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SI-1: Supplementary Introduction 
 
One perspective on the global ‘tipping point’ problem takes a bottom-up approach arguing that 
human transformation and fragmentation of the Earth surface, caused by global warming but also 
through land use activities, are causing many localised tipping points to be crossed1,2. As local 
thresholds are crossed, abrupt changes are seen in diverse environments (e.g. terrestrial biodiversity, 
fish yields, ocean oxic zones, lake water quality, water supplies3) with threats to the future 
sustainability and resilience of Earth’s sub-systems4. Another perspective uses a top-down tipping 
point framework and argues that different regional ‘global climate’ tipping elements may change 
rapidly as global mean temperatures increase and thresholds are crossed5.  
 
Some studies draw these perspectives together; for example, Rocha et al.6 explored the interactions 
between climate tipping elements and ecosystems in an empirical database of 30 observed and 
modelled regime shifts. They identified shared drivers, one-way and two-way domino cascades and 
two-way cascades [cf.7] where there are hidden feedbacks. Forty five percent of the tipping points 
showed evidence for structural interdependence meaning that the abrupt change observed in one 
system will trigger a shift in another system. Shared drivers are most common across similar land 
uses6. Potential domino effects were only found in time, not space, and related to tipping points in 
systems with slow temporal dynamics, such as monsoon weakening, thermohaline collapse and GIS 
collapse6. Lade et al.8 extended the interrogation of existing datasets to produce a dynamic 
assessment of linkages. They reviewed previously studied interactions to identify a dense network of 
interactions between the planetary boundaries and used control theory to produce a linear 
equilibrium model to assess feedbacks. Only 6 out of 35 interactions identified include balancing (i.e., 
negative) feedbacks8. Their analysis indicates that the majority of the resulting cascade feedback 
mechanisms are reinforcing and predominantly amplifying human impacts on the Earth system, 
thereby shrinking the ‘safe operating space’ for future impacts.  
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SI-2: Supplementary Results 
 
Single driver 
We show that in three of the models (Easter Island, TRIFFID and Lake phosphorus), changes in primary 
driver strengths produce comparatively larger reductions in the absolute time before the abrupt 
threshold-dependent change (ATDC) is reached at low driver levels (i.e., when the primary driver is 
relatively weak), when compared to the same change at higher values of the primary driver, although 
the percentage value by which the ATDC is brought forward is relatively consistent (Figure 2). In other 
words, the absolute advance in the ATDC may be reduced as driver strength increases, but the 
percentage shift in the time point is likely similar. For example, increasing the normalised baseline 
driver strength from 0.3 to 0.5 decreases the median time until system collapse by 3 years (9.4%), 341 
years (28.9%), 92 years (38.7%) and 245 unitless timesteps (29.0%), for Lake Chilika, Easter Island, 
TRIFFID, and Lake phosphorus respectively (Figure 2). In turn, increasing the normalised driver 
strength from 0.5 to 0.7 decreases the median time until system collapse by 4 years (13.8%), 175 years 
(20.9%), 40 years (27.4%), and 166 unitless timesteps (27.6%) across the four models respectively. 
 
Multiple Drivers 
Increasing the strength of multiple (i.e., secondary and tertiary) drivers further reduces the breakpoint 
date (Figure 2). As with a single driver, this effect is more noticeable on unit time at low driver levels, 
but the percentage effect is relatively consistent. For example, at a normalised driver strength of 0.3, 
the Easter Island model shows that the addition of two extra drivers brings the median ATDC forward 
from timestep 1179 to timestep 563 (reduction: 616 years [52.2%]), but the same extra drivers added 
to the main driver at 0.5 normalised levels only advances the date of collapse from timestep 838 to 
timestep 470 (reduction: 368 years [43.9%]). These results are consistent with the TRIFFID and Lake 
phosphorus models (TRIFFID: 76 years [31.9%] and 18 years [17.0%] reduction for one additional 
driver; Lake phosphorus: 187 timesteps [22.0%] and 58 timesteps [14.0%] reduction for two additional 
drivers, for 0.3 and 0.7 normalised primary slow driver levels respectively; Figure 2). By contrast, the 
addition of two extra drivers only brings forward the median ATDC in the Lake Chilika model by 1 years 
[2.3%] and 2 years [8%], for 0.3 and 0.7 normalised primary slow driver levels respectively – reflecting 
the dominance of the primary driver (i.e., the growth of the fisher population) on fishery dynamics. 
Variation around these median responses (Figure 2) is determined by the relative strength of the 
additional drivers, with the addition of a weak driver bringing forward the start of system collapse 
substantially less than the addition of a strong secondary driver (Figure S2-1). 
 
Noise 
Consistent across all models, the addition of low noise (defined as normalised σ values ≤ 0.333) at a 
normalised baseline driver strength of 0.3 has a limited impact upon the breakpoint date, ranging 
between advancing the date by 4.5 timesteps (0.5%) in the Lake phosphorus model to advancing the 
breakpoint date by 27 years (2.2%) in the Easter Island model (respective change in the Chilika model: 
0 years [0%]; respective change in the TRIFFID model: 3 years [1.2%]). 
 
However, the addition of high noise (normalised σ values > 0.666) highlights that increasing the 
variability of the primary slow driver (in isolation) across all four models can bring forward the date of 
system collapse (Figure 3). For example, at a normalised primary driver strength of 0.3 in the Easter 
Island model (Figure 3B), the addition of high noise brings the median ATDC forward from timestep 
1179 to timestep 848 (28.1% reduction); the same levels of noise at a 0.7 normalised baseline driver 
strength advance the date of collapse from 663 to 290 (56.3% reduction). In turn, the equivalent 
advances in the breakpoints of the other three models under high noise are 11 (34.4%) and 6 (24.0%) 
years for Lake Chilika, 47 (19.7%) and 18 (16.5%) years for TRIFFID, and 104 (12.3%) and 61 (14.5%) 
timesteps for Lake phosphorus, for 0.3 and 0.7 normalised baseline driver strengths respectively. 
Combined, addition of low, mid and high noise levels resulted in 2.5%, 6.6%, 2.0% and 2.6% of 
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modelled ATDCs occurring at primary driver strengths below the minimum threshold required to 
result in an ATDC when acting in isolation for Lake Chilika, Easter Island, TRIFFID and Lake phosphorus 
respectively (Table S2-2). These results are consistent regardless of whether the noise is coupled to 
the magnitude of the primary slow driver or not (Figure S2-2; Table S2-3).  
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Figure S2-1: The distribution of breakpoint dates along the range of primary slow driver trajectories in 
each of the models, with the additional effects of the secondary and tertiary drivers in each model 
disaggregated. As in the main manuscript (i.e., Figures 2-4), the normalised primary driver trajectories 
are apportioned into three discrete ranges: ‘low’ – 0.25-0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. 
The left column shows the combined effects of the primary plus secondary drivers in each model, and 
the right column shows the combined effects of the primary plus tertiary drivers in each model. In line 
with the primary drivers, the secondary and tertiary drivers are apportioned into the same normalised 
trajectory ranges: ‘low’ – 0.25-0.35 (yellow), ‘mid’ – 0.45-0.55 (orange), and ‘high’ – 0.65-0.75 (red). 
Subplots: (A-B) Lake Chilika model, primary slow driver: fisher population growth, secondary driver: 
climate change, tertiary driver: fish price; (C-D) Easter Island model, primary slow driver = tree clearance, 
secondary driver: agricultural carrying capacity, tertiary driver: tree mortality; (E) TRIFFID model, 
primary slow driver: temperature change, secondary driver: disturbance rate; (F-G) Lake phosphorus 
model, primary slow driver: phosphorus external input, secondary driver: phosphorus recycling rate, 
tertiary driver: phosphorus sedimentation rate. Model timestep units: Lake Chilika, Easter Island and 
TRIFFID run in years; timesteps in Lake phosphorus are unitless. Boxplot dimensions are as Figure 2. The 
number of simulations (n) underpinning each primary driver trajectory range (i.e., low, middle, and high) 
in each of the above subplots are as follows: (A) 160, 173, and 160; (B) 158, 167 and 156; (C) 256, 235 
and 233; (D) 281, 283 and 274; (E) 802, 800 and 815; (F) 128, 154, and 148; (G) 281, 283 and 274. 
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Figure S2-2: The relationship between the breakpoint date and the primary slow driver (grey) for 
varying levels of coupled noise in the primary driver (σ), where normalised σ values ≤ 0.333 signify ‘low 
noise’ (yellow), normalised σ values > 0.333 and ≤ 0.666 signify ‘mid noise’ (orange), and normalised σ 
values > 0.666 signify ‘high noise’ (red) (Methods Section 2.3). As in the main manuscript (i.e., Figures 
2-4), the normalised primary driver trajectories are apportioned into three discrete ranges: ‘low’ – 0.25-
0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. Subplots: (A) Lake Chilika model outputs, primary slow 
driver:  fisher population growth; (B) Easter Island model outputs, primary slow driver = tree clearance; 
(C) TRIFFID model outputs, primary slow driver = temperature change; (D) Lake phosphorus model 
outputs, primary slow driver = phosphorus input. Model timestep units are the same as in Figure S2-1. 
Boxplot dimensions are as Figure 2. The number of simulations (n) underpinning each primary driver 
trajectory range (i.e., low, middle, and high) in each of the subplots are detailed in Table S3-1. 
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Figure S2-3: The relationship between the breakpoint date and the primary slow driver (grey) when 
weak (normalised T values ≤ 0.333) and strong (normalised T values > 0.666) multiple driver trajectories 
are combined with weak (normalised σ values ≤ 0.333) and strong (normalised σ values > 0.666) 
coupled noise (T = trajectory, N = noise).  As in the main manuscript (i.e., Figures 2-4), the normalised 
primary driver trajectories are apportioned into three discrete ranges: ‘low’ – 0.25-0.35, ‘mid’ – 0.45-
0.55, and ‘high’ – 0.65-0.75. Subplots: (A) the Lake Chilika model , primary slow driver = fisher population 
growth, additional driver: climate change and fish price; (B) the Easter Island model, primary slow driver 
= tree clearance, additional drivers: agricultural carrying capacity and tree mortality; (C) the TRIFFID 
model, primary slow driver = temperature change, additional driver: disturbance rate; (D) the lake 
phosphorus model, primary slow driver = phosphorus, additional drivers: phosphorus recycling rate, 
phosphorus sedimentation rate. Model timestep units are the same as in Figure S2-1. Boxplot 
dimensions are as Figure 2. The number of simulations (n) underpinning each primary driver trajectory 
range (i.e., low, middle, and high) in each of the above subplots are detailed in Table S3-1. 
  



8 

 

 

     
 

     
Figure S2-4: Scatter plots depicting the raw data producing the boxplots in Figure 2 of the main 
manuscript. The dashed grey vertical line represents the weakest primary driver value associated with 
an ATDC in each plot. Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population 
growth; (B) Easter Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model 
outputs, primary slow driver = temperature change; (D) Lake phosphorus model outputs, primary slow 
driver = phosphorus input. Model timestep units are the same as in Figure S2-1. 
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Figure S2-5: Scatter plots depicting the raw data producing the boxplots in Figure 3 of the main 
manuscript. The dashed grey vertical line represents the weakest primary driver value associated with 
an ATDC in each plot. Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population 
growth; (B) Easter Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model 
outputs, primary slow driver = temperature change; (D) Lake phosphorus model outputs, primary slow 
driver = phosphorus input. Model timestep units are the same as in Figure S2-1. 
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Figure S2-6: Scatter plots depicting the raw data producing the boxplots in Figure 4 of the main 
manuscript. The dashed grey vertical line represents the weakest primary driver value associated with 
an ATDC in each plot. Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population 
growth; (B) Easter Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model 
outputs, primary slow driver = temperature change; (D) Lake phosphorus model outputs, primary slow 
driver = phosphorus input. Model timestep units are the same as in Figure S2-1. 
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Figure S2-7: Scatter plots depicting the raw data producing the boxplots in Figure S2-1. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
As per Figure S2-1, the left column shows the combined effects of the primary plus secondary drivers 
in each model, and the right column shows the combined effects of the primary plus tertiary drivers 
in each model Subplots: (A-B) Lake Chilika model, primary slow driver: fisher population growth, 
secondary driver: climate change, tertiary driver: fish price; (C-D) Easter Island model, primary slow 
driver = tree clearance, secondary driver: agricultural carrying capacity, tertiary driver: tree mortality; 
(E) TRIFFID model, primary slow driver: temperature change, secondary driver: disturbance rate; (F-
G) Lake phosphorus model, primary slow driver: phosphorus external input, secondary driver: 
phosphorus recycling rate, tertiary driver: phosphorus sedimentation rate. Model timestep units are 
the same as in Figure S2-1. 
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Figure S2-8: Scatter plots depicting the raw data producing the boxplots in Figure S2-2. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S2-9: Scatter plots depicting the raw data producing the boxplots in Figure S2-3. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Table S2-1: Abrupt threshold-dependent changes (ATDCs) triggered by additional drivers below the 
minimum driver strengths required to collapse the system if only a single driver were in effect. 
 

 
 
 
Table S2-2: Abrupt threshold-dependent changes (ATDCs) triggered by additional uncoupled noise 
below the minimum driver strengths required to collapse the system if only a single driver were in 
effect, where normalised σ values ≤ 0.333 signify ‘low noise’, normalised σ values > 0.333 and ≤ 0.666 
signify ‘mid noise’, and normalised σ values > 0.666 signify ‘high noise’. 

 
 
Table S2-3: Abrupt threshold-dependent changes (ATDCs) triggered by additional coupled noise below 
the minimum driver strengths required to collapse the system if only a single driver were in effect, 
where normalised σ values ≤ 0.333 signify ‘low noise’, normalised σ values > 0.333 and ≤ 0.666 signify 
‘mid noise’, and normalised σ values > 0.666 signify ‘high noise’. 

 
  

Model Number of model runs which tipped at primary driver strengths below the minimum 
observed to cause an ATDC if only a single driver were in effect 

Total runs across 
all scenarios 
which tipped 

Additional 
secondary driver 

Additional tertiary 
driver 

Additional secondary and 
tertiary drivers 

Total (%) 

Lake Chilika 55 45 133 233 (1.21%) 19,208 

Easter Island 7 1018 983 2008 (14.8%) 13,574 

TRIFFID 1410 NA NA 1410 (7.70%) 18,319 

Lake 
phosphorus 

306 669 1895 2870 (12.3%) 23,270 

Model Number of model runs which tipped at primary driver strengths below the 
minimum observed to cause an ATDC if only a single driver were in effect 

Total runs across all 
scenarios which tipped 

Low noise Mid noise High noise Total (%) 

Lake Chilika 28 78 85 191 (2.50%) 7643 

Easter Island 24 93 291 408 (6.57%) 6209 

TRIFFID 22 103 221 346 (2.02%) 17,126 

Lake 
phosphorus 

8 40 79 127 (2.63%) 4831 

Model Number of model runs which tipped at primary driver strengths below the 
minimum observed to cause an ATDC if only a single driver were in effect 

Total runs across all 
scenarios which tipped 

Low noise Mid noise High noise Total (%) 

Lake Chilika 25 80 86 191 (2.48%) 7691 

Easter Island 85 347 566 998 (9.69%) 10,302 

TRIFFID 3 42 88 133 (1.30%) 10,244 

Lake 
phosphorus 

36 129 28 193 (3.98%) 4849 
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Table S2-4: Abrupt threshold-dependent changes (ATDCs) triggered below the minimum driver 
strengths required to collapse the system if only a single driver were in effect when weak (normalised 
T values ≤ 0.333) and strong (normalised T values > 0.666) multiple driver trajectories are combined 
with weak (normalised σ values ≤ 0.333) and strong (normalised σ values > 0.666) uncoupled noise (T 
= trajectory, N = noise).   

 
 
Table S2-5: Abrupt threshold-dependent changes (ATDCs) triggered below the minimum driver 
strengths required to collapse the system if only a single driver were in effect when weak (normalised 
T values ≤ 0.333) and strong (normalised T values > 0.666) multiple driver trajectories are combined 
with weak (normalised σ values ≤ 0.333) and strong (normalised σ values > 0.666) coupled noise (T = 
trajectory, N = noise).   

 
  

Model Number of model runs which tipped at primary driver strengths below the minimum 
observed to cause an ATDC if only a single driver were in effect 

Total runs across all 
scenarios which tipped 

Low T, Low N Low T, High N High T, Low N High T, High N Total (%) 

Lake Chilika 17 25 12 26 80 (1.73%) 4619 

Easter Island 62 100 2 118 282 (7.45%) 3784 

TRIFFID 142 208 284 347 981 (6.64%) 14,775 

Lake 
phosphorus 

26 59 103 127 315 (8.92%) 3533 
 

Model Number of model runs which tipped at primary driver strengths below the minimum 
observed to cause an ATDC if only a single driver were in effect 

Total runs across all 
scenarios which tipped 

Low T, Low N Low T, High N High T, Low N High T, High N Total (%) 

Lake Chilika 28 32 23 55 138 (2.67%) 6083 

Easter Island 83 92 2 24 201 (6.04%) 3330 

TRIFFID 43 73 104 111 331 (3.50%) 9477 

Lake 
phosphorus 

7 21 30 42 100 (3.44%) 2911 
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SI3 - Supplementary Methods 
 

  
  

Figure S3-1: The future scenario funnels of the four primary (baseline) slow trajectories over the 
course of their respective model horizons. Subplots clockwise from top-left: (A) array of linear 
changes in the fisher population growth rate ‘r’ (net difference between the crude birth and crude 
death rates of the fisher population) in the Lake Chilika fishery model; (B) array of linear changes in 
the tree clearance rate in the Easter Island model; (C) array of linear changes in the local temperature 
in the TRIFFID model; (D) array of linear changes in the phosphorus input rate in the Lake phosphorus 
model. As described in Methods Section 2.3, the drivers start at their default values before moving 
along a randomly selected future trajectory (Table S2-1). The gradient trajectories representing 30% 
and 70% of the maximum possible trajectories have been identified in orange and red, respectively. 
The same approach is also used for all secondary and tertiary drivers, evolving along randomly 
selected linear gradients between ‘no change from default’ and ‘maximum change’ by the model 
horizon. 

 
  

C D 
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Figure S3-2: Fish population timeseries from an example Lake Chilika model simulation, where the 
‘strucchange’ breakpoint function identifies the breakdate as 2058 (red dot). Using this method, 
timesteps either side of the breakdate are considered to be in alternative regimes (see SI-4 for alternative 
threshold definitions).  
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Table S3-1: The number of model simulations constituting each experiment and scenario, as plotted in Figures 2 to 4 and Figure S2-1 to S2-3. Each of the 
model runs were identified to have gone through an abrupt threshold-dependent change (ATDC), as per the methodology detailed in Methods Section 3.1 and 
3.2. T = Trajectory, N = Noise.  

Model 
Experiment 
1: Baseline 

Experiment 2: Multiple slow 
drivers 

Experiment 3a: Single slow 
driver plus uncoupled noise 

Experiment 4a: Multiple slow drivers 
plus uncoupled noise 

Secondary Tertiary All Low Medium High Low T, 
Low N 

Low T, 
High N 

High T, 
Low N 

High T, 
High N 

Lake Chilika 3016         4603         4561         7028 1429    1602    1596 409 388               398               408 

Easter Island 2118 2097         4769         4590 1255 1297 1539 468 394 231              573 

TRIFFID 6833        11486   3354 3393        3546 2028              1777              1845              2292 

Lake 
phosphorus 

2556       5425       5744 9545       762       733 780       260             283             257             177 

     Experiment 3b: Single slow 
driver plus coupled noise 

Experiment 4b: Multiple slow drivers 
plus coupled noise 

     Low Medium High Low T, 
Low N 

Low T, 
High N 

High T, 
Low N 

High T, 
High N 

Lake Chilika 3016            1429 1602 1596 760 738 759 810 

Easter Island 2118    2530 2603 3051 340               405               172                        295 

TRIFFID 6833           1088 1095 1228 614               643               671               716 

Lake 
phosphorus 

9545    824         945         524 96               110                83                66 
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Table S3-2: Range of parameter values driving the trajectory changes and addition of noise (σ) across 
the four experiment types (Methods Section 2.1) in each of the four models. The numbers in 
superscripts denote the corresponding experiment type where the given scenario ranges are active. 
Experiment #1[1]: change in the trajectory of the primary driver only; Experiment #2[2]: changes in the 
trajectories of the primary driver and additional driver trajectories; Experiment 3[3]: changes in the 
trajectories of the primary driver and the addition of noise to the primary driver; Experiment #4[4]: 
change in the trajectories of the primary driver and additional driver trajectories, plus the addition of 
noise to the primary driver. Experiments #3 and #4 here include both coupled and uncoupled noise. 
 

Model  External variable  Unit  Default 
value  

Range of slow 
driver change 
trajectories 

Noise (σ) 
range 

La
ke

 C
h

ili
ka

 

Fisher population growth 
rate ‘r’ 

Unitless 14 -14 – 186 [1,2,3,4]  0 – 100 [3,4] 

Annual rainfall total 
change (2081-2100 
relative to 1986-2005)  

% 0 0 – 30 [2,4] 0 [1,2,3,4] 

Annual mean 
temperature change 
(2081-2100 relative to 
1986-2005)  

⁰C 0 0 – 4.5 [2,4] 0 [1,2,3,4] 

Change in fish price per 
unit 

INR/kg 0 0 – 2550 [2,4] 0 [1,2,3,4] 

Ea
st

e
r 

Is
la

n
d

 Tree clearance Trees/person/ 
year 

1 0 – 10 [1,2,3,4] 0 – 20 [3,4] 

Agricultural carrying 
capacity 

Persons 1200 0 – 6200 [2,4]  0 [1,2,3,4] 

Mortality rate of trees Trees/year 0.01 0 – 0.1 [2,4] 0 [1,2,3,4] 

La
ke

 
p

h
o

sp
h

o
ru

s Phosphorus input Unitless 0.1 0 – 2 [1,2,3,4] 0 – 0.5 [3,4] 

Recycling rate Unitless 1 0 – 3 [2,4] 0 [1,2,3,4] 

Sedimentation Unitless 1 -0.5 – 0 [2,4] 0 [1,2,3,4] 

TR
IF

FI
D

 Local temperature ⁰C 28 0 – 50 [1,2,3,4] 0 – 10 [3,4] 

Disturbance rate Trees/year 0.2 0 – 2 [2,4] 0 [1,2,3,4] 

 
 

 

  



21 

 

SI-4: Alternative Threshold Definitions for Identification of ATDCs 
 
Introduction and methods 
As described in Methods Section 3.2, the results presented in Figures 2 to 4 are based on the optimal 
breakpoint function of Zeileis et al.9, which finds the most significant deviation from stability in 
classical regression models (i.e. where regressions coefficients shift from one stable regime to 
another). However, numerous possible breakpoint methods can be used to identify ATDCs4. To ensure 
our results were robust to the breakpoint method used, we reanalysed the first 10,000 simulations 
across all four models using two further threshold definitions based on the classification of boundary 
types defined by Dearing et al.4 (i.e. ‘linear’ and ‘non-linear’, with the breakpoint function presented 
in the main manuscript representing an ‘abrupt type-3 threshold’).  
 
Alternative Method 1: Type 1a thresholds – Environmental limits 
Conceptualised as “quantitative measures of the state of beneficial ecosystem processes that, once 
exceeded, significantly constrain conventional resource use” (4; p.231), the first alternative method of 
defining the breakpoint date for the Lake Chilika, Easter Island and TRIFFID models is the first timestep 
beyond which the outcome variable falls beneath 20% of its initial value at model initialisation (i.e., 
timestep 0). As described in Methods Section 3.1, this demarcation is based upon the concept that 
fish stocks may be considered quantitatively collapsed once their biomass falls beneath 20% of the 
biomass needed to maintain sustainable yields10,11. Furthermore, as depicted in Figure 1 and described 
in Methods Section 3.1, this approach is already used to isolate simulations which collapse to a 
quantitatively different state, before the breakpoint function of Zeileis et al.9 dates the timestep when 
outcome versus timestep regressions coefficients shift from one stable regime to another. 
 
Given that lake phosphorus concentrations increase (rather than collapse), it is not suitable to apply 
the ‘20% of initial’ environmental limit to the Lake phosphorus model. We define an alternative 
environmental limit based on Figure 2 of Carpenter12

, whereby the baseline model of lake 
eutrophication undergoes a regime shift once the lake water phosphorus concentration exceeds 1.3 
(g/m2). Therefore, for the Lake phosphorus simulations depicted in Figures S4-1 to S4-4, we define the 
breakpoint date as the first timestep that the outcome variable (i.e., lake water phosphorus 
concentration) is greater than 1.3 (g/m2).  
 
Alternative Method 2: Type 2a thresholds – Rate of change 
Conceptualised as “[a boundary]… where there is an unacceptable acceleration in a harmful effect or 
a decline in a beneficial ecosystem process” (4; p.231), the second alternative method defines the 
threshold as the timestep corresponding to the highest change in the outcome variable over time. In 
practice, the first difference in the outcome timeseries is calculated for each simulation that reaches 
a quantitatively different state (i.e., as per Section 3.1), and the timestep within each simulation with 
the highest first difference value is taken as the threshold. This method is applied uniformly to all four 
models, as the first differencing approach is not sensitive to whether the outcome variable grows (in 
the case of Lake phosphorus) or collapses (in the case of Lake Chilika, Easter Island and TRIFFID).  
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Results 
 
Alternative Method 1: Type 1a thresholds – Environmental limits 
 

 
 

     

     
 
Figure S4-1: The relationship between the breakpoint date and the primary (baseline) slow driver for 
the individual (grey) and multiple (coloured) drivers, when the breakpoint date is defined by the first 

alternative method described above (Type 1a boundaries). As in the main manuscript (i.e., Figures 2-
4), the normalised primary driver trajectories are apportioned into three discrete ranges: ‘low’ – 0.25-
0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the main manuscript, this figure 
is the equivalent of Figure 2. Subplots: (A) Lake Chilika model, primary slow driver: fisher population 
growth, secondary driver: climate change, tertiary driver: fish price; (B) Easter Island model, primary 
slow driver = tree clearance, secondary driver: agricultural carrying capacity, tertiary driver: tree 
mortality; (C) TRIFFID model, primary slow driver: temperature change, secondary driver: disturbance 
rate; (D) Lake phosphorus model, primary slow driver: phosphorus external input, secondary driver: 
phosphorus recycling rate, tertiary driver: phosphorus sedimentation rate. Model timestep units are 
the same as in Figure S2-1. Boxplot dimensions are as Figure 2. The number of simulations (n) 
underpinning each primary driver trajectory range (i.e., low, middle, and high) in each of the above 
subplots are as follows: (A) 182, 220, and 203; (B) 315, 355, and 350; (C) 400, 410, and 394 ; (D) 398, 
410, and 394. 
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Figure S4-2: The relationship between the breakpoint date and the primary slow driver (grey) for 
varying levels of uncoupled noise in the primary slow driver (σ), where normalised σ values ≤ 0.333 
signify ‘low noise’ (yellow), normalised σ values > 0.333 and ≤ 0.666 signify ‘mid noise’ (orange), and 
normalised σ values > 0.666 signify ‘high noise’ (red) (Methods Section 2.3). The breakpoint date is 
defined by the first alternative method described above (Type 1a boundaries). As in the main 
manuscript (i.e., Figures 2-4), the normalised primary driver trajectories are apportioned into three 
discrete ranges: ‘low’ – 0.25-0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the 
main manuscript, this figure is the equivalent of Figure 3. Subplots: (A) Lake Chilika model outputs, 
primary slow driver = fisher population growth; (B) Easter Island model outputs, primary slow driver 
= tree clearance; (C) TRIFFID model outputs, primary slow driver = temperature change; (D) Lake 
phosphorus model outputs, primary slow driver = phosphorus input. Model timestep units are the 
same as in Figure S2-1. Boxplot dimensions are as Figure 2. The number of simulations (n) 
underpinning each primary driver trajectory range (i.e., low, middle, and high) in each of the above 
subplots are as follows: (A) 76, 81, and 73; (B) 158, 167, and 156; (C) 403, 389, and 377; (D) 82, 128, 
and 133. 
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Figure S4-3: The relationship between the breakpoint date and the primary slow driver (grey) when 
weak (normalised T values ≤ 0.333) and strong (normalised T values > 0.666) multiple driver 
trajectories are combined with weak (normalised σ values ≤ 0.333) and strong (normalised σ values 
> 0.666) uncoupled noise (T = trajectory, N = noise). The breakpoint date is defined by the first 
alternative method described above (Type 1a boundaries). As in the main manuscript (i.e., Figures 2-
4), the normalised primary driver trajectories are apportioned into three discrete ranges: ‘low’ – 0.25-
0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the main manuscript, this figure 
is the equivalent of Figure 4. Subplots: (A) the Lake Chilika model, primary slow driver = fisher 
population growth, additional driver: climate change and fish price; (B) the Easter Island model, 
primary slow driver = tree clearance, additional drivers: agricultural carrying capacity and tree 
mortality; (C) the TRIFFID model, primary slow driver = temperature change, additional driver: 
disturbance rate; (D) the Lake phosphorus model, primary slow driver = phosphorus, additional 
drivers: phosphorus recycling rate, phosphorus sedimentation rate. Note, the first 10,000 simulations 
of the Lake phosphorus model (subplot D) did not produce any outcomes between the 0.25-0.35 and 
0.65-0.75 primary driver ranges within the ‘low trajectory, high noise’ scenario. Model timestep units 
are the same as in Figure S2-1. Boxplot dimensions are as Figure 2. The number of simulations (n) 
underpinning each primary driver trajectory range (i.e., low, middle, and high) in each of the above 
subplots are as follows: (A) 45, 50, and 40; (B) 81, 102 and 96; (C) 333, 328, and 308; (D) 73, 89 and 
82. 
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Alternative Method 2: Type 2a thresholds – Rate of change 
  

 

     

     
 
Figure S4-4: The relationship between the breakpoint date and the primary (baseline) slow driver 
(grey for the individual (grey) and multiple (coloured) drivers, when the breakpoint date is defined 
by the second alternative method described above (Type 2a boundaries).  As in the main manuscript 
(i.e., Figures 2-4), the normalised primary driver trajectories are apportioned into three discrete 
ranges: ‘low’ – 0.25-0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the main 
manuscript, this figure is the equivalent of Figure 2. Subplots: (A) Lake Chilika model, primary slow 
driver: fisher population growth, secondary driver: climate change, tertiary driver: fish price; (B) 
Easter Island model, primary slow driver = tree clearance, secondary driver: agricultural carrying 
capacity, tertiary driver: tree mortality; (C) TRIFFID model, primary slow driver: temperature change, 
secondary driver: disturbance rate; (D) Lake phosphorus model, primary slow driver: phosphorus 
external input, secondary driver: phosphorus recycling rate, tertiary driver: phosphorus sedimentation 
rate.  Breakpoint date  units are the same as in Figure S2-1. Boxplot dimensions are as Figure 2. The 
number of simulations (n) underpinning each primary driver trajectory range (i.e., low, middle, and 
high) in each of the above subplots are as follows: (A) 185, 225, 200; (B) 317, 347 and 359; (C) 400, 
402, 315; (D) 408, 402 and 315. 
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Figure S4-5: The relationship between the breakpoint date and the primary slow driver (grey) for 
varying levels of uncoupled noise in the primary slow driver (σ), where normalised σ values ≤ 0.333 
signify ‘low noise’ (yellow), normalised σ values > 0.333 and ≤ 0.666 signify ‘mid noise’ (orange), and 
normalised σ values > 0.666 signify ‘high noise’ (red) (Methods Section 2.3). The breakpoint date is 
defined by the second alternative method described above (Type 2a boundaries). As in the main 
manuscript (i.e., Figures 2-4), the normalised primary driver trajectories are apportioned into three 
discrete ranges: ‘low’ – 0.25-0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the 
main manuscript, this figure is the equivalent of Figure 3. Subplots: (A) Lake Chilika model outputs, 
primary slow driver = fisher population growth; (B) Easter Island model outputs, primary slow driver 
= tree clearance; (C) TRIFFID model outputs, primary slow driver = temperature change; (D) Lake 
phosphorus model outputs, primary slow driver = phosphorus input. Model timestep units are the 
same as in Figure S2-1. Boxplot dimensions are as Figure 2. The number of simulations (n) 
underpinning each primary driver trajectory range (i.e., low, middle, and high) in each of the above 
subplots are as follows: (A) 78, 82 and 79; (B) 88, 120 and 140; (C) 409, 401 and 389; (D) 86, 135 and 
140. 

  



27 

 

 
 

     

      
Figure S4-6: The relationship between the breakpoint date and the primary slow driver (grey) when 
weak (normalised T values ≤ 0.333) and strong (normalised T values > 0.666) multiple driver 
trajectories are combined with weak (normalised σ values ≤ 0.333) and strong (normalised σ values 
> 0.666) uncoupled noise (T = trajectory, N = noise). The breakpoint date is defined by the second 
alternative method described above (Type 2a boundaries). As in the main manuscript (i.e., Figures 2-
4), the normalised primary driver trajectories are apportioned into three discrete ranges: ‘low’ – 0.25-
0.35, ‘mid’ – 0.45-0.55, and ‘high’ – 0.65-0.75. For comparison with the main manuscript, this figure 
is the equivalent of Figure 4. Subplots: (A) the Lake Chilika model, primary slow driver = fisher 
population growth, additional driver: climate change and fish price; (B) the Easter Island model, 
primary slow driver = tree clearance, additional drivers: agricultural carrying capacity and tree 
mortality; (C) the TRIFFID model, primary slow driver = temperature change, additional driver: 
disturbance rate; (D) the Lake phosphorus model, primary slow driver = phosphorus, additional 
drivers: phosphorus recycling rate, phosphorus sedimentation rate. Note, the first 10,000 simulations 
of the Lake phosphorus model (subplot D) did not produce any outcomes between the 0.25-0.35, 0.45-
0.55 and 0.65-0.75 primary driver ranges within the ‘high trajectory, high noise’ scenario. Model 
timestep units are the same as in Figure S2-1. Boxplots dimensions are as Figure 2. The number of 
simulations (n) underpinning each primary driver trajectory range (i.e., low, middle, and high) in each 
of the above subplots are as follows: (A) 45, 60 and 43; (B) 82, 96 and 94; (C) 340, 330 and 315; (D) 
75, 95 and 65. 

 
Implications 
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Although the average and variance in breakpoint dates differ quantitatively under the alternative 
boundary definitions (Table S4-1), the experiments conducted here provide confidence that the 
overarching findings and implications remain robust to the type of definition used to define the 
breakpoints. First, across all four models, we find that an increase in the baseline trajectory leads to 
earlier breakpoints under both of the alternative definitions (Figures S4-1 to S4-6). Second, the 
decrease in the breakpoint date with increasing baseline trajectories retains the form of a nonlinear 
decay across all four models and both boundary definitions, whereby the breakpoint date is most 
sensitive to a unit change in the primary driver at lower trajectory levels (Figures S4-1 to S4-6). Third, 
the addition of extra drivers continues to cause breakpoints to emerge at lower levels of the primary 
driver than under the baseline scenario alone (i.e., to the left of the dashed vertical line in Figures S4-
7 to S4-12). Fourth, under both alternative boundary definitions, the earliest breakpoints occur under 
the combination of high baseline trajectories, active secondary and tertiary drivers, and relatively high 
system noise (Figures S4-3 and S4-6). Lastly, in terms of the single noise scenarios, the ramping up of 
noise leads to earlier breakpoints across all four models and both alternative definitions (Figures S4-2 
and S4-5). 
 
Table S4-1 highlights a key difference between the boundary definitions. Amongst the first 10,000 
simulations, the original ‘abrupt type-3 threshold’ identifies fewer breakpoints than the type 1a and 
type 2a methods. This is because in order to confidently date the breakpoint, the method 9 based on 
identifying when regression coefficients shift from one stable regime to another requires sufficient 
timesteps after the potential breakpoint to ascertain whether the shift was significant. As a 
consequence, a potential abrupt type-3 threshold occurring close to the end of a simulation does not 
have sufficient timesteps downstream for the model of Zeileis et al.9 to date the switch in regression 
coefficients with an adequate degree of confidence. In contrast, the two alternative boundary 
methods are not reliant on such significance tests, meaning the last timestep can be captured if it is 
the steepest change in the outcome over time or the first with an outcome value below 20% of the 
original. As a consequence, across all four models (Table S4-1), the maximum breakpoint dates under 
the type 1a and type 2a boundaries occur consistently later than under the type 3a definition.  
 

Table S4-1: Descriptive comparison of the number, average and distribution of breakpoints under 
the original (‘abrupt type-3 threshold’) and alternative breakpoint definitions across the first 
10,000 simulations in each of the four models. Note the statistics for the first 10,000 simulations 
below do not distinguish between the four different scenario types (i.e., Baseline, Multi-driver 
[e.g., Figure 2], uncoupled noise [e.g., Figure 3] and uncoupled noise plus multi-drivers [e.g., Figure 
4]). BP = breakpoint. 

Model Boundary 
definition 

No. BP Median 
BP date 

Mean 
BP 
date 

BP date 
standard 
deviation 

Maximum 
BP date 

Minimum 
BP date 

Lake 
Chilika 

Original 5287 2042 2043.4 8.45 2077 2028 

Type 1a 9768 2047 2050.3 11.1 2100 2036 

Type 2a 9768 2046 2045.8 9.45 2081 2035 

Easter 
Island 

Original 4974 574 618.4 245.7 1273 225 

Type 1a 8927 346 403.9 218.2 1496 164 

Type 2a 8927 295 359.1 205.7 1462 12 

TRIFFID Original 7778 116 146.6 80.7 424 75 

Type 1a 9283 110 147.2 89.8 500 45 

Type 2a 9283 108 143.9 87.0 500 42 

Lake 
phosphorus 

Original 4547 434 473.8 150.9 849 249 

Type 1a 7307 362 388.6 225.0 999 27 

Type 2a 4555 457 488.8 182.9 999 152 
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Figure S4-7: Scatter plots depicting the raw data producing the boxplots in Figure S4-1. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S4-8: Scatter plots depicting the raw data producing the boxplots in Figure S4-2. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S4-9: Scatter plots depicting the raw data producing the boxplots in Figure S4-3. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S4-10: Scatter plots depicting the raw data producing the boxplots in Figure S4-4. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S4-11: Scatter plots depicting the raw data producing the boxplots in Figure S4-5. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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Figure S4-12: Scatter plots depicting the raw data producing the boxplots in Figure S4-6. The dashed 
grey vertical line represents the weakest primary driver value associated with an ATDC in each plot. 
Subplots: (A) Lake Chilika model outputs, primary slow driver:  fisher population growth; (B) Easter 
Island model outputs, primary slow driver = tree clearance; (C) TRIFFID model outputs, primary slow 
driver = temperature change; (D) Lake phosphorus model outputs, primary slow driver = phosphorus 
input. Model timestep units are the same as in Figure S2-1. 
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SI-5: Cumulative Stress Versus Breakpoint Date 
 
Introduction and methods 
Systems vary in their sensitivity to driver rates and amounts of cumulative stress [e.g. Matthews et 
al.13]. Simple systems may reach a critical threshold when a specific condition or stress level is reached 
independent of driver rate. More complex, resilient systems will show different responses to stress 
levels depending on the loss of resilience caused by an inability of balancing feedback mechanisms to 
absorb stress as driver rates increase. We explore the importance of driver rate and cumulative stress 
in the breakpoint patterns observed in Figures 2 to 4 of the main manuscript. As stated in the 
Introduction, we hypothesised that an increase in the number of drivers will bring forward the timing 
of breakpoints in systems already under stress from slow drivers; as such, what are the implications 
of adding extra stresses for the overall level of stress a system can absorb before undergoing an ATDC? 
 
We explore these questions by mapping the breakpoint dates of the first 5,000 multi-driver 
simulations in each model (Figure 2, main manuscript) against the total cumulative stress that 
accumulates in each simulation until the breakpoint. The total cumulative stress measure is a simple 
cumulative sum of the normalised primary, secondary and tertiary driver values at each timestep up 
until and including the breakpoint date (as calculated by the approach detailed in Methods Section 
3.2). See an illustrative example of this calculation below, for a simulation that would be considered 
an ‘All’ scenario in Figure 2 of the main manuscript (note, the breakpoint date has been set artificially 
low in order to illustrate the general methodology): 
 
𝐵𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡 𝑑𝑎𝑡𝑒𝑖 = 4 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑑𝑟𝑖𝑣𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠𝑖,𝑡 = 0, 0.1, 0.2, 0.3 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑑𝑟𝑖𝑣𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠𝑖,𝑡 = 0, 0.05, 0.1, 0.15 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑡𝑒𝑟𝑡𝑖𝑎𝑟𝑦 𝑑𝑟𝑖𝑣𝑒𝑟 𝑣𝑎𝑙𝑢𝑒𝑠𝑖,𝑡 = 0, 0.04, 0.08, 0.12 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑖,𝑡=4 = 0.6 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑖,𝑡=4 = 0.3 

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑖,𝑡=4 = 0.24 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑏𝑟𝑒𝑎𝑘𝑝𝑜𝑖𝑛𝑡𝑖,𝑡=4 = 0.6 + 0.3 + 0.24 = 1.14 

Where 𝑖 is the simulation number (i.e., 1, 2… 5000) and 𝑡 is the timestep.  
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Results 

 

 
Figure S5-1: The relationship between the breakpoint date and the total cumulative stress up until 
the breakpoint for the individual (black) and multiple (coloured) drivers. Subplots: (A) Lake Chilika 
model, primary slow driver: fisher population growth, secondary driver: climate change, tertiary 
driver: fish price; (B) Easter Island model, primary slow driver = tree clearance, secondary driver: 
agricultural carrying capacity, tertiary driver: tree mortality; (C) TRIFFID model, primary slow driver: 
temperature change, secondary driver: disturbance rate; (D) Lake phosphorus model, primary slow 
driver: phosphorus external input, secondary driver: phosphorus recycling rate, tertiary driver: 
phosphorus sedimentation rate. 

 
Implications 
The overall distribution of points in each panel shows that the breakpoint date is negatively related to 
cumulative stress with the most significant reductions in breakpoint date associated with the smallest 
amounts of cumulative stress. This does not support the idea that the stability of these systems is a 
simple function of cumulative stress. The fan shaped patterns illustrate that the amount of tolerated 
cumulative stress is related to driver rate: low driver rates (small reductions in breakpoint dates 
towards the top of each panel) are associated with wide ranges of cumulative stress, whereas high 
driver rates (large reductions in breakpoint date) are associated with small ranges of cumulative stress. 
At low driver rates, feedback mechanisms are able to absorb the stresses from additional drivers 
proportionately more effectively than at high rates. Nevertheless, for a given level of cumulative 
stress, the presence of additional drivers tends to produce earlier breakpoint dates (variation along 
the y-axis). This implies that while additional drivers obviously produce more stress, the first order 
control on breakpoint date is the main primary driver rate that controls system resilience. For 
example, for Lake Chilika (Figure S5-1A), a total cumulative stress of 18-22 with only the primary driver 
produces an average breakpoint date of 2069; in turn, the average breakpoint dates for the same total 
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cumulative stress range but under the Secondary, Tertiary and All scenarios equal 2054, 2053 and 
2047, respectively. 
 
The slight exception is for the Easter Island model which shows that the contribution of stress from 
the tertiary driver reduces the cumulative stress associated with breakpoint date driven by the 
primary driver alone (Figure S5-1B). For example, between the breakpoint date range of 490-510 
(Figure S5-1B), the average total cumulative stress under the Baseline scenario is 56.8, whilst the 
equivalent figure is 48.2 for the Tertiary scenario (equivalent total cumulative stresses for Secondary 
and All are 87.6 and 72.9, respectively). This suggests that the rate of tree mortality has an equivalent 
or even larger impact on system resilience than the primary driver of temperature change.   
 
Our results show that systems do not collapse at a constant level of cumulative stress irrespective of 
the rate (SI-5) but rather underline the importance of driver rates14–16. 
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SI-6: Feedback Analysis – Loops That Matter 
 
Introduction and methods 
System dynamics models (SDM) are particularly adept at modelling ecosystems underpinned by 
feedback loop structures17,18. Akin to a home thermometer system, balancing or negative feedback 
loops are known to stabilise system dynamics, producing what is termed ‘goal-seeking behaviour’ over 
time. In contrast, as conceptualised by a snowball growing in mass as it runs downhill (the so-called 
“snowball effect”), reinforcing or positive feedback loops can produce runaway behaviours if left 
unabated. Critically for the approach taken below, balancing feedback loops are often given a nominal 
‘polarity score’ of -1, whilst reinforcing feedback loops are given a polarity score of +1.  
 
To further explain the distribution of breakpoint dates presented in Figures 2 to 4, we utilise the ‘Loops 
That Matter’ function (built-in to the SDM software STELLA19) to track the growth and decline of the 
key feedback loops driving system behaviours in each of the four models. In essence, the Loops That 
Matter (LTM) function describes the relative contribution of each feedback loop to model behaviour 
[full mathematical details of the approach are detailed in Schoenberg et al.20]. The LTM score for an 
individual feedback loop is calculated by multiplying together its constituent ‘link scores’ (i.e., 
connections between pairs of model variables), whereby a positive link score means that a change in 
the source (i.e., upstream) variable will cause the target variable (i.e., downstream) to change in the 
same direction, while a negative value means that a change in the source variable will cause the target 
variable to change in the opposite direction. Therefore, LTM scores for individual feedback loops can 
range between -100% and +100%, where the former would signify that a balancing feedback loop is 
responsible for 100% of model behaviour, and the latter would indicate that a reinforcing feedback 
loop is responsible for 100% of model behaviour. In the graphs below, the ‘net feedback loop strength’ 
is equal to the sum of the individual feedback scores at model each timestep. 
 
We explore how the feedback loops in each of the models strengthen and weaken across two 
experiments (see Table S6-1 for a description of the key feedback loops in each model): 
 
LTM Experiment #1: Varying the baseline driver trajectory 
Across 5000 simulations per model, we explore how the feedback loops evolve in response to an 
increase in the baseline driver trajectories (with secondary and tertiary drivers remaining switched-
off), as per the scenario funnels in Figure S2-2 (expressed numerically in Table S3-2). As per the x-axis 
bounds used to depict the boxplots in Figures 2 to 4, we visualise the simulations with normalised 
primary driver trajectories between 0.25-0.35, 0.45-0.55, and 0.65-0.75. The expectation here is that 
ramping up the growth rate of the baseline driver (i.e., steeper trajectories) will cause earlier 
collapses, which in turn will be associated with earlier growth in the relative importance of feedback 
loop(s) responsible for triggering instability in the system (e.g., reinforcing feedback loops).  
 
LTM Experiment #2: Increasing the number of drivers  
Across a separate set of 5000 simulations per model, we also investigate how adding secondary and 
tertiary drivers to the baseline influences the evolution of feedback loops underpinning system 
behaviour. In order to clearly visualise the timeseries dynamics and ensure that simulations are being 
compared across a consistent set of parameter value, we opt to constrain all driver trajectories 
between normalised values of 0.45 to 0.55, with secondary and tertiary drivers randomly switching 
on and off as per the Monte Carlo approach described in Methods Section 2. Consistent with the 
scenarios depicted in Figure 2, this approach produces ‘Baseline’, ‘Secondary’, ‘Tertiary’ and ‘All’ 
scenarios. It is expected that the addition of extra drivers will trigger the growth of reinforcing 
feedback loops earlier, which will then be associated with earlier abrupt changes in system outcomes. 
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Table S6-1: The key feedbacks influencing outcome behaviours in each of the four models. 
Key feedbacks are defined by STELLA as those which combine to explain at least 80% of total 
model behaviour over the respective model horizons (e.g., TRIFFID = 500 timesteps). 
Feedbacks denoted below with the prefix ‘R’ are reinforcing, whilst feedbacks with the prefix 
‘B’ are balancing. 

Model Feedback Description 

Lake Chilika18,21 R1 Growth in the traditional fisher population: For a given fisher 
population growth rate (‘r’) and livelihood carrying capacity, 
the number of new traditional fishers entering the lagoon at 
any given timestep is proportional to their population.  

R2 Growth in the motorised fisher population: For a given fisher 
population growth rate (‘r’) and livelihood carrying capacity, 
the number of new fishers using motorboats who enter the 
lagoon at any given timestep is proportional to their 
population.  

B1 Traditional fleet catch limitation: The number of fish the 
traditional fisher fleet can catch for a given level of effort is 
proportional to the fish population density; as the fish density 
declines, so too does the efficiency of the traditional fishing 
effort. 

B2 Motorboat fleet catch limitation: The number of fish the 
motorboat fisher fleet can catch for a given level of effort is 
proportional to the fish population density; as the fish density 
declines, so too does the efficiency of the motorboat fishing 
effort. 

Easter Island22 B1 Rat population growth: As a form of ecological carrying 
capacity, the rat population growth rate declines as the 
number of rats on the island increase. 

B2 Human population growth: As a form of social-ecological 
carrying capacity, the human population growth rate declines 
as tree clearance intensifies. 

B3 Rat-dependent tree population growth: As the tree population 
grows, so too does the population of rats, which then limits the 
tree population in future. 

B4 Clearance-dependent tree population growth: As the tree 
population grows, so too does the clearance rate, which causes 
the tree population growth rate to decline. 

TRIFFID23,24 R1 Collapse in vegetation coverage: The vegetation growth rate 
slows as the temperature increases above the optimal 
temperature for vegetation. Lower vegetation coverage 
increases the surface temperature, which further reduces the 
vegetation growth rate. 

B1 Ecological carrying capacity: Vegetation growth slows as 
vegetation fraction in the model increases. 

Lake 
phosphorus25,26 

R1 Lake water phosphorus accumulation: Reinforcing feedback 
between lake water phosphorus concentration and phosphorus 
recycling back into the water from the sediment.  
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Results 
 
LTM Experiment #1: Varying the baseline driver trajectory 

 
Figure S6-1: Timeseries outcomes from the first LTM experiment (Lake Chilika model), where the 
baseline driver strength was increased over three trajectory ranges. See Table S6-1 for descriptions 
of the two reinforcing (subplots D-E) and two balancing feedbacks (subplots F-G) responsible for 
driving the dynamics of the fish population (subplot A) over time. Subplots: (A) Timeseries of the 
modelled Lake Chilika fish population; (B) Timeseries of the primary driver (fisher population); (C) 
Timeseries of the net feedback loop strength (i.e., reinforcing minus balancing strengths); (D) 
Timeseries of percentage contribution of feedback R1 to model behaviour; (E) Timeseries of 
percentage contribution of feedback R2 to model behaviour; (F) Timeseries of percentage contribution 
of feedback B1 to model behaviour; (G) Timeseries of percentage contribution of feedback B2 to 
model behaviour. Simulations that are within ±0.5% of the median primary driver trajectory are given 
a transparency value of 1 (i.e., opaque), while all other simulations are given a transparency (alpha 
value) of 0.05 in the R package ‘ggplot’. 
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Figure S6-2: Timeseries outcomes from the first LTM experiment (Easter Island), where the baseline 
driver strength was increased over three trajectory ranges. See Table S6-1 for descriptions of the four 
balancing feedbacks (subplots D-G) responsible for driving the dynamics of the human population 
(subplot A) over time. Subplots: (A) Timeseries of the modelled Easter Island human population; (B) 
Timeseries of the normalised primary driver magnitude; (C) Timeseries of the net feedback loop 
strength (i.e., reinforcing minus balancing strengths); (D) Timeseries of percentage contribution of 
feedback B1 to model behaviour; (E) Timeseries of percentage contribution of feedback B2 to model 
behaviour; (F) Timeseries of percentage contribution of feedback B3 to model behaviour; (G) 
Timeseries of percentage contribution of feedback B4 to model behaviour. As per Figure S6-1, 
simulations within ±0.5% of the median primary driver trajectory are given a transparency value of 1 
(i.e., opaque), while all other simulations are given a transparency (alpha value) of 0.05 in the R 
package ‘ggplot’. 
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Figure S6-3: Timeseries outcomes from the first LTM experiment (TRIFFID), where the baseline driver 
strength was increased over three trajectory ranges. See Table S6-1 for descriptions of the one 
reinforcing (subplot D) and one balancing feedback (subplots E) responsible for driving the dynamics 
of the tree coverage outcome (panel A) over time. Subplots: (A) Timeseries of the modelled vegetation 
coverage; (B) Timeseries of the normalised primary driver magnitude; (C) Timeseries of the net 
feedback loop strength (i.e., reinforcing minus balancing strengths); (D) Timeseries of percentage 
contribution of feedback R1 to model behaviour; (E) Timeseries of percentage contribution of 
feedback B1 to model behaviour. As per Figure S6-1, simulations within ±0.5% of the median primary 
driver trajectory are given a transparency value of 1 (i.e., opaque), while all other simulations are 
given a transparency (alpha value) of 0.05 in the R package ‘ggplot’. 
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Figure S6-4: Timeseries outcomes from the first LTM experiment (Lake phosphorus), where the 
baseline driver strength was increased over three trajectory ranges. See Table S6-1 for descriptions 
of the reinforcing feedback (C) responsible for driving the dynamics of the lake water phosphorus 
concentration (A) over time. Note that subplot C also acts as the net feedback strength, given that 
there is only one feedback in the Lake phosphorus model. Subplots: (A) Timeseries of the modelled 
lake phosphorus levels; (B) Timeseries of the normalised primary driver magnitude; (C) Timeseries of 
the percentage contribution of the single feedback loop to the model behaviour. As per Figure S6-1, 
simulations within ±0.5% of the median primary driver trajectory are given a transparency value of 1 
(i.e., opaque), while all other simulations are given a transparency (alpha value) of 0.05 in the R 
package ‘ggplot’. 
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LTM Experiment #2: Increasing the number of drivers  
 

 

 

Figure S6-5: Timeseries outcomes from the second LTM experiment (Lake Chilika model) which held 
the baseline driver trajectory constant but added secondary and tertiary trajectories.  See Table S6-
1 for descriptions of the two reinforcing and two balancing feedbacks (subplot C-F) responsible for 
driving the dynamics of the fish population (subplot A) over time. Subplots: (A) Timeseries of the 
modelled Lake Chilika fish population; (B) Timeseries of the net feedback loop strength (i.e., 
reinforcing minus balancing strengths); (C) Timeseries of percentage contribution of feedback R1 to 
model behaviour; (D) Timeseries of percentage contribution of feedback R2 to model behaviour; (E) 
Timeseries of percentage contribution of feedback B1 to model behaviour; (F) Timeseries of 
percentage contribution of feedback B2 to model behaviour.  As per Figure S6-1, simulations within 
±0.5% of the median primary driver trajectory are given a transparency value of 1 (i.e., opaque), while 
all other simulations are given a transparency (alpha value) of 0.05 in the R package ‘ggplot’. 
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Figure S6-6: Timeseries outcomes from the second LTM experiment (Easter Island) which held the 
baseline driver trajectory constant but added secondary and tertiary trajectories.  See Table S6-1 for 
descriptions of the four balancing feedbacks (subplot C-F) responsible for driving the dynamics of the 
human population (subplot A) over time. Subplots: (A) Timeseries of the modelled Easter Island human 
population; (B) Timeseries of the net feedback loop strength (i.e., reinforcing minus balancing 
strengths); (C) Timeseries of percentage contribution of feedback B1 to model behaviour; (D) 
Timeseries of percentage contribution of feedback B2 to model behaviour; (E) Timeseries of 
percentage contribution of feedback B3 to model behaviour; (F) Timeseries of percentage 
contribution of feedback B4 to model behaviour.  As per Figure S6-1, simulations within ±0.5% of the 
median primary driver trajectory are given a transparency value of 1 (i.e., opaque), while all other 
simulations are given a transparency (alpha value) of 0.05 in the R package ‘ggplot’. 
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Figure S6-7: Timeseries outcomes from the second LTM experiment (TRIFFID) which held the 
baseline driver trajectory constant but added secondary and tertiary trajectories.  See Table S6-1 for 
descriptions of the one reinforcing and one balancing feedback (subplot C-D) responsible for driving 
the dynamics of the vegetation coverage (subplot A) over time.  Subplots: (A) Timeseries of the 
modelled vegetation coverage; (B) Timeseries of the net feedback loop strength (i.e., reinforcing 
minus balancing strengths); (C) Timeseries of percentage contribution of feedback R1 to model 
behaviour; (D) Timeseries of percentage contribution of feedback B1 to model behaviour. As per 
Figure S6-1, simulations within ±0.5% of the median primary driver trajectory are given a 
transparency value of 1 (i.e., opaque), while all other simulations are given a transparency (alpha 
value) of 0.05 in the R package ‘ggplot’. 
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Implications 
The feedback loop dynamics depicted in Figures S6-1 to S6-8 help explain the mechanisms driving the 
breakpoint date timings observed in Figures 2 to 4 (main manuscript). Across each of the four models, 
Loops That Matter (LTM) analysis indicates that changes in the critical feedbacks driving system 
stability may be induced earlier either by (a) ramping up the trajectory of the primary stress (Figures 
S6-1 to S6-4), or (b) adding secondary and tertiary drivers to the system on top of the primary/baseline 
(Figures S6-5 to S6-8). 
 
These patterns are clearest in the Lake phosphorus model, with only one feedback loop driving the 
outcomes dynamics. Ramping up the trajectory of phosphorus input into the lake produces earlier 
spikes in the feedback polarity and strength (e.g., timestep ~870 for the 0.25-0.35 scenario, Figure S6-
4), with the gradual increase in lake water phosphorus concentration and phosphorus recycling over 
time eventually producing a sudden switch to a eutrophic water state. The equivalent pattern also 
exists for the multi-driver experiment, with the sharp switch to a reinforcing feedback occurring 
earliest under the ‘All’ scenario (i.e., timestep 450, Figure S6-8D).  
 
The feedback dynamics of the TRIFFID model are consistent with the Lake phosphorus model, in both 
the baseline and multi-driver experiments (Figures S6-3 and S6-7, respectively). The increase in the 
primary driver (temperature) gradually excites the reinforcing feedback over time (Table S6-1), with 
faster changes in primary driver trajectory leading to earlier onsets in net reinforcing feedback 
conditions (Figure S6-3C). The abrupt collapse in vegetation coverage (Figure S6-3A) corresponds to 
this switch from net balancing to net reinforcing feedback conditions, as the loss in vegetation 
contributes to warmer temperatures, which further contribute to vegetation loss.  
 

 

 
Figure S6-8: Timeseries outcomes from the second LTM experiment (Lake phosphorus) which held 
the baseline driver trajectory constant (but added secondary and tertiary trajectories.  See Table S6-
1 for descriptions of the one reinforcing and one balancing feedback (subplot C-D) responsible for 
driving the dynamics of the vegetation coverage (subplot A) over time.  Subplots: (A) Timeseries of 
the modelled lake phosphorus levels; (B) Timeseries of the percentage contribution of the single 
feedback loop to the model behaviour. As per Figure S6-1, simulations within ±0.5% of the median 
primary driver trajectory are given a transparency value of 1 (i.e., opaque), while all other simulations 
are given a transparency (alpha value) of 0.05 in the R package ‘ggplot’. 
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Similar to the TRIFFID and Lake phosphorus models, the timing of the collapse in the human 
population in the Easter Island model corresponds to the net feedback strength becoming less 
negative (i.e., more positive; Figures S6-2 and S6-6). However, with only four balancing feedbacks in 
the model (Table S6-1), the individual feedback dynamics in the Easter Island model are different from 
the TRIFFID and Lake phosphorus models. As the human population grows towards the carrying 
capacity (Figure S6-2A), we see a strengthening in the balancing feedback which limits tree growth in 
response to clearance (Figure S6-2G). In turn, instability in the strengths of the balancing feedbacks 
rises (Figure S6-2D-G) once the land has been cleared beyond a threshold point, with the ecological 
feedbacks (e.g., rat growth and tree growth) having to reorganise with the eventual loss of the human 
population. The same pattern emerges under the multi-driver runs in the second LTM experiment, 
with earlier instability in the ‘All’ and ‘Tertiary’ scenarios associated with earlier collapses in the human 
population (Figure S6-6). 
 
Of the four ecosystem models, the Lake Chilika model has the most complex feedback structure and 
dynamics18,21. During the period of relative fish population stability (approximately 2002-2030, Figure 
S6-1A), the model is dominated by the two reinforcing feedbacks (Table S6-1) which drive the growth 
in the traditional and motorised fisher populations over time (Figure S6-1B). As the fisher populations 
increase, producing higher aggregated fishing efforts (i.e., from more fishing boats), the balancing 
feedback limiting the effectiveness of motorised fishing efforts (B2, Table S6-1) starts to strengthen in 
response (Figure S6-1F). In contrast, the balancing feedback limiting traditional fishing efforts remains 
relatively stable (B1, Table S6-1), owing to (a) only ~20% of fishing boats being traditional from 2020 
onwards, and (b) the inferior catch capacities and mobilities of traditional boats. Eventually, the fishing 
efforts associated with the elevated fisher populations reach unsustainable levels, triggering a 
collapse in the fish population (which happens earlier under higher rates of human population growth 
[i.e., the primary driver in the Lake Chilika model]). The subsequent collapse in the fish population 
limits the number of fisher livelihoods that can be supported by the fishery, and the feedback 
strengths of the reinforcing feedbacks (R1 and R2) both fall to 0% as the fisher populations shrink in 
response.    
 
This analysis has attempted to shed light on the feedback loop dynamics behind the ATDC dynamics 
within the four ecosystem models. For the relatively small and simple TRIFFID and Lake phosphorus 
models, the ATDC dynamics can be clearly attributed to the growth in a single positive feedback (Table 
S6-1). This growth tends to occur earlier under scenarios with steeper trajectories of the primary 
driver, and when the primary driver is combined with additional secondary and tertiary trajectories. 
However, we tend to see messier feedback trajectories and dynamics in the larger and more complex 
Easter Island and Lake Chilika models, owing in part to the interconnections between feedback loops 
which grow and respond to each other. For example, at Lake Chilika, the balancing feedback of 
declining effectiveness of motorboats, as the fish population declines, is partly coupled to the 
reinforcing feedback of fisher population growth rate that drives the growth in the motorised fishing 
population but the collapse in the fish population.  
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