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Abstract: Over the last few years, there has been much effort put into the development and validation
of stochastic models of the trajectories of swarming insects. These models typically assume that the
positions and velocities of swarming insects can be represented by continuous jointly Markovian
processes. These models are first-order autoregressive processes. In more sophisticated models,
second-order autoregressive processes, the positions, velocities, and accelerations of swarming insects
are collectively Markovian. Although it is mathematically conceivable that this hierarchy of stochastic
models could be extended to higher orders, here I show that such a procedure would not be well-
based biologically because some terms in these models represent processes that have the potential to
destabilize insect flight dynamics. This prediction is supported by an analysis of pre-existing data for
laboratory swarms of the non-biting midge Chironomus riparius. I suggest that the Reynolds number
is a finely tuned property of swarming, as swarms may disintegrate at both sufficiently low and
sufficiently high Reynolds numbers.
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1. Introduction

Mating swarms of flying insects are a form of collective animal behaviour that typically
displays a high degree of spatial cohesion but lacks the ordered collective movements that
are a defining feature of herds, flocks, and schools [1–5]. As the insects circulate within the
swarm, they execute erratic flight patterns [1,2,6,7]. Over the last few years, there has been
much effort put into the development and validation of stochastic models of the trajectories
of swarming insects [8–12]. These models account for numerous observations, including
the emergence of dynamical scaling and correlations in perturbed swarms, the emergence
of macroscopic mechanical properties like tensile strength, and the ability of swarms to be
driven through ‘thermodynamic cycles’ by the application of external perturbations [13–18].
These models typically assume that the positions and velocities of swarming insects can be
represented by continuous jointly Markovian processes, or more rarely, that the positions,
velocities, and accelerations of swarming insects are collectively Markovian. Mathematically,
these models can be seen to be the lowest levels in a hierarchy that could be extended
to higher orders. Physically, the hierarchy corresponds to the inclusion of a timescale
representative of the largest scales of motion at first order, and to the addition of a second
timescale representative of the smallest scales of motion at second order. This is directly
analogous to stochastic models of the trajectories of tracer particles in high Reynolds number

turbulence, wherein the Reynolds number, R =
(

T
t2

)2
, which is determined by the ratio

of a timescale representative of the energy-containing scales, T, and the Kolmogorov time
scale, t2, representative of the dissipative scales of motions appears as a parameter at second
order [19]. This Lagrangian Reynolds number is proportional to the better-known Eulerian
Reynolds number [19]. Although it is mathematically conceivable that this hierarchy of
stochastic models could be extended to higher orders [20–22], in the case of high Reynolds
number turbulence is it not apparent that such a procedure would be well-based physically
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since there is no obvious relevant timescale smaller than the Kolmogorov timescale [19].
Here in the case of swarming insects, I show that the procedure is not well-based biologically.

2. Materials and Methods

Third-order one-dimensional models for the positions, x, velocities, u, accelerations,
A, and jerks, J, of swarming insects are given by

dJ = a(J, A, u, x)dt + bdW(t) (1)

dA = Jdt

du = Adt

dx = udt

where a(J, A, u, x) is featured in the Fokker–Planck equation:

∂P3

∂t
+ u

∂P3

∂x
+ A

∂P3

∂u
+ J

∂P3

∂A
= − ∂

∂J
(aP3) +

b2

2
∂2P3

∂J2 , (2)

P3(J, A, u, x, t) is the joint distribution of J, A, u, x and time, t, b is the magnitude of
the driving noise, and dWi(t) is an incremental Wiener process with correlation property
dW(t)dW(t + τ) = δ(τ)dt [20]. The prescription of a(J, A, u, x) guarantees that the statis-
tical properties of the simulated trajectories are distributed according to P3(J, A, u, x, t),
which a model input. The deterministic term a(J, A, u, x) takes the form:

a =
b2

2
∂

∂J
lnJ +

ϕ

P3
(3)

where
∂ϕ

∂J
=

∂P3

∂t
+ u

∂P3

∂x
+ A

∂P3

∂u
+ J

∂P3

∂A
(4)

Integrating Equation (2) over all J gives an equation for the average jerk strength:

0 =
∂P2

∂t
+ u

∂P2

∂x
+ A

∂P2

∂u
+ ⟨J⟩∂P2

∂A
(5)

where P2(A, u, x, t) is the joint distribution of A, u, x and time, t.
Integrating Equation (6) over all J gives an equation for the average acceleration:

0 =
∂P1

∂t
+ u

∂P1

∂x
+ ⟨A⟩∂P1

∂u
(6)

where P1(u, x, t) is the joint distribution of u, x and time, t.
The least biased choice for P3(J, A, u, x, t) and the one adopted here is a multivariant

Gaussian. The resulting stochastic models for the trajectories of swarming insects are
minimally structured (maximum entropy) models. It follows from Equations (3)–(6) that
for stationary swarms with Gaussian statistics:

⟨A⟩ = −σ2
u

σ2
x

x (7)

⟨J⟩ = −
(

σ2
A

σ2
u
+

σ2
u

σ2
x

)
u (8)

⟨S⟩ ≡ ϕ

P3
= −

(
σ2

J

σ2
A
+

σ2
A

σ2
u
+

σ2
u

σ2
x

)
A −

σ2
J

σ2
A

σ2
u

σ2
x

x (9)

Insect trajectories were simulated by numerically integrating the stochastic models. Other
predicted quantities, such as velocity spectra, were obtained analytically, as detailed in the
Appendices A–C. A full description of the experimental setup that provided data for the
model validation can be found in Sinhuber et al. [23].
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3. Results

The predicted average acceleration towards the centre is a defining feature of insect
swarms that keeps the swarms intact [2]. As observed, this effective force increases linearly
as the distance from the swarm centre increases. Individuals in real and simulated swarms
therefore behave on average as if they are trapped in elastic potential wells. Model predictions,
Equation (8), for the average strength of the jerks, are in quantitative agreement with observa-
tions of asymptotically large swarms [5] containing on average 15 to 94 individuals [24]. This
correspondence indicates that swarming insects are described by second or higher-order models.

The average strength of the snaps, ⟨S⟩, is seen to enter the model formulation at third
order. One contribution to this quantity is aligned with the acceleration vector, which itself
tends to be aligned with the position vector (Equation (7)). The other contribution to ⟨S⟩ is
manifestly aligned with the position vector. This contrasts with the average strength of the
jerks, which enter the model at second order and are aligned with the velocity vector, i.e.,
aligned with the direction of travel and so aligned with the major axis of the insect. Such
alignment minimizes the impact that jerks can have on flight dynamics. This is not the case
with snaps, which can momentarily be aligned with the minor axis of the insect, thereby
maximizing their disruptive impact on flight dynamics. This suggests that swarming
insects are at most described by second-order models.

Experimental support for this prediction hinges on the fact that the velocity spectra for
swarming insects are compatible with predictions from second-order models. Free-roaming
trajectories are predicted by first- and second-order models to be characterised by velocity spectra
that decrease respectively as ω−2 and as ω−4 at high frequencies, whereas spectra decreasing
faster than ω−4 can only be captured by third- or higher-order models [19,20]. Confinement
within a swarm does not change these scaling behaviours (Appendix A [25]). Instead, the
quantity σu

σx
determines the position of the peak in the velocity spectra. The velocity spectra

characterising the trajectories of swarming non-biting midge Chironomus riparius recorded in
quiescent conditions in the laboratory decreases approximately as ω−3 at the highest frequencies
accessible (Figure 1). This scaling cannot arise in first-order models but, as illustrated, does
arise at low frequencies in second-order models when R ∼ O(100). This scaling is obtained for
19 different containing on average 15 to 94 individuals. Third-order processes are not evident.
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Figure 1. Velocity spectra, S, as a function of frequency, ω, obtained by analysis of pre-existing data
for laboratory swarms of the non-biting midge Chironomus riparius. Results are shown for the
largest swarm in the dataset of Sinhuber et al. [23], which on average contains 94 individuals. Results
are shown for the two horizontal components of velocity. The spectra are seen to decrease as ω−3

at the highest frequencies accessible in the experiment. Recordings were made at a rate of 100 Hz.
The same scaling behaviour was obtained for smaller swarms. Shown for comparison is the velocity
spectra predicted by a 2nd-order model with T= 1, t2 = 0.1, σ2

x = 1 and σ2
u = 1 a.u. (Appendix A).
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4. Discussion

Herein it was argued that the trajectories of swarming insects, like the trajectories of
tracer particles in turbulence, are at most described by second-order models in which the
position, velocity, and acceleration of an insect are collectively Markovian, since higher-
order processes, even if present, are not significant. This strengthens previously identified
correspondences between swarming insects and the Lagrangian properties of high Reynolds
number turbulence [24]. Their acceleration statistics have similar conditional dependencies
on velocity. These conditional dependencies only become apparent for |u| > 2σu, and
their occurrences may be attributed to occasional energetic rotations. The small size of this
Reynolds number (as determined by matching predicted and observed velocity spectra),
R ∼ O(100), may be a consequence of the fact that the average strength of the jerks,
Equation (8), increases with increasing Reynolds number. Equation (8) can be rewritten

as ⟨J⟩ = −
(

R1/2

T2 + σ2
u

σ2
x

)
u. At sufficiently high Reynolds numbers, jerks, like snaps, may

have the potential to destabilize flight dynamics, thereby causing the swarm to disintegrate.
Indeed, the smallness of the estimate for the Reynolds number may be indicative of the
susceptibility to swarming midges to the disruptive impact of jerks. The swarm may also
disintegrate at sufficiently low Reynolds numbers following a disordered-order phase
transition [12] if the confining potential, a collective emergent property of disordered
swarms [1,2], cannot emerge in ordered swarms, or it may lose its collective properties
if individuals remain in the vicinity of the swarm marker (a visually prominent marker
over which swarm form). If this line of reasoning is correct, then the Reynolds number
may be the result of fine-tuning, as are other emergent properties of swarming [12,26].
Jerks may also be particularly disruptive in swarms that are not asymptotically large
(Appendix B [27,28]).

To summarise, even though the collective animal motions can exhibit fluidic be-
haviours, Reynolds numbers, which are perhaps the most ubiquitous quantity in the
literature on fluid dynamics, have barely been featured in the literature on collective animal
behaviours [29]. Herein, I addressed this shortcoming by showing that the trajectories of
swarming insects are analogous to the trajectories of tracer particles in fluidic turbulence
and that consequently swarming insects can be assigned Reynolds numbers. This new
result strengthens ongoing attempts to describe collective animal behaviours as active mat-
ter [30] Moreover, the Reynolds numbers were shown to convey important new biological
information, as all theoretical advances into collective animal behaviours should strive
to do [31].

Funding: The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme
(BBS/OS/CP/000001) funded through the Biotechnology and Biological Sciences Research Council’s
Industrial Strategy Challenge Fund.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated during the study.

Conflicts of Interest: The author declares no conflicts of interest.

Appendix A

Power spectra for first- and second-order autoregressive models of swarming insects

Here I show that the power spectra predicted by first- and second-order autoregressive
models of the trajectories of swarming insects decrease respectively as ω−2 and ω−4 at high
frequencies. That is, I show that confinement within a swarm does not upset the scaling
behaviours obtained by Sawford [19] for freely roaming trajectories.

First-order autoregressive models of swarming insects
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Okubo [1] classic one-dimensional model for the positions, x, and velocities, u, of
swarming insects is given by:

du = − u
T

dt − σ2
u

σ2
x

xdt +

√
2σ2

u
T

dW (A1)

dx = udt

where T is a velocity correlation timescale, σ2
x is the position variance, σ2

u is the veloc-
ity variance, and dWi(t) is an incremental Wiener process with correlation property
dW(t)dW(t + τ) = δ(τ)dt.

Okubo [1] showed that according to this model the velocity autocorrelation function
is given by:

R(τ) = e−
t

2τ

(
cosω1τ − 1

2ωτ
sinω1τ

)
(A2)

where ω1 =
(

σ2
u

σ2
x
− 1

4T2

)1/2
.

It follows that the velocity power spectra is given by:

f (ω) =
∫ ∞

0
R(τ)cosωτdτ =

ω2/T(
1

4T2 + (ω1 − ω)2
)(

1
4T2 + (ω1 + ω)2

) (A3)

At sufficiently high frequencies f (ω) ∝ ω−2.
Second-order autoregressive models of swarming insects
The simplest second-order one-dimensional model for the positions, x, velocities, u,

and accelerations, A, of swarming insects is given by:

dA = −
(

1
T
+

1
t2

)(
A +

σ2
u

σ2
x

x
)

dt −
(

σ2
A

σ2
u

+
σ2

u
σ2

x

)
udt +

√
2σ2

A

(
1
T
+

1
t2

)
dW (A4)

du = Adt

dx = udt

where σ2
A = σ2

u/Tt2 is the acceleration variance and t2 is a timescale representative of the
smallest scales of motion [25].

It follows that for this model, the velocity autocorrelation is a solution of the equation:

d3R
dt3 +

(
1
T
+

1
t2

)
d2R
dt2 +

(
σ2

A
σ2

u
+

σ2
u

σ2
x

)
dR
dt

+

(
1
T
+

1
t2

)
σ2

u
σ2

x
R = 0 (A5)

The simplest solutions are single exponentials e−ξτ where the inverse timescales ξ are
solutions of the equation:

ξ3 −
(

1
T
+

1
t2

)
ξ2 +

(
σ2

A
σ2

u
+

σ2
u

σ2
x

)
ξ −

(
1
T
+

1
t2

)
σ2

u
σ2

x
= 0 (A6)

Typically, one solution, ξ1, is real whilst the other two, ξ2 ± iΩ, are a pair of complex
conjugates. In this case, the general solution to Equation (A5) therefore takes the form:

R(τ) = A e−ξ1τ + (1 − A) e−ξ2τ(cosΩτ − BsinΩτ) (A7)

where A and B are weighting factors.
It follows that:
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f (ω) = A
ξ1

ξ2
1 + ω2

+
1
2
(1 − A)

((
ξ2

ξ2
2 + (Ω − ω)2 +

ξ2

ξ2
2 + (Ω + ω)2

)
+ B

(
ξ2 − Ω

ξ2
2 + (Ω − ω)2 +

ξ2 + Ω

ξ2
2 + (Ω + ω)2

))
(A8)

At sufficiently high frequencies:

f (ω) → c2ω−2 + c4ω−4 + O
(

ω−6
)

where c2 = A ξ1 + (1 − A)ξ2 + (1 − A)BΩ and c4 = (A − (1 − A)B)
(

3ξ2
2 − Ω3

)
Because of the complexity of the general analytic expressions for ξ in terms of the

model parameters, T, t2, and σ2
u/σ2

u precludes their application, here I present illustrative
examples.

For T= t2 = 1, σ2
u

σ2
u
= 1, ξ1 ≈ 1.54, ξ2,3 ≈ 0.23 ± 1.12i. The weighting factors A and

B were found by minimizing the mean square difference between the predicted form of
velocity autocorrelation, Equation (A7), and form obtained from simulation data obtained
using Equation (A4) (Figure A1). This gave A = −0.24 and B = 0.065. Consequently,

c2 ∼= 0 and f (ω) ∝ ω−4. The same scaling was obtained for T = t2 = 1, σ2
u

σ2
u
= 1/2 and for

T = t2 = 1, σ2
u

σ2
u
= 2.
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Figure A1. Predicted form of the velocity autocorrelation (red), Equation (A7), R(τ), matches that
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u

σ2
x
= 1 a.u.

Appendix B

Jerks may destabilize small swarms

Reynolds [26] showed that the positions of the non-biting midge Chironomus riparius
in laboratory swarms are maximally anticorrelated. In this case, the average strength of the
jerk experienced by the ith midge is given by:

⟨Ji⟩ = −
(

σ2
A

σ2
u

δij +
σ2

u
σ2

x
Λij

)
uj (A9)
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where Λij are elements of the inverse of the normalized position covariance matrix, the
subscripts denote different individuals, and where there is a summation of over repeated
indices. The average strength of the jerk experienced by the ith midge therefore depends
on the velocities of all individuals in the swarm, and so is unlikely to be aligned with the
direction of travel (the major axis of the insect). If it were aligned, then the impact that
jerks can have on flight dynamics would be minimized (see main text). This misalignment
is, however, small in asymptotically large swarms, which on average contain 10 or more

individuals [5]. This is because ⟨|u|⟩ =
√

2
π σuN1/2 and because Λij = 1 when i = j and

Λij = 1/N when i ̸= j. Consequently,

⟨Ji⟩ = −
(

σ2
A

σ2
u
+

σ2
u

σ2
x

)
ui −

σ3
u

σ2
x

O
(

N− 1
2

)
(A10)

Despite their disruptive influence in small swarms, the maximal positional anticorrelations
appear to dictate the approach to the asymptotic state (Appendix C).

Appendix C

Maximal anticorrelated positions and the asymptotic regime

Puckett and Ouellette [5] reported that once swarms contain order 10 individuals, all
statistics saturate, and that the swarms enter an asymptotic regime. Puckett and Ouel-
lette [5] also reported that the influence of the swarm marker (a visually prominent feature
over which swarms nucleate) on the swarm morphology decays on a similar scale. Their
results provide a strong constraint on how rapidly swarm models must produce collective
states. Here I show that the observations of Puckett and Ouellette [5] together with the
occurrence of maximal anticorrelated positions [26] are consistent with each individual in
the swarm being on average located at a position that is mirror opposite to the average
position of all other individuals, so that the average position of the ith individual in a swarm
containing N individuals is given by ⟨xi⟩ = − 1

N−1 ∑N
j=1
j ̸=i

xj. With this specification, the

least biased (maximum entropy) choice for the distribution of positions is the multivariant
Gaussian:

p(x1, x2, x3, . . . xN) =
(

2πσ2
c

)−N/2
exp
(
− 1

2σ2
c

∑N
i=1(xi − ⟨xi⟩)(xi − ⟨xi⟩)

)
(A11)

where σ2
c is a measure of the mean square size of the swarm. This can be rewritten as

p(x1, x2, x3, . . . xN) =
(

2πσ2
c

)−N/2
exp
(
− 1

2σ2
c

xiΛijxj

)
(A12)

where Λij =
N

N−1 if i = j and Λij =
3N−4
(N−1)2 if i ̸= j, and where there is a summation of

repeated subscripts. The distribution, Equation (A11), is realizable (Λij is positive definite)
when N ≥ 3.

Normalized positional covariances are, to good approximation, given by σij = 1 if
i = j and σij = −1/N if i ̸= j, which is indicative of maximal anticorrelated positions.

If the volume of the swarm, σ3
c , is proportional to the population size, N, of the swarm,

then the volume per individual is predicted to saturate when swarms contain on the order
10 individuals, as observed by Puckett and Ouellette [5]. Puckett and Ouellette [5] found
that the approach to the asymptotic state can be accurately represented by a decaying
exponential function of the form Vind = Aexp

(
− N

N0

)
+ B where the characteristic scale

N0 = 3.1 ± 0.8 quantifies the rate of approach with increasing swarm size. Like the
observations, model predictions are found to be accurately represented by the decaying
exponential function albeit with N0 ≈ 1. But in the presence of a swarm marker of size
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σs = 1 (a.u.), the modelling predicts that N0 ≈ 5 (Figure A2). In such cases, the distribution
of positions becomes:

p(x1, x2, x3, . . . xN) = (2πσcσs)
−Nexp

(
− 1

2σ2
c

xiΛijxj

)
exp
(
− 1

2σ2
s

x2
i

)
(A13)

Puckett and Ouellette [5] also reported on a related though distinct measure of how the
midges arrange themselves in space, namely the average distance from an individual to
its nearest neighbour. Puckett and Ouellette [5] found that like the volume per individual,
the nearest-neighbour distance falls off rapidly with swarm size for small swarms, but
eventually saturates. This behaviour is predicted by stochastic models of the 3-dimensional
trajectories of swarming insects, which by construction are exactly consistent with the
multivariant distributions of positions, Equation (A11). As observed [5], the characteristic
scale, N0 ≈ 2, is larger than for the volume per individual but is less than the observed
characteristic scale, N0 = 8.6 ± 2.0. But in the presence of a swarm marker of size σs = 1
(a.u.), the modelling predicts that N0 ≈ 6 (Figure A2).

Finally, the stochastic modelling predicts that the anticorrelation of spatial positions re-
sults in correlated accelerations, as evidenced in an analysis of pre-existing data (Figure A3).
Such correlations have until now gone unnoticed, despite numerous attempts to uncover
order in the dynamics of swarming insects [2,3,15,27,28].

This analysis leaves open the question as to how the velocity statistics approach the
asymptotic regime.
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