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The number of emerging tree diseases has increased rapidly in recent times,

with severe environmental and economic consequences. Systematic regulat-

ory surveys to detect and establish the distribution of pests are crucial for

successful management efforts, but resource-intensive and costly. Volunteers

who identify potential invasive species can form an important early warning

network in tree health; however, what these data can tell us and how they

can be best used to inform and direct official survey effort is not clear.

Here, we use an extensive dataset on acute oak decline (AOD) as an oppor-

tunity to ask how verified data received from the public can be used.

Information on the distribution of AOD was available as (i) systematic regu-

latory surveys conducted throughout England and Wales, and (ii) ad hoc

sightings reported by landowners, land managers and members of the

public (i.e. ‘self-reported’ cases). By using the available self-reported cases

at the design stage, the systematic survey could focus on defining the bound-

aries of the affected area. This maximized the use of available resources and

highlights the benefits to be gained by developing strategies to enhance

volunteer efforts in future programmes.

1. Introduction
The threat to natural environments and commercial crops from emerging plant

pests and pathogens is growing, due to both increased global trade and a chan-

ging environment [1–4]. Britain’s trees and woodlands are no exception, with

many high-profile issues including acute oak decline (AOD) [5,6], Hymeno-
scyphus fraxineus on ash [7,8], Phytophthora ramorum on larch [9,10], oak

processionary moth Thaumetopoea processionea [11,12] and the Asian long horn

beetle Anoplophora glabripennis [13]. The combined effect of these pests and

diseases is having severe environmental and economic consequences [14–16].

In order to limit the negative impact of pests and disease outbreaks, it is impor-

tant to quickly understand their distribution and impact, so that control can be

implemented in an expedient manner [17,18]. Regulatory surveys to detect and

establish the distribution of pests and pathogens are an important first step in

this process, but they are resource-intensive and costly [19]. Land managers and

regulatory authorities face the prospect of visiting large areas of land in order to

detect new threats or monitor existing problems. This is especially true in forested

environments, where cropping rotations cover many decades and management is

less intensive than in an agricultural or horticultural setting [20]. Detection of new

threats is further limited by a complex heterogeneous host landscape, which

contains large areas of unmanaged woodland that is hard to access [21,22].

Advances in technology, including smartphone apps for symptom recog-

nition and reporting, have enabled the collection of species distribution data
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by members of the public to occur with increasing frequency

and accuracy [23]. This self-reported information offers the

potential to bolster regulatory surveys, which operate with

increasingly constrained resources due to the need to respond

to a growing list of pests and diseases. However, what self-

reported sources tell us about the distribution of pests and

diseases is not clear. Detections from members of the public

are provided at times and places that suit them, which inher-

ently introduces bias through uneven sampling effort across a

landscape [24]. For example, it could be that more positive

cases of diseases are reported from areas where there is

already heightened awareness, such as around known out-

break foci. However, useful information remains contained

within these reports and, given the costs associated with

regulatory surveys, it is becoming increasingly necessary to

develop methods to work with such data.

Here, a publicly funded survey programme for AOD in

England and Wales presents a unique opportunity to ask if

data reported from members of the public can be used to

accurately estimate distribution of the affected woodland. In

2013, AOD had been documented by landowners in wood-

lands across large areas of southern England [25]. However,

no formal surveys had been conducted, and the prevalence

and distribution of AOD was unquantified. AOD affects

both species of native oak in Great Britain. Quercus robur
and Quercus petraea represent the largest component of

native woodland in Great Britain [26]; as such the potential

threat to woodland composition is severe. AOD is part of a

wider complex of oak decline agents [27], but has distinctive

stem symptoms [5] that enable surveyors to detect potential

outbreaks during ground-based surveys [28]. Affected trees

are characterized by necrotic lesions in the phloem tissue,

which weep dark liquid through cracks in the bark. A suite

of necrogenic bacteria are associated with the lesions [6,29]

and signs of the native Buprestid beetle Agrilus bigutttatus
are frequently found on affected trees [30].

Given highly noticeable diagnostic symptoms, a ground-

based visual survey is practical for AOD, but represents a

costly option due to the large area of host woodland. In Eng-

land and Wales, there are 192 800 ha of oak scattered among

1 039 000 ha of broadleaf woodland [26]. In order to assess

the infection status of a woodland, trained surveyors must

travel to each location and spend time searching for symp-

toms. Clearly, in these situations, a complete census is not

possible, and a representative systematic sampling plan is

required. By integrating citizen-reported data at the design

stage, the systematic survey could maximize the use of avail-

able resources and focus on defining the boundaries of the

affected area. The survey design implemented in this study

created a subset of landowner reports at equal intensity

to the survey effort, but this still leaves much valuable

information unused. To make use of all data, additional

interpolation methods were devolved to predict the affected

area and enable samples to be inflated with additional

positive detections without a loss of accuracy. This highlights

the importance of developing novel strategies tailored to

volunteer programmes.

Only visiting a small sample of the potential hosts means

that the infection status of most of the woodland is unknown

and there is a need to estimate the AOD distribution from a

sample. The interpolation procedure developed in this

study is based on epidemiological principles, and offers an

alternative to geostatistical techniques to estimate the

distribution of diseased plants at unsampled locations. Par-

nell et al. [31] and Luo et al. [32] developed a method that

is suitable for use with records of infection at the level of indi-

vidual hosts within a field or orchard. By accounting for

disease dispersal and spatial structure of host locations, this

method accurately predicts infected areas. Here, the use of

the method is extended beyond local-scale, host-to-host trans-

mission to predict disease distributions across wider

landscapes using grid data, where each cell has an estimate

of host abundance.

The objectives of this study are to:

— Assess the accuracy of the stochastic method in relation to

geostatistical alternatives across hypothetical surveys with

a range of sample sizes.

— Test the effect of using citizen science data, using simu-

lated samples with inflated numbers of positive disease

sightings.

— Produce a map showing the estimated distribution AOD

in Great Britain.

2. Material and methods
(a) Principles of the survey design
The survey aimed to estimate a national-scale distribution from a

limited sample which was constrained by a fixed budget for

survey time. To achieve this aim, we investigated the potential

to integrate a citizen science dataset collected by Forest Research,

which contained landowner reports of AOD-affected sites. As the

landowner reports constituted presence-only data, it was unclear

how representative they were of the actual AOD distribution.

Therefore, a preliminary survey was designed, which evenly

spread effort across England and Wales. The survey results

were used to test the citizen science data and examine whether

AOD was in fact present more widely in the landscape.

A second survey was informed by data from both the land-

owner reports and the preliminary survey. The design used the

principles of risk-based sampling, which have been shown to

increase the number of positive detections and reduce survey

costs [33]. This study implemented risk-based sampling in the

simplest possible manor, by defining a limited survey area

which surrounded the known AOD distribution. The survey

design proceeded in two stages first selecting 10 km by 10 km

squares (hectads) and then identifying individual woods

within the selected hectads. Selection of hectads was indepen-

dent of the existing AOD data, although hectads that were

already known to contain AOD-affected woodlands were not

resurveyed, but simply retained as a subsample of already posi-

tive locations. This reduced the amount of time required on site,

effectively giving a larger survey without increasing its cost. The

survey design contained hectads that were distributed randomly;

however, the subsample had a false-negative rate of zero (there

was no chance that symptoms were present and missed during

the site visit), so a bias could be present due to imperfect

detection during site visits.

To assess the impact of including all the citizen science

reports on the predicted AOD distribution, we first needed to

develop an analysis method to interpret the data. Once this

interpolation method was available, we could assess the impact

of including additional landowner reports. The landowner

reports only indicated the presence of AOD, so the survey results

needed to be simplified to a binary score to be comparable. The

impact of using only presence/absence data and including

additional citizen science detections was quantified using

interpolation methods and test datasets.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170547

2

 on October 31, 2017http://rspb.royalsocietypublishing.org/Downloaded from 

http://rspb.royalsocietypublishing.org/


The survey design was aided by a collaboration with the

Forestry Commission’s National Forest Inventory (NFI). This

large-scale survey began in 2009 and set out to visit 15 000

(1 ha) plots to assess the UK’s woods and forests, although it

was only partially through its first cycle in spring 2014 when

our survey was designed [26,34]. The use of these sample plots

allowed surveyors to target oak woodland and reduce the time

spent searching for host trees to survey. This collaboration also

enabled the provisional survey findings to be used to estimate

a host abundance map for use in the AOD distribution

modelling.

Below, we first outline the collection of data on AOD cases

from both a large dataset of self-reported cases and from

two systematic surveys conducted by Forest Research across

England and Wales. We then describe how an estimated map

of oak distribution across England and Wales was constructed,

before describing a method to estimate the probability of AOD

occurrence at unsampled locations. Finally, we test the inter-

polation methods using data from comprehensive monitoring

programmes of disease outbreaks on citrus, which contain

complete census information.

(b) Acute oak decline distribution data
The Forestry Commission operates a Tree Health Diagnostic and

Advisory Service (THDAS) that responds to reports sent in by

landowners and members of the public. Currently, most new

cases arrive via an online tool TreeAlert (http://www.forestry.

gov.uk/treealert). On receipt of new reports, causal agents are

attributed using descriptions and photographs. For AOD,

causal agents are confirmed using real-time PCR protocols. All

AOD records from April 2006 were collated from the database

(a total of 174 records were received before March 2014 when

the main survey was designed).

To make an initial assessment of the quality of THDAS data,

a preliminary survey of 116 woodlands was conducted in 2013.

This placed equal survey effort across all areas of England and

Wales, focusing effort locally in areas of high oak abundance,

using coarse 10 � 10 km square (hectad) data from the National

Inventory of Woodland and Trees [35]. The preliminary survey

detected 17 additional AOD symptomatic sites, all of which

were in close proximity to the self-reported cases (figure 1;

electronic supplementary material A).

With this in mind, the 2014 survey was designed to improve

the definition of the boundaries of the AOD-affected area

(figure 1). This was achieved by focusing the survey effort

closer to existing sightings and refining survey protocols to

increase the number of sites visited. Selection of woodland for

survey took place in two stages: first, hectads were selected;

second, woodland blocks containing oak were selected at

random within the hectad.

An initial step in the design of the 2014 survey was to reduce

the area under consideration by defining a buffer region around

all known positive sites. The maximum nearest-neighbour

distance between any two sites within the 191 known AOD-

positive woodlands (approx. 75 km) was used to define a

radius around all the positive detections (figure 1a). The outer-

most edge of all the circular areas was used to delimit the

extent of the survey area. In this way, the survey design used

the distance to the most isolated outbreak and looked the same

distance beyond all affected sites. All hectads that intersected

the buffer were selected and considered for selection

(figure 1b). The area was split into (50 � 50 km) squares. These

squares were used to stratify random sampling with up to five

hectads selected from each. The number of hectads selected in

each square was proportional to the land area that fell within

the buffer zone, so that approximately a 20% sample was main-

tained in each square. Stratification spread survey effort more

evenly across the area than would have been expected from a

simple random selection. Selection considered all hectads that

contained Forestry Commission NFI survey sites [26] that con-

tained more than 10% oak area and oak with diameters greater

than 15 cm (to exclude recent plantings). If selected squares

already contained AOD positives, the locations of these squares

were recorded, but they were not surveyed. This created a sub-

sample of THDAS reports that could be used in conjunction

with the survey results for analysis. The idealized survey

design would have resulted in the selection of 207 hectads; the

actual number was slightly lower (198 hectads) due to the avail-

able NFI site data in some areas that contained low woodland

cover (for example, across the fens in East Anglia). Of the

selected hectads, 38 already contained AOD-positive sites and

so survey effort was focused in the remaining 160 locations.

The inclusion of the AOD-positive subsample increased the

percentage of hectads that could be sampled from 13.7 to 17%.

Specific woodlands for survey were selected from the NFI

dataset, as these were known to contain oak at the abundance

levels described above. Within hectad, a random selection was

conducted from all available sites. Where permission could not

be gained from the landowners of these sites, replacements

(a) (b)

Figure 1. Survey design stages. (a) All 191 AOD-positive locations known in 2014, the black dots represent self-reported cases and discoveries made during the
preliminary 2013 survey are indicated by stars. The white area shows the buffer region used for survey design (the area of land adjacent to all positive sites, to a
distance defined by the maximum nearest neighbour distance between all AOD detections). (b) Elements of the survey design. The large squares with thick black
lines represent the 50 � 50 km squares. All hectads intersecting the buffer are shown in white, except those selected for survey which are appear filled: the 160
selected for survey shaded in red (grey in greyscale version) and the 38 selections that already contained AOD detections shaded in black. (Online version in colour.)
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were found through collaboration with the woodland trust,

national trust, wildlife trusts, forestry commission, local councils

and private landowners—this later step was needed in appro-

ximately one-third of selected squares in 2013, but only 19% of

hectads in 2014. Survey locations were found in 158 squares, as

no replacement could be found in the final 2 hectads. AOD

survey data were collected between August and September 2014.

(c) Oak host map
Oak abundance was estimated across the survey area using two

data sources: one that recorded the area of broadleaf woodland

and a second estimating the proportion of oak within a sample

broadleaf woodland. The area of broadleaf woodland was calcu-

lated for a 1 km by 1 km grid using shapefiles prepared by the

NFI, which record the extent of all woodland (larger than

0.5 ha) across the UK [34]. A second dataset included provisional

results from the ongoing NFI survey [26]; this included the abun-

dance of oak within 5476 1 ha survey squares across England and

Wales. Data recorded area of native oak species (Q. robur and

Q. petraea) and the total area of broadleaf species within each

1 ha sample square, as estimated by the surveyors. As part of

the data-sharing agreement, survey site locations were general-

ized to give only the hectad that contained the site and

required smoothing to fill gaps. The final estimate of oak

abundance (hectares of oak) was generated for a smaller grid

sizes using the product of the broadleaf area and the proportion

of oak within broadleaf area (see electronic supplementary

material C for full methods).

(d) Estimating the distribution of acute oak decline
A statistical method was developed to estimate the distribution

of AOD across England and Wales, given the findings of the

survey. This used epidemiological principles of dispersal and

transmission in conjunction with the estimated host distribution

to interpolate between survey points into areas that had not been

sampled. The approach builds on a previous method to estimate

the intensity of disease across individual host plants [31,32].

The method uses an objective function to estimate the

number of infectious agents arriving at a map square, or cell

(Yi), using: the infection state of each of the other cells, Pj; the dis-

tance between cells, dij; the host abundance for each cell across

the landscape; and an exponential dispersal kernel (equation

(2.1)). The closer two cells are to each other, the more likely infec-

tious agents will disperse between them. The area of available

host within each source cell, Hostj, will influence the number

of transmissible units that could disperse from that cell. If there

is more host area, there is potentially a bigger outbreak. Finally,

the amount of host in the target cell, Hosti, will affect how likely

infections are to occur. The interpolation process requires two

parameters to be estimated from the data: a, the transmission

parameter; and b the dispersal parameter. Yi is then transformed

to give a probability of host i being infected, Pi, using the first

term of the Poisson distribution—the probability of no infection

given mean Yi (equation (2.2)).

Yi ¼ a Hosti

XP

j
Host j expð�b dijÞ ð2:1Þ

and

Pi ¼ 1� exp(� YiÞ: ð2:2Þ

At the outset, infection states are only available for surveyed

locations. For all cells without survey data, the probability of

infection must be estimated. The probability of infection is

updated using a stochastic process that selects maps cells at

random before recalculating Pi using equations (2.1) and (2.2).

Once a cell is updated, the program checks to see if the change

improves the map by assessing how well it fits with results at

the surveyed locations. The objective function calculates the

expected infection probabilities at each surveyed location, with

the absolute difference between the observed and estimated

values combined across all survey locations to give the sum of

absolute error (SAE). If SAE is reduced, the update is retained

in the final map. Cells within the map continue to be selected

and updated until SAE stabilizes (when the decrease was less

than 0.0001 across the last 5000 cell updates, SAE was judged

to be stable and the programme finished). This process is

repeated for different values of a and b, to estimate the optimal

parameter values. During this process, each parameter set was

repeated to generate 100 realizations of the predicted map, and

the average SAE was calculated across realizations and used to

compare parameters. The optimal parameter combination was

deemed to be the one that resulted in the lowest average SAE,

once updates had completed (full methods are described in

electronic supplementary material B).

(e) Testing the interpolation approach and justification
for survey design

To fully test the survey methods and interpolation procedures

described above, it is necessary to have an accurate dataset that

contains all diseased and healthy trees within the landscape.

The AOD reports only provide information from a sample of

the available woodlands, so an alternative is required. Disease

outbreaks on citrus have been the focus of extensive surveys

and monitoring efforts, which provide the ideal test datasets.

The census data allow for simulated surveys to be designed

and conducted, but most importantly enables predicted maps

to be directly compared with observed disease records.

Simulated survey locations were generated within the citrus

datasets and observed prevalence at these locations was used as a

sample for further testing. Using this method, repeated samples

could be generated and analysed to assess the quality of predictions.

Initially, samples were analysed using both the stochastic method

and standard geostatistical techniques to compare the quality of pre-

dicted maps. Comparisons were made across a range of sampling

intensities (visiting between 4 and 24% of locations containing

host trees) using both random selection and stratified approaches.

A second series of tests was conducted to assess how to make

the best possible predicted map from a given survey sample.

A total of 179 locations were selected using a stratified design

that mirrored the AOD survey. Predicted maps were generated

for prevalence data and these were compared when only

presence/absence information was used for each location. This

test is important because landowner reports only indicate disease

presence. The impact of including additional landowner reports

was assessed by inflating each sample with additional positive

detections. The additional ‘landowner’ reports selected either as

a random sample of locations with infected trees or as a biased

sample where detection was more likely in high-prevalence

locations. Both strategies were assessed as two intensities: includ-

ing either 29 additional infected locations or 145 (1% or 5% of

all infected squares, respectively; full methods can be found in

electronic supplementary material D).

3. Results
(a) A distribution map for acute oak decline
The 2014 survey resulted in an additional 22 AOD detections

(figure 2a). In addition, a further 33 self-reported cases

arrived before March 2015 and were included in the final

dataset for analysis (figure 2b). These included three in sur-

veyed hectads where AOD was not detected during the

survey. This highlights the issue of imperfect detection;

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170547

4

 on October 31, 2017http://rspb.royalsocietypublishing.org/Downloaded from 

http://rspb.royalsocietypublishing.org/


even within selected survey hectads, there remains a large

area of woodland that was not surveyed (creating a false-

negative rate). The survey process increased awareness of

AOD among the local landowners and Forestry Commission

staff, and may have exaggerated reporting in these areas,

but this demonstrates the added value that citizen scientists

can provide.

The final estimate of the AOD distribution (figure 3) was

generated on a 5 � 5 km grid using 246 positive locations

(that fell in 208 grid cells) and 137 negative sites (each in a

unique cell). In total, 133 of the positive locations were not

in survey selected squares, but as landowner reports and

survey detections had similar distributions, the data could

be combined (see electronic supplementary material A). The

final AOD map estimates that 2269 of the 5 � 5 km cells had

non-zero values. This equates to an area that is likely to contain

AOD-affected woodland of 56 725 km2, or approximately 38%

of England and Wales.

(b) Testing the interpolation approach and justification
for survey design

The simulated surveys show that the stochastic method gives

significantly better predicted maps than kriging (electronic

supplementary material D, figure S1). Much of the improve-

ment is due to its ability to define the extent of the infected

area, rather than producing a long tail of ever-decreasing

probabilities of infection. Unsurprisingly, predicted maps

are improved by increased numbers of survey locations:

with more data available both methods achieve better

estimates. Stratification of survey samples showed no signifi-

cant improvement in map quality when compared with

purely random selections. However, regardless of this find-

ing, stratification was used in the AOD survey design to

ensure even coverage.

Predicted maps are most representative of observed epi-

demics when map cell size is small and not aggregated

with neighbours to reduce gaps between surveyed cells.

Most importantly, conversion of prevalence to simple pres-

ence/absence data was not detrimental to map accuracy; in

fact, the latter actually improved the prediction. Finally, the

addition of extra positive detections to sparse survey samples

(up to 145 additional survey points, which equates to 5% of

all infected locations) improved the quality of the predicted

maps (electronic supplementary material D, figure S2). In

these tests, the overall survey size (179) is comparable with

the AOD survey, and the number of additional positive

detections is similar to the number of extra locations from

landowner reports.

4. Discussion
Self-reported data received from landowners and members

of the public have enabled a survey for AOD to include

more data points than there were resources to visit. The

survey method developed in this study involves a simple

subsampling approach that can be used to combine pre-

existing self-reported data with structured surveys; this

targeted official survey effort into areas where new discov-

eries could be made. This approach offers the potential to

improve coverage and/or reduce costs of the surveys in the

future. Unstructured data alone have been shown to give

poor estimates of population sizes [36], although when data-

sets are large enough, positive-only reports can be used

successfully [37]. For AOD, a survey was designed around

the landowner data to add a structure that makes landowner

(a) (b)

Figure 2. Results from the 2014 survey. (a) The locations of all survey sites and selected hectads that already contained AOD reports (black squares). Sites where AOD was
detected are shown as turquoise stars and those without symptoms are shown using purple asterisks (grey in greyscale version). (b) All self-reported cases used in the final
analysis (black dots). The locations of selected squares that were not surveyed are again shown outlined in turquoise (grey in greyscale version). (Online version in colour.)

AOD risk
high: 1

low: 0

Figure 3. Final prediction of area at risk from AOD. Dark brown areas have a
probability of infection of 1 and white areas 0; all shades in between rep-
resent intermediate probabilities of infection (with a linear relationship
from maximum to minimum; see legend for scale). (Online version in colour.)
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reports useful in later analysis. Similar approaches have been

applied to bird surveys in Australia, although these predicted

volunteer behaviour and directed official effort away from

locations likely to be visited by the public [38]. Previous

attempts to use self-reported data to investigate pest and

disease problems have either focused on assessing the

probability of detection to offset bias [11] or used a structured

survey design and directed volunteers to the appropriate

locations [23].

The subsampling method alone is wasteful, as it only uses

some of the available reports. For AOD, only 27.3% of

squares with landowner reports were included in the sub-

sample. By developing an interpolation method in parallel

with the survey design, this data loss has been prevented

and all the self-reported cases could be used to estimate the

AOD distribution. Extensive testing with citrus datasets has

shown that samples inflated with additional positive detec-

tions produce better quality predicted maps. These results

are based on very sparse sampling effort and it should

perhaps come as no surprise that additional data points

improve predictions. In the case of AOD, analysis was

aided by the presence of limited bias in the landowner

reports, which shows the importance of effective engagement

activities and accessibility of information to the public.

Further research is required to understand the potential

impact of biased samples on map predictions and to optimize

methods for wider application. The latter is likely to require

bespoke solutions across a variety of disciplines that aim to

interpret spatial distributions. Here, we use epidemiological

principles to guide our methods, but similar dispersal

processes may influence other spatial associations.

The stochastic method assessed in this paper showed

improved predictive power compared with standard geostatis-

tical techniques. These findings at the landscape scale are

further supported by previous trials with this technique at

the level of individual trees [31,32]. The method is transferable

because it relies on general principles and does not require

specific knowledge of the system in question. Predicted maps

generated from presence/absence data showed similar

trends and distributions to those generated with additional

prevalence data; in fact, the former had significantly improve-

ments in k scores. Similar trends have previously been shown

for species distributions when predictions have been

compared using either abundance or occupancy [36]. This

finding greatly simplified the process of combining landowner

reports with the data collected during the structured survey.

The quality of predicted maps was improved by increased

sample sizes, with surveys that covered over 20% of the host

area most effective. This result is complemented by previous

work [31]. However, given a sample of fixed size, maps

were most accurate at smaller grid sizes that more closely

represented the area covered in the survey sample.

Information gathered by untrained surveyors could be

reliably included in the final analysis due to verification

processes undertaken by THDAS at Forest Research. Further,

the successful discovery of AOD-affected woodland is likely

to have been aided by the presence of easy to detect symp-

toms. Observation skills and expertise of surveyors have

been shown to be more important when targets are cryptic

or difficult to identify [39]. Untrained surveyors have pre-

viously been shown to have provided reports biased

towards urban areas [40]. However, this should have been

reduced in the case of AOD, due to engagement activities

and publications designed to inform landowners and man-

agers who work in woodlands in all situations. Despite this

effort, much of the oak grown in Great Britain will not

have been visited by those with an awareness of AOD.

The findings of this study suggest that citizen science can

be incorporated into survey design successfully. This process

is simplified when data reporting takes place without bias

across the survey area. Investment in identification guides

and engagement with the public will increase awareness

and reporting levels. Initial surveys should aim to validate

the distribution of citizen reports by visiting locations

across the wider landscape. Designed surveys should aim

to provide a balanced structure that can incorporate

additional citizen science reports. Future studies that aim to

understand bias in the distribution of reports could further

improve survey design by focusing effort in areas unlikely

to be visited by citizen scientists.

Data accessibility. Data from this study are available in the form of a
5 � 5 km grid showing survey results, this is the resolution used in
our final analysis and is sufficient to maintain confidentiality for indi-
vidual landowners whose woodlands were visited during the survey
(http://dx.doi.org/10.5061/dryad.18157 [41]). The National Forest
Inventory woodland map is available for download from the Forestry
Commission website (https://www.forestry.gov.uk/inventory). The
oak abundance data were made available by the NFI for use in this
study, but do not belong to the authors. The first phase of the NFI
was completed in 2015 and species distribution maps based on the
full dataset are currently being prepared for release independently
of the authors of this paper.
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