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Abstract
1. Species response traits mediate environmental effects on species distribution. 

Traits are used in joint and multispecies distribution models (JSDMs and MSDMs) 
to enable community- wide shared parameters that characterise niche filtering 
along environmental gradients. Multispecies machine learning SDMs, however, 
do not use traits as their inclusion requires an additional taxonomic dimension 
that is incompatible with their usual tabular inputs. This has confined trait media-
tion in SDMs to hierarchical Bayesian models. Here we provide a novel artificial 
neural network (ANN) architecture that solves this dimensionality problem.

2. Our ANN includes species traits (via a time distributed layer) and is therefore 
able to identify not only species- specific responses to the environment, but also 
shared responses across the community that are mediated by species traits. 
Model performance evaluated at the species level not only quantifies the reli-
ability of species predictions, but also their departure from an average response 
dictated by traits only.

3. We apply our model to two unique long- term spatio- temporal of butterfly and 
moth datasets collected across the United Kingdom between 1990 and 2019. 
In addition to species traits, predictors include numerous metrics derived from 
weather, land- cover and topology data. For butterflies and moths we show con-
vincing model performance for classifying species occupancy. We use SHAP 
(Shapley Additive exPlanations) to explain the ANN and show how trait- mediated 
and species- specific responses can be approximated, hence yielding ecological in-
sights on the key drivers of species distribution. We highlight a range of drivers of 
change that determine occupancy, including wind, temperature as well as habitat 
type.

4. We demonstrate that a trait- based approach can be encoded as an ANN by using 
a time distributed layer. This brings ANNs unmatched predictive capabilities to 
the field of MSDMs, at the same time of lifting their reputed drawback of poor 
explainability.
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1  |  INTRODUC TION

The geographic distribution of species defines local community 
compositions that result from complex assembly processes. These 
compositions are shaped by biotic and abiotic filters that can leave 
predictable signals on species distributions patterns (Münkemüller 
et al., 2020). Building on those signals, we can investigate the driving 
forces affecting species distribution along environmental gradients, 
paving the way to further understanding of global change impacts 
on observed biodiversity shifts. In this regard, quantifying effects of, 
for example, intensified land use, climate change, pollution or novel 
pests and pathogens constitute significant steps towards the preser-
vation of ecosystem services and conservation in general.

The underlying mechanisms of species distribution are ideally 
explored through mechanistic models, yielding causal understanding 
of the rules and trends in biodiversity (see e.g. Kempel et al., 2015). 
The interactive nature of those mechanisms, however, calls for holistic 
modelling approaches which conflict with the need for keeping pa-
rameters identifiable by limiting model complexity and colinear inputs. 
Although they are data hungry, high- throughput correlative methods 
are less affected by this limit. They can search through data, filtering 
for patterns prior to any attempt at deciphering the system mechanis-
tically, and as such have been advocated as powerful tools enabling 
the subsequent investigation of causal links (Baker et al., 2018).

The huge number of parameters involved in putative community 
assembly processes is also troublesome for statistical models. Yet, 
thanks to hierarchical structures, Bayesian approaches that build on 
Markov chain Monte Carlo (MCMC) methods are able to deal with 
this complexity and to explain community compositions (Bystrova 
et al., 2021; Ovaskainen & Abrego, 2020; Tikhonov et al., 2020; 
Zhang et al., 2020). Still, a significant prior filtering of environmental 
inputs may be necessary for the MCMC to converge with reason-
able computing resources. In regard of the increasing availability of 
remote sensing environmental data, such prior filtering is not neces-
sarily detrimental as it protects the user against overfitting, yet it de-
mands knowledge for selecting what information to include or not.

Key elements in linking environment and species distribution are 
species traits. Traits are discrete or continuous descriptors of species. 
Response traits mediate niche filtering along environmental gradients, 
which drives groups of species into community compositions. Joint and 
multispecies distribution models (JSDMs and MSDMs) can explicitly in-
clude these species- level, community- wide response traits to predict 
species occurrence (or abundance) and elucidate functional insights 
(Ovaskainen et al., 2017; Pollock et al., 2012). These insights take the 
form of an interaction coefficient between an environmental covariate 
and a species trait, for example, a negative relationship between an in-
sect's body size and altitude would suggest that larger species are less 
suited for mountains. Highlighting trait– environment relationships with 

such a correlative approach can give cues on underlying mechanisms 
and serve in the making of competing mechanistic models to investi-
gate causal links of species distribution. It can also help achieving better 
predictions in poorly recorded species, providing their traits are known.

Here we describe an artificial neural network (ANN) architecture 
able to tackle the problem of species assembly into communities by 
building on trait mediation and multispecies distribution modelling. 
Building on TensorFlow and being trained through backpropagation 
instead of MCMC, it is less affected by the computational limits ex-
hibited in other trait- based approaches (e.g. Hmsc). It is therefore par-
ticularly suited for an agnostic approach in which inputs (species traits 
and environmental covariates) may be numerous. Previous machine 
learning (ML) approaches have first addressed community composition 
through stacked single- output (i.e. species specific) SDMs (Calabrese 
et al., 2014; Guisan & Rahbek, 2011; Williams et al., 2009). Recent ML 
developments have for example targeted more explicit spatial predic-
tions with convolutional layers (Deneu et al., 2021), or the learning and 
prediction of joint distributions (as in JSDMs) that account for species 
interactions (i.e. biotic filtering, Harris, 2015; Pichler & Hartig, 2021). 
The novelty in our approach is the identification of trait- mediated 
shared responses. Those are responses to environmental gradients that 
are mediated by one or more traits, and hence apply to all species as 
a function of their trait value. In practice, our approach builds on two 
components: the first component learns the shared responses through 
parameters that are common across species, while the second compo-
nent is trained to learn species- specific responses and allow for further 
flexibility. Then, using SHAP (SHappley Additive exPlanation, Lundberg 
& Lee, 2017), we go beyond the usual ‘black box’ and quantify the role 
of the different inputs (species traits and environmental covariates) in 
the model predictions. The environment filtering is rendered in a way 
that makes ecological sense: through a matrix of trait- mediated shared 
responses (i.e. the fourth corner matrix Dolédec et al., 1996; Legendre 
et al., 1997), and a matrix of species- specific niches. As a case study, 
our developments are applied to butterfly and moth occurrence data 
recorded across the United Kingdom between 1990 and 2019.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Community

We explore two sets of insect community data. The first is a dataset 
from the UK Buterffly Monitoring Scheme (UKBMS) consisting of 59 
butterfly species collected across the United Kingdom between 1990 
and 2019 (Brereton et al., 2020). Its measurements take the form of 
yearly site indices (n = 25,000) quantifying the local abundance of a 
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species for a given year (Dennis et al., 2016). The second dataset com-
prises yearly counts of 461 species (selected for having at least 20 de-
tection events) of macromoths (n = 2300) from the Rothamsted Insect 
Survey light trap network (Bell et al., 2020; Fox et al., 2020; Storkey 
et al., 2016), collected across Great Britain between 1990 and 2018. 
By their dimensions (59 × 25,000 and 461 × 2300), the two datasets 
constitute contrasting challenges to learning (although they aggregate 
about the same amount of information). The following developments 
apply on a binarised version of those datasets, as we focus on the pre-
diction of species occupancy (aka presence/absence).

2.1.2  |  Environment

The environment data come from several sources. First, the BIOCLIM19 
set of climatic variables are derived from monthly temperature aver-
ages, minima and maxima, as well as monthly rainfall (sourced from 
the Had UK 1 km × 1 km grid Hollis et al., 2019). BIOCLIM19 variables 
capture trends, seasonality and extrema that potentially affect the or-
ganisms of interest, and are therefore common inputs in SDM (see e.g. 
Hill et al., 2017). Second, the UK CEH Land- cover map (1990, 2000, 
2007, 2015, 2017, 2018 and 2019 editions; Morton et al., 2020) de-
fines 10 aggregated land- cover types across the United Kingdom at a 
25 m × 25 m resolution. We aggregate those to our working 1 km × 1 km 
resolution, deriving composition and diversity metrics to capture land-
scape complexity. The remaining variables are static: these are the river 
network density (from UKCEH and DAERA), terrain (elevation, slope 
and aspect from AWS terrain tiles) and distance to sea. See Table A1 in 
Appendix A for the details of the environmental covariates.

2.1.3  |  Traits

The butterfly's traits come from two trait databases (Cook et al., 2021; 
Middleton- Welling et al., 2020) from which were selected traits that 
were fully informed for the 59 species of butterflies encountered in the 
United Kingdom. In total seven traits were retained: wing index, wing 
index variation, voltinism, overwintering stage, number of host plants, 
host plant types and number of habitat types. From the moth trait data-
base (Cook et al., 2021), six traits similar to the butterfly ones were also 
fully informed: forewing length, forewing variation coefficient, voltin-
ism, overwintering stage, number of host plants and number of habitats. 
Additionally, for each community, the taxonomic tree of the composing 
species was vectorised and added as a supplementary trait to possibly 
capture a phylogenetic signal (as in Ovaskainen & Abrego, 2020).

2.2  |  Model architecture

The model is composed of two components: one learning the com-
munity's shared responses to the environment, and one learning the 
species- specific responses. Both components produce, for every sample 
(i.e. every site × year), a tabular output composed of the probability of 

occurrence of the numerous species of interest (i.e. a table with dimen-
sion n samples × q species). Such a multi- output approach implies shared 
capacity within the hidden layers that are common to all species. This 
allows shared representation to be learnt prior to the output layer, hence 
enabling species to build on one another during training and achieve 
greater performance. The two components take different inputs:

1. Shared responses. For a given sample, the only information relevant 
to all species is the environmental covariates. Hence to input 
the traits' values we build on a Kronecker product of the traits 
and the environmental covariates (i.e. every trait is multiplied 
to every covariate). The traits being informed for every spe-
cies, that input has three dimensions: n samples × m covariates ⋅  
(p traits + 1 intercept) × q species. Note that the intercept allows 
for the identification of a nonmediated but still shared response 
of the community as a whole to environmental drivers. In practice, 
this expands the input row into a matrix of the product values 
for every species. The use for the Kronecker product may be 
questioned in the light of the universal approximation theorem 
(Hornik et al., 1989), as we should expect the relevant trait– 
environment interactions to be learnt during training, in theory. 
In practice, however, we found the product to help performance 
wise and, more importantly, to enable the explanation of the 
interactions (see Appendix A for details).

2. Species- specific responses. To account for the species- specific di-
rect effect of the environmental covariates, the second input is 
a much more conventional 2D table with the covariate values at 
each sample point (with dimension n samples × m covariates).

2.2.1  |  The time distributed layer

The first branch has a 2D input for every sample. It could be pro-
cessed as such but most inputs are then irrelevant to a given species, 
only the interactions with its own trait values matters. To maintain 
a multi- output configuration (with the aforementioned benefits), 
while ensuring that only relevant inputs make their way across the 
branch towards a species prediction, a time distributed (TD) layer 
can be used. This construction is sometimes called a wrapper as it 
encapsulates layers, in our case simple dense layers. TD layers are 
used in recurrent ANNs to apply the same weights and biases to 
every time step of a sequence. In our case, the “time” dimension is 
the taxonomic dimension, that is, the different species. Here the 
encapsulated layers will be fitted the same weights and biases, but 
because the input changes from species to species as a result of 
changing trait values, the outputs remain species specific. This ef-
fectively enforces trait mediation to be learnt.

2.2.2  |  Merging the two components

The shared and species- specific responses can come together either 
as two branches of a multi- branch model, or as two models of an 

 2041210x, 2023, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14097 by T
est, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.worldclim.org/data/bioclim.html
https://www.ceh.ac.uk/data/ukceh-land-cover-maps
https://catalogue.ceh.ac.uk/documents/7d5e42b6-7729-46c8-99e9-f9e4efddde1d
https://www.opendatani.gov.uk/dataset/https-www-daera-ni-gov-uk-sites-default-files-publications-doe-riversegmentgml-zip
https://registry.opendata.aws/terrain-tiles/


1534  |   Methods in Ecology and Evoluon BOURHIS et al.

ensemble. These are distinct approaches that implies different training 
processes. In the multi- branch model, the two branches are trained 
sequentially. The shared- response branch is trained first and then the 
species- specific branch is unfrozen (while the former one is frozen, 
i.e. weights are fixed) to learn species- specific responses which allows 
further flexibility. In this approach the species- specific responses are 
trained on the residuals of the shared responses and are therefore 
conditional to them. Alternatively, in the ensemble approach, both 
models are trained simultaneously before seeing their outputs aver-
aged. This approach is more flexible as the species- specific responses 
are not conditional to the shared responses. Figure 1 illustrates the 
network architecture and dimensions. We advocate here for both op-
tions and refer the reader to Appendix A for further details.

2.3  |  Model training

As often in biology, special care is to be given to class imbalance (Saito 
& Rehmsmeier, 2015). Some rare species can be easily overlooked by a 
lazy classifier whose trivial predictions of, for example, predicting only ab-
sences disregarding the input would score high in accuracy metrics by de-
fault. The same reasoning applies to near- ubiquitous species. Therefore, 
species- specific square root class weights are included into the binary 
cross- entropy loss function. The weights give more importance to sub-
samples (i.e. species × sample level weights) that includes rarer cases (i.e. 
the absence of a common species, or the presence of a rare one).

For both butterflies and moths, half the samples were reserved as 
testing data to assess the models' performances. Among the remaining 
half, the training dataset, a third was used as validation data to track 
the learning curve and halt training as soon as overfitting was detected 
(i.e. after 5 successive epochs without improvement on the validation 
dataset). For its known robustness to class imbalance, the Matthews 
correlation coefficient (MCC) was used as a metric in model selection 
(Chicco & Jurman, 2020; Lever et al., 2016; Saito & Rehmsmeier, 2015). 
The MCC is a measure of association of two binary variables, which here 
are the observed occupancy and the binarised predicted probability of 

presence. Other relevant metrics are commonly found in the literature, 
for example, the area under the curve of the receiver operating charac-
teristic (AUC ROC) or precision– recall (PR) curve (Fernández, 2018), but 
we argue that they are over- optimistic metrics in our case, the former 
because of strong class imbalance in our data and the later because that 
imbalance sometimes results of a positive class majority (although being 
suited for rare species, i.e. a negative class majority, PR and F1 fail to 
sanction the poor predictions of near- ubiquitous species).

2.4  |  Model explanation: SHAP

SHAP (Lundberg & Lee, 2017) quantifies the contribution of each fea-
ture (or input) to a specific output. It works at the sample scale and 
therefore builds local explanations whose aggregation to a sufficiently 
large number of samples can provide model- wide insights. Here, our 
features are of two types: (1) the products of the trait values with the 
environmental covariates and (2) the environmental covariates. The 
procedure calculates a SHAP value for each feature, its contribution, 
whose averaging over many samples gives to the feature a measure 
of variable importance to the model outputs (Molnar, 2021). That 
measure can be positive or negative depending on how the output 
is affected positively or negatively by the focal feature value, in com-
parison to a baseline in which the feature is ‘deactivated’ (i.e. has its 
sample value replaced with random background values).

Because the procedure builds a collection of explanations made at 
the sample scale, for every feature we have a collection of SHAP val-
ues to linearly regress against a collection of feature values. Hence, the 
sign of that regression coefficient summarises the effect of the focal 
feature on the species probability of occurrence (our output).

Here we suggest simplifying the SHAP explanation to a collec-
tion of regression coefficients and aggregating them into two fig-
ures. First, the effects of the 3D input (i.e. input of the trait- mediated 
branch), being the same for every species (thanks to the TD layer), 
it can be reshaped as a m covariates × (p traits + 1 intercept) matrix, 
known as fourth corner matrix in ecology (Legendre et al., 1997). 

F I G U R E  1  Schemata of the ANN 
architecture. In blue are the tabular 
inputs (X) and outputs (Y), in orange and 
red are the inner layers of the network, 
the square brackets represent the time 
distributed layer. The network conforms 
to the following dimensions: q species, n 
samples, m covariates and p traits.
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Second, the effects of the 2D input (i.e. input of the species- specific 
branch) are collated into a matrix of species- specific effects with 
shape q species × m covariates.

3  |  RESULTS

3.1  |  Training

The learning curves in the top row of Figure 2 illustrates the se-
quential training of our multi- branch model. The majority of the 
learning appears to occur in the first phase, in which trait- mediated 

shared responses are learnt. Then, after a plateau, as the second 
branch is unfrozen (i.e. allowed to train weights and biases) and the 
first one is frozen, further learning occurs. Both training phases 
are terminated as soon as overfitting is detected. On the other 
hand, the ensemble having its two models trained simultaneously, 
its learning curves (not shown) do not feature phases like the 
multi- branch model. However, the ensemble's performance being 
marginally better (see Appendix A), the results shown hereafter 
are derived from it.

Performance wise, according to the AUC ROC that scales from 
0 to 1, our models score 0.95 for the butterflies and 0.89 for the 
moths (all reported metrics are computed on the test dataset). The 

F I G U R E  2  Training curves (top row) shows multi- branch models two- step training dynamic and performance following a weighted binary 
cross- entropy loss function. On the bottom row is the species classifier (ensemble) performances according to the MCC, with the black dot 
marking the full model performance (shared + species- specific), and the other side of every segment marking the performance of the trait- 
mediated shared- response only. Most species performances are improved after allowing the additional flexibility of learning species- specific 
responses.
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PR scores are 0.86 and 0.73 (also scaled from 0 to 1). The MCC scales 
from −1 to 1, with 0 marking the random predictions of a no- skill 
classifier. According to this metric, our classifiers score 0.49 and 
0.40, but substantial variations are observed from species to species 
(Figure 2, bottom row). Even if some moth species are predicted no 
better than at random (especially some of the very rare species), the 
vast majority of them constitute skilled predictions, as is the case for 
all butterfly species.

The bottom row of Figure 2 also illustrates the performance 
yielded by each of the two training phases. As expected, most spe-
cies are better predicted once allowed species- specific responses, 
still significant performances are already reached after learning only 
the trait- mediated shared responses. This is especially the case for 
butterflies in which the trait- mediated shared responses constitute 
the core learning (short segments with high origins). However, for 
the moths, species- specific responses are more important to predic-
tion performance (long segments with low origins).

3.2  |  Prediction

For memory usage concerns, the grid of environmental covariates 
of the United Kingdom for year 2020 must undergo the Kronecker 
product and the subsequent model predictions iteratively. It is none-
theless a very inexpensive process from which high- resolution maps 
can be rendered within seconds. Figure 3 shows the butterfly mod-
els predictions for year 2020 across the United Kingdom. There is 
strong qualitative agreement with known distribution of the 59 but-
terfly species (https://www.ukbut terfl ies.co.uk/distr ibuti ons.php). 
The predicted distributions are highly diverse across species. They 
mirror no single covariate base layer, making use of the nonlinearities 
and interactions offered by the model architecture. The MCC score 
for each species is listed by the species name as a measure of the 
prediction reliability. The predictions for the 59 most common spe-
cies of moths are shown in Figure 10 of Appendix C.

Looking at the butterflies, we note that high- performing 
species include habitat- restricted species such as the rare High 
Brown Fritillary (A. adippe, MCC = 0.73) and Swallowtail (P. mach-
aeon, MCC = 0.82) and the more common Gatekeeper (P. titho-
nus, MCC = 0.74) and Marbled White (M. galathea, MCC = 0.64), 
suggesting that the model captures the drivers that define hab-
itat type well enough to predict the occurrence of specialist 
butterflies. Conversely, poorly performing species (MCC < 0.2) in-
clude the Large Blue (M. arion, MCC = 0.18) and the White- letter 
Hairstreak (S. w- album, MCC = 0.12). Both species have suffered 
major declines in the 20th century through the loss of habitat and 
host plant (Elm, Ulmus procera) respectively. The Large Blue was re-
introduced to the United Kingdom in 1983 at certain selected sites 
that may not correspond to the predicted distribution. The White- 
letter Hairstreak has recovered from the loss of its host through 
the Dutch Elm Disease (Ophiostoma spp.) which drove declines 
of the 1970s into areas where Elm suckers and Wych Elm (Ulmus 
glabra) thrive (Thomas & Lewington, 2019); these plant species 

distributions may not be well captured by the environmental driv-
ers selected here.

3.3  |  Explanation

Figure 4 illustrates the butterflies shared responses to the environ-
mental covariates, either mediated by a trait, or unmediated (row 
intercept) but common to all species of interest. Figure 5 summarises 
the butterflies species niches, that are derived by summing a species 
trait- mediated shared and species- specific responses for all environ-
mental covariates. Similarly, Figure 6 shows the moths' fourth corner 
matrix (see Figure 11 in Appendix D for their resulting niches).

In those matrices, the cell colours illustrate the slope of the re-
gression of an input's SHAP value (i.e. importance) to the input value 
itself. The 1%, 5% and 10% most important inputs, that is, with high-
est absolute value of feature importance, are highlighted to simplify 
the interpretation of the matrices. Note that some inputs may be 
important but still not effectively captured by a simple linear slope 
(i.e. appearing framed with white background in Figures 4– 6 and 
Figure 11 in Appendix D).

A strong highlight, for example, is the effect of wind, mediated 
by most butterfly and moth traits. The same observation can be 
made about the proportion of broadleaf woodlands. Examining the 
intercept shared effects that describe unmediated effects that are 
nonetheless common to most species, we note the negative effect 
of wind and positive effect of broadleaf woodlands for both moths 
and butterflies. For the moth niches (Figure 11 in Appendix D) we 
observe largely negative impacts of urban area and positive impacts 
of broadleaf woodlands.

Beyond explaining the model, variable importance also offers 
a principled way to simplify it by dropping unnecessary inputs. We 
refer the reader to Appendix A to see how reducing the inputs to 
the highlighted traits and covariates (in Figures 4 and 6) can affect 
the models. But to summarise it, we show that our ANNs are barely 
affected by a drastic reduction of input size, demonstrating how re-
liable SHAP is for selecting key inputs.

4  |  DISCUSSION

We demonstrate the use of a time distributed layer as a simple yet 
solid solution to account for traits in an ANN. This feature brings 
ANNs unmatched learning abilities to MSDMs, enabling nonlinear 
and interactive behaviours in a field otherwise dominated by gen-
eralised linear models. The TD layer allows for the identification a 
community's trait- mediated shared responses to environmental 
covariates. By identifying such functional responses at the com-
munity level, species with poor distribution signals (i.e. rare and 
near- ubiquitous species) can ‘borrow strength’ (Pollock et al., 2012) 
from species with stronger definitions, hence producing improved 
predictions that can then be explained by SHAP. For example, in our 
case study, wind- trait interactions had near global importance in 
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F I G U R E  3  Predicted probability of occurrence of the 59 species of butterfly for the year 2020.
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determining the probability of occurrence for UK butterflies and, to 
a lesser extent, moths.

Given sufficient width and depth (i.e. neurons and layers), ANNs 
can compute any function; they are universal approximators (Hornik 
et al., 1989; Nielsen, 2015). Ecological complexity is no exception, 
and here our function of computing species distribution from traits 
and environmental inputs should be within the reach of any suffi-
ciently complex ANN. However, this ability is conditioned on the 
relevant predictors being among the set of model inputs, which in 
ecology is a major issue considering the richness of possible inputs. 
It is also conditioned on the learning algorithm finding the optimal 
parameters, which is made more difficult as the number of inputs 
is increased. Here is therefore a dilemma which, if we persist in 
using numerous unfiltered inputs to pursue an agnostic modelling 
approach, can be a major obstacle to learning. In this perspective, 
a trait- based approach is not only an ecologically meaningful depic-
tion of environmental filtering, it is also a solution to the aforemen-
tioned dilemma that pools parameters across species and drastically 
reduces the parameter space. Here, the time distributed layer is the 
mathematical support of this pooling.

Our models are binary classifiers whose performances are 
best evaluated with the MCC, a metric avoiding the over- optimism 
caused by unbalanced classes. According to this metric, but-
terfly and moth models differ substantially. By comparing the 
performances reached with the shared response only to the per-
formances of the full model, we can assess how good is the set 
of traits at explaining the community's occupancy. We see that 
the butterfly model is only marginally improved by the learning 
of species- specific responses, therefore we can say that the set 
of traits used here is of great use to the capture of the shared 
responses. On the other hand, the opposite is observed for the 
moth model in which the added flexibility of the species- specific 
responses is essential to its performance. A possible explanation 
to this can be found in Figure 9 in Appendix B, which shows how 

well the butterfly species scatter in the plane of their trait prin-
cipal components, showing how well the traits can discriminate 
between butterfly species. We also see that moth species are not 
so well discriminated by the selected traits, suggesting that there 
are few options to shape nonoverlapping niches for those species 
with the current set of traits.

In SDMs that build on linear models, every parameter carries an 
ecological meaning, therefore explaining the model is straightfor-
ward: the sign of a significant parameter characterises a directed 
effect of a variable on a species presence or abundance (Dray 
et al., 2014; Pollock et al., 2012). With ANNs, the parameters are 
the weights and biases of the successive layers, and none of them 
per se carry any ecological meaning. The directed effects are not 
encoded as readily accessible parameters but they are emerging 
constructs of the network. This strength of ANNs, allowing the 
capture of nonlinear and interacting behaviours, is also a weak-
ness when it comes to model explanation. As we have seen, the 
black box can nonetheless be resolved using the SHAP method. 
By evaluating variable importance at the sample scale, the input's 
effects on the outputs (i.e. the Shapley values) can be regressed 
against the input values (i.e. the feature values), and hence char-
acterised at the model scale. We used linear regression for this 
purpose, and aggregated the slope coefficients into two matrices. 
In contrast to usual fourth corner matrices which aggregates a lin-
ear models' real parameters, ours is only a linear approximation of 
an ANN's behaviours. Still, it is enough to identify the key drivers 
of a model prediction.

Indeed, both moth and butterfly communities have been 
shown to be explorable using our approach. Providing that suf-
ficient inputs (traits and covariates) can be mobilised, good pre-
dictive performance is likely observed and explained. For both 
communities, a dominating effect of wind speed was highlighted 
which, although not surprising for winged insects, is rarely used 
as a predictor in prior similar studies (Bell et al., 2020; Ovaskainen 

F I G U R E  4  Butterflies' trait- mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs are 
highlighted with darker borders and shades. See covariates meanings in Appendix A.
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et al., 2016; Palmer et al., 2017; Roy et al., 2001). It is possible 
that wind only becomes a strong predictor through trait mediation 
and nonlinearity, in which case, studies building on linear models 
would necessarily not capture that relationship. The other decisive 
predictors— namely the proportions of broadleaf woodland, arable 
land and improved grassland— are common drivers of studies on 
insect declines (see e.g. Bell et al., 2020; Blumgart et al., 2022; 
Ovaskainen et al., 2016). Both moths and butterflies appear here 
significantly affected by those predictors in ways that not neces-
sarily involves trait mediation.

One limit about the present study is that SDMs only concern 
environmental filtering, that builds on the fundamental niche 
of a species but is only one cause of the species distributions 
patterns. Others are dispersal and biotic interactions (e.g. com-
petitive exclusion), which further shape the species distribu-
tion by defining their realised niche (Kraft et al., 2015; Poggiato 
et al., 2021). Dispersal cannot explicitly be accounted for in a 
network such as ours, with tabular inputs, in which no nonlo-
cal effect is encoded. Yet, using distance buffers (as in Hengl 
et al., 2018) as inputs in the species- specific branch, we hope 

F I G U R E  5  Butterflies' species- specific direct responses to the environmental covariates. The 1%, 5% and 10% most important inputs are 
highlighted with darker borders and shades. See covariates meanings in Appendix E.
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that elements of the spatial structure of a given species distribu-
tion, unexplained by the spatial structure of the other environ-
mental features, can be captured as proximity effects. Figure 5 
and Figure 11 (Appendix D) show that most species have strong 
responses to the distance buffer inputs (column spatial), sug-
gesting that significant residual spatial structure is identified. Its 
origin can be either the spatial structure of missing important 
predictors, or signals of population redistribution processes. In 
the same way, residual species correlation (or association) can 
be a sign of biotic interactions (Pollock et al., 2014), and are es-
sential to JSDMs' ability to make joint multivariate predictions 
(something our ANN does not feature). However, even if facili-
tative effects among moths or butterflies exist, positive residual 
correlations more likely suggest that the model misses signifi-
cant environmental covariates (Poggiato et al., 2021), like the 
presence of a common predator.

5  |  CONCLUSIONS

We have demonstrated that a trait- based approach can be encoded 
as an ANN by using a time distributed layer. This enables machine 
learning models to be used for identifying community- wide shared 
response, making them suitable in practice for trait- based MSDMs, 
when they were previously limited to Stacked SDMs. In addition, 
because explainability is key to any SDM application, we provide a 
means to visualise species specific and shared responses to the en-
vironment. Our solution builds on the SHAP package to open the 
black box, hence lifting another obstacle in using machine learning 
for SDMs. Our illustrative case studies show better performance 
and tractability than existing methods, as well as highlighting deci-
sive drivers of butterfly and moth community composition. An im-
mediate perspective of the present work is its application to more 

insect communities, with the hope of gaining further understanding 
of biodiversity shifts and allowing more accurate forecasting of the 
impacts of the drivers of changes.
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F I G U R E  6  Moths' trait- mediated shared responses to the environmental covariates. The 1%, 5% and 10% most important inputs are 
highlighted with darker borders and shades. See covariates meanings in Appendix E.
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The model inputs for the Moths (Species occurrences, traits and en-
vironmental covariates) are available for download under GNU GPL4 
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at 1 km scale of the environmental covariates for the year 2020 to 
allow for the reproduction the predictions shown in this study. The 
python code to train and run the ANN is available on gitlab and dis-
tributed under GNU GPL3 licence.
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