rate at which climate change is predicted to occur, is to 
let policymakers know in no uncertain terms that carbon sequestration in soils as a “silver 
bullet” to significantly mitigate climate change is off the table, and that they should focus on 
other possible avenues to halt climate change, like transitioning promptly to renewable forms 
of energy. In addition, we need to help farmers and land users determine what they can do 
relatively rapidly to make soils more resilient to the changes ahead, in particular the sizeable 



  

shifts of rainfall patterns that are forecasted, so that soils can keep providing essential services 
to human populations. 
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Figure captions 
 
Figure 1: Illustration of the fate of plant organic inputs into a soil (single input event, here 5 t 

Cha-1). The numerical values are representative of the 0–30 cm layer of temperate soils. In 
this diagram, the mineralization kinetics is arbitrarily divided into three phases: fast, 
intermediate and slow. Organic matter can be divided into three corresponding pools, the 
size of which is represented in the figure by the coloured areas. (Modified from Pellerin 
et al., 2020; Basile-Doelsch et al., 2020).  
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