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The turnover of organic carbon in subsoils.
Part 1. Natural and bomb radiocarbon in
soil profiles from the Rothamsted long-term
field experiments

D. S. JENKINSON
a , P. R. POULTON

a & C. BRYANT
b

aDepartment of Soil Science, Rothamsted Research, Harpenden AL5 2JQ, and bNatural Environment Research Council Radiocarbon

Laboratory, East Kilbride, Glasgow G75 0QF, UK

Summary

The Rothamsted long-term field experiments, started more than 150 years ago, provide unique material for

the study of carbon turnover in subsoils. Total organic C, 14C and 13C were measured on soil profiles

taken from these experiments, before and after the thermonuclear bomb tests of the mid-20th century.

Four contrasting systems of land management were sampled: land cultivated every year for winter

wheat; regenerating woodland on acid soil; regenerating woodland on calcareous soil; and old grass-

land. The mean radiocarbon ages of all the pre-bomb samples from cultivated land were 1210 years (0–

23 cm), 2040 years (23–46 cm), 3610 years (46–69 cm) and 5520 years (69–92 cm). Bomb radiocarbon

derived from thermonuclear tests was present throughout the profile in all the post-bomb samples,

although below 23 cm the amounts were small and the pre- and post-bomb radiocarbon measurements

were often not significantly different. Values of d13C increased down the profile, from �26.3& (0–23

cm layer, mean of all measurements) to �25.2& for the 69–92 cm layer. The C/N ratios decreased with

depth in virtually all of the profiles sampled. Excluding the surface (0–23 cm) soils from the old grass-

land, the hyperbola m ¼ 152.1 � 2341/(1 þ 0.264n) gave a close fit to the radiocarbon data from all

depths, all sampling times and all sites, where n is the organic C content of the soil, in t ha�1, and m is

the radiocarbon content of the soil, in D14C units, corrected for expansion or contraction of soil layers

with time. The aberrant grassland soils almost certainly contained coal: one of them was shown by 13C-

NMR to contain 0.82% coal C. In Part 2 (this issue) of this pair of papers, these radiocarbon and total

C measurements are used to develop and test a new model for the turnover of organic C in subsoils.

Introduction

This paper presents radiocarbon and associated measurements

made on soils taken before and after the thermonuclear bomb

tests of the mid-20th century, tests which briefly doubled the

radiocarbon content of the atmosphere. The soils came from

plots on the Rothamsted long-term field experiments that have

been under substantially the same management since the mid-

19th century or from nearby areas of cultivated land that had

been abandoned in the 1880s and have since reverted to wood-

land. Radiocarbon measurements in samples taken from the

same place before and after the thermonuclear bomb tests pro-

vide a stringent test of any model for the turnover of organic

carbon (C) in soil.

Apart from its intrinsic interest as a relatively unexplored part

of soil science, subsoil C turnover is relevant to an important

environmental issue: the effects of global warming on the stock

of organic C held in soil. Of the 1600 Gt of organic C held in the

top metre of the world’s soils (Prentice, 2001), about half is in the

25–100 cm layer (Jobbágy & Jackson, 2000; Lal &Kimble, 2000).

Radiocarbon measurements indicate that there is a sharp

increase in age down the profile (see for example, Scharpenseel

& Becker-Heidmann, 1989; Pessenda et al., 1996; Trumbore,

2000; Torn et al., 2002). Furthermore, the proportion of soil

organic C that is held as microbial biomass decreases with depth

(Dictor et al., 1998; Fierer et al., 2003; Castellazzi et al., 2004).

Global warming brought about by greenhouse gases will

result in more rapid decomposition of soil organic matter,

thus releasing more CO2 to the atmosphere. This positive feed-

back will add to the warming processes, to an extent that is
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under active debate (Jenkinson et al., 1991; Kirschbaum, 2000;

Friedlingstein et al., 2001; Jones et al., 2005; Knorr et al.,

2005). A realistic sub-model for the turnover of organic C in

soil is an essential component of any fully-coupled model of

the whole global carbon cycle. As a first step, it may be suffi-

cient to treat the top metre of soil as a homogeneous unit

when modelling the turnover of soil C on a global basis, as

was done, for example, by Jenkinson et al. (1991). However, a

more realistic sub-model, in which C turnover is not assumed

to be the same down the profile, may well prove more useful to

the global carbon cycle modellers.

For this work, four contrasting systems of land management

were selected from theRothamsted long-term experiments: land

cultivated every year for winter wheat; regenerating woodland

on acid soil; regenerating woodland on calcareous soil; and old

grassland. Some of the soil samples described in this paper were

also used by Poulton et al. (2003) in an earlier paper on the

accumulation of C and N in land reverting to woodland.

The aim of this paper is straightforward: to present and dis-

cuss measurements of organic C and radiocarbon,made on soils

sampled down the profile on selected plots from theRothamsted

long-term experiments, before and after thermonuclear testing.

In Part 2 (this issue) we use thesemeasurements and others taken

from the literature to develop and test a dynamic model for the

turnover of organic carbon in subsoils.

Materials and methods

Experimental sites

All of the sites were on Rothamsted Experimental Farm

(51°49¢N, 0°21¢W). The old cultivated site (termed ‘Broadbalk

Arable’ throughout this and the succeeding paper) was plot 08

on the BroadbalkWinterWheat experiment, started in 1843, on

land that was marked as under cultivation on a map of 1623.

This plot receives N (144 kgN ha�1), P, K andMg annually and

is limed as needed to prevent acidification: for details of treat-

ments and yields see Poulton (2006).

The two areas of regenerating woodland (subsequently

termed ‘Broadbalk Wilderness’ and ‘Geescroft Wilderness’)

have developed on two old cultivated areas that were fenced

off and allowed to revert to woodland in the 1880s; for site maps

and a detailed history see Poulton et al. (2003). Broadbalk

Wilderness was and is calcareous; Geescroft Wilderness,

although neutral when fenced off, is now strongly acid.

Broadbalk Wilderness is located at the top end of the field

carrying the BroadbalkWinterWheat experiment and was once

part of this field. The starting Broadbalk samples were not taken

from the actual site of the futureWilderness, but in 1881 from the

unfertilized plot (3) on the Broadbalk Winter Wheat Experi-

ment, which runs up to the edge of the Wilderness. However,

historic measurements across the plots of the BroadbalkWinter

Wheat Experiment (see the map in Poulton et al., 2003) indicate

that there is little variability in subsoil C across the plots of the

Broadbalk Experiment: the mean organic C content of the

23–46 cm layer for the 1881 sampling of plots 3, 5, 8, 10, 14

and 16 was 0.57 � 0.011%; the corresponding figure for the

46–69 cm layer was 0.45 � 0.003%.

The presentGeescroftWilderness was part of an experimental

field growing field beans between 1847 and 1878; the area that is

nowGeescroftWilderness was marked as cultivated land on the

1623 map. Some of our Geescroft samples came from areas that

had received P between 1847 and 1878, some fromareas that had

not. The startingGeescroft samples were taken in 1883 from two

plots (3 and 4) of the beans experiment that had never received P.

Theold grassland samples came from four subplotson thePark

Grass Continuous Hay Experiment; they are referred to in this

paper as from ‘Park Grass’. Sir John Lawes stated that the field

knownasParkGrass hadbeenunder pasture for at least 150 years

before he and Sir Henry Gilbert started the Continuous Hay

Experiment in 1856. However, the field was once under the

plough; the characteristic ridge-and-furrow marks of medieval

ploughing are still faintly visible. The herbage on the Park Grass

Experiment is cut and removed twice a year (see Poulton, 2006).

The four subplots we used were: unfertilized unlimed (subplot

3d); unfertilized limed (subplot 3b); fertilized unlimed (14/2d)

and fertilized limed (14/2c). The fertilized areas receive N

(96 kg N ha�1 as NaNO3), P, K and Mg annually. Lime is added

at intervals to subplot 3b to maintain topsoil pH at about 6

(Johnston, 1972). However, because no lime has yet been added

to subplot 14/2c, it and 14/2d can be regarded as replicates.

Soils

The soil on the old cultivated site and on both of the sites that

have been allowed to revert towoodland ismapped asBatcombe

Series. That part of the old grassland site from which our sam-

ples came is mapped as Hook Series, which differs from Bat-

combe only in that the depth to clay-with-flints is greater than 80

cm. The Batcombe Series soil is a moderately well-drained silty

clay loam overlying clay-with-flints, which in turn overlies chalk

at a depth of several metres (Avery & Catt, 1995). It is classified

as a Stagnogleyic Paleo-Argillic Brown Earth by the Soil Survey

of England and Wales; the USDA classification is an Aquic

Paleudalf. Particle-size analysis shows that clay increases with

depth in the Batcombe Series. The 0–23 cm layer of Geescroft

Wilderness contained 21%clay, the 23–46 cm layer 43%, the 46–

69 cm layer 55% and the 69–92 cm layer 63%; the correspond-

ing figures for Broadbalk Wilderness are 23, 30, 50 and 49%

(Jenkinson, 1971, a reference that gives the compete particle-size

analysis for soil profiles from each Wilderness). In Part 2 (this

issue) of this pair of papers, theBroadbalkArable profile and the

Park Grass profile are taken to have the same clay contents as

Broadbalk Wilderness.

Soil sampling

Sampling in 1999was as already described (Poulton et al., 2003).

Briefly, the samples were taken by power drill (see Poulton
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et al., 2003), using a 34-cm diameter drill for the 0–23 cm layer

and a 12.5-cm drill for the 23–46 and 46–69 cm layers. A 2.5-

cm diameter semi-cylindrical auger was used for the 69–92 cm

layer. The soil was sieved and air-dried, to give the mass of

‘fine soil’ (i.e. dry soil passing a 0.635 cm sieve) and of dry

stones that did not pass the 0.635 cm sieve. The mass of ‘fine

soil’ per sampling layer, rather than bulk density, which was

unduly influenced by the occasional large flint, was used to

convert analytical measurements on a % dry soil basis to a per

hectare basis. Living plants and roots remaining on the sieve

were excluded, but dried and weighed. This living plant mate-

rial was excluded from the all the measurements presented in

the present paper. The Park Grass soils were treated differ-

ently, because of their dense root mat: the surface 5 cm, with

its mass of roots, was separated from the remainder of the

0–23 cm layer. After removal of the roots and stones, the ‘fine

soil’ from the 0–5 cm layer was combined with the ‘fine soil’

from the 5–23 cm layer for analysis.

The pre-bomb samples had been taken by the traditional

Rothamsted procedure, using an open ended steel box 15 �
15 cm by 23 cm in depth (i.e. 6 � 6 � 9 inches), driven down-

wards into the soil, layer by layer (Dyer, 1902; Jenkinson,

1971). The soil was dried at 40°C, sieved (0.635 cm) to remove

stones and the ‘fine soil’ then stored at room temperature for up

to 130 years in sealed bottles. The mass of ‘fine soil’ in each of

the sampling layers was obtained from the Rothamsted

archives. Blake et al. (2000) were unable to detect any change

in the C or N contents of soils from Park Grass that had been

kept air-dry in bottles for 32 years, making it likely that

changes in the total C and N contents of our stored samples

were also negligible. All ‘fine soil’ samples, pre- and post-

bomb, were ground for 3 minutes in a disc mill (Tema Model

T100, Tema Machinery Ltd., Woodford Halse, Northants,

UK) before analysis.

Geescroft was the only site with appreciable litter cover in

1999; this was collected, sieved (< 0.635 cm) and weighed from

0.66 m2 areas at each sampling position, before sampling the

mineral soil. Prior to analysis (including radiocarbon dating),

a quantity of the Tema-milled litter was returned to the 0–23

cm soil sample, in proportion to the area sampled.

The number of holes sampled at each site is given in Tables 1

and 2.

Analytical methods

Total C and N were determined by combustion using a LECO

CNSAnalyser (LECOCorp., St. Joseph,MI, USA). Carbonate

C was determined by manometry and organic C taken as the

difference between total C and carbonate C. Soil pH was mea-

sured in water, using a ratio of 10 g soil to 25 ml water. All

measurements (except radiocarbon and d13C, see below) were

made individually on samples from each layer of each sam-

pling hole. Measurements are expressed on an oven-dry basis

(24 hours at 105°C). If a row in Table 1 or 2 contains the pre-

fixes I- or NPL-, the analytical methods to obtain the data in

that row are as described by Jenkinson et al. (1992).

Radiocarbon and 13C measurements

For reasons of economy, radiocarbon measurements were car-

ried out on combined samples, containing equal masses of the

contributing soils. Soils from the sampling holes across a site

were allocated alternately to an ‘odd’ or ‘even’ sample, which

were then analysed separately for radiocarbon. The soils for

radiocarbon dating were pre-treated with acid to remove car-

bonate; for consistency this was done to all soils, whether car-

bonate was present or not. The soil samples were soaked in 0.1

M HCl for 10 hours, stirred occasionally and the pH mea-

sured to ensure that it remained < 3. They were then washed

free of mineral acid with distilled water, dried and homoge-

nized. About 3% of the organic C originally present in the

soil is lost during decalcification (Jenkinson et al. 1992); the

radiocarbon content of the C thus lost was not measured.

The total C in a known weight of decalcified soil was recov-

ered as CO2 by heating with CuO in a sealed quartz tube

(Boutton et al., 1983) and the CO2 then converted to graphite

by Fe/Zn reduction (Slota et al., 1987). The graphite samples

were analysed for radiocarbon at the University of Arizona

NSF-AMS facility (Donahue, 1995); these samples (Tables 1

and 2) are indicated by the prefix AA-. Tables 1 and 2 also

contain a few earlier measurements by other radiocarbon

dating laboratories, indicated by the appropriate laboratory

prefix; some of these have been published before (Jenkinson

& Rayner, 1977; Jenkinson et al., 1992). The 13C isotope

ratios were measured on a sub-sample of CO2, using a dual

inlet mass spectrometer with a multiple ion beam collection

facility (VG OPTIMA; Fisons Instruments, Middlewich,

UK). The mass spectrometer was calibrated with interna-

tional reference materials to a precision of � 0.1&. The d13C
measurements are ultimately related to the PDB belemnite

standard and the radiocarbon data to 0.95 of the 14C activity

of the NBS standard oxalic acid.

The radiocarbon data are presented in two ways: as conven-

tional years Before Present (BP, relative to 1950), unless so

much bomb-derived radiocarbonwas present that an age could

not be calculated, and as % modern absolute. The % modern

absolute values were obtained by multiplying the % modern

values (as measured) by exp(�lv), where k is the decay con-

stant (based on the true radiocarbon half-life of 5730 years)

and v is the number of years between 1950 and the year of

measurement. This correction allows for the ongoing radio-

active decay of the NBS oxalic acid reference standard since

1950 (Stuiver & Polach, 1977). For samples collected in 1999

and analysed in 2001 (Tables 1 and 2), this factor was 0.9939.

It was taken to be negligibly different from 1 for the non-

AA- measurements, which were done in the 1960s or early

1970s. The radiocarbon ages in Tables 1 and 2 were calcu-

lated from % modern (not % modern absolute) as �8033
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ln(% modern/100), using the conventional Libby half-life of

5568 years. To allow for isotopic fractionation, all 14C meas-

urements are corrected (Stuiver & Polach, 1977) to

d13CPDB& ¼ �25, using the appropriate 13C values in

Tables 1 and 2.

Calculation of equivalent depths

Themass of ‘fine soil’ in the 0–23 cm layer of bothGeescroft and

Broadbalk Wildernesses was markedly less in the 1999 sam-

plings than in the corresponding layers of soil takenbefore rever-

sion to woodland commenced (Table 1). We therefore

calculated ‘equivalent depths’, in order to allow for changeswith

time in bulk density, organic matter content, etc. (Dyer, 1902;

Jenkinson, 1971; Gifford & Roderick, 2003). For the top layer,

equivalent depth is here defined as ‘the depth to which the top

layer should have been sampled at time t, so that it contained

the same mass of organic-matter-free and calcium-carbonate-

free ‘fine soil’ as at t0, when the first sample was taken to

a depth of 23 cm’. Similar definitions hold for deeper layers.

Equivalent depths and mass of organic C in equivalent layers

were calculated as in Poulton et al. (2003). In essence, equiva-

lent depth corrections were made by adding or taking away

a slice of material with the composition of the layer below,

assuming that transitions between layers were continuous and

smooth. In making these corrections, we also assume that sur-

face erosion was negligible over the sampling period in all of

our (near-level) sites.

The % radiocarbon absolute (r²) in a specified equivalent

layer (for example, the 23–46 cm layer) at time t was calculated

from the expression

r² ¼ ½ f ²x² þ f ²¢x²¢ðH² � D²Þ=L � f ²x²ðH¢ � D¢Þ=L�=ðc²Þ;
ð1Þ

where primes indicate layer; for example, x² is the measured

mass of organic C (in t ha�1) in the 23–46 cm layer at time t, x¢
the corresponding quantity in the 0–23 cm layer and x¢¢¢ that in
the 46–69 cm layer. D² (in cm) is the measured depth to the

bottom of the specified layer (i.e. 46 cm in this case), each layer

being of thickness L cm; H² (also in cm) is the equivalent depth

at time t; c² is the calculated mass of organic C in the 23–46 cm

equivalent layer at time t and f² is % modern absolute, but

adjusted to the value it would have been had the soil been ana-

lysed immediately after sampling. This correction (calculated

using the true radiocarbon half-life of 5730 years, correspond-

ing to a decay constant of 0.0001210 years�1) was necessary

because some of the radiocarbon measurements were made

more than a century after sampling. To make the correction,

the values of % modern absolute, as given in Tables 1 and 2,

were divided by exp(�0.000121w), where w is the period, in

years, between sampling and analysis. Finally, the values of

D14Ce in Tables 1 and 2 are given by (10r²�1000), where D14Ce

is D14C corrected to equivalent depth.

NMR spectroscopy

Two 0–23 cm soils from Park Grass were analysed for coal by

solid-state 13C NMR, one of which we thought (from radio-

carbon measurements; see Results and Discussion section)

contained coal as contaminant and the other not. The 13C

cross-polarization magic-angle spinning (CPMAS) NMR

spectra were measured on a Bruker MSL 300 spectrometer

(Bruker Analytik GmbH, Rheinstetten, Germany). The NMR

measurements were done by N. Mahieu and E. W.Randall

(private communication, 2003).

The following experimental parameters were used: spectrom-

eter frequency 75.5MHz, contact time 1 ms, relaxation time 1 s,

and spinning speed around 4.8 kHz, elimination of spinning

side-bands using the TOSS (total suppression of sidebands)

sequence (Dixon, 1982) and line broadening 50 Hz.

Three runs were done on the putative coal-free sample; by

itself, with 1% of coal picked from the Park Grass site and with

2% coal. A fourth run was done on the coal alone. A fifth run

was done on the contaminated sample. Before analysis, the soils

had been ground for 3 minutes in a Tema disc mill, with added

coal where appropriate. The coal sample was ground likewise.

The ground samples were packed into cylindrical zirconia rotors

(5.6� 17.0mm internal dimensions) sealedwithKel-F caps (3M

Company, Minneapolis, MN, USA). We accumulated 601 433

scans (7 days) for the putative coal-free sample alone, 479 148

(5.5 days) for it groundwith 1% coal, 346 936 (4 days) for it with

2% coal, 226 591 (2.6 days) for the contaminated sample and 56

998 (0.7 days) for coal by itself.

Results and discussion

Non-isotopic soil measurements

Organic C and total N decreased down the profile, in all except

one instance (the 69–92 cm layer sampled from plot 3d on Park

Grass in 1999; Table 2). Taking all the data in Tables 1 and 2

together, there was a close (R2 ¼ 0.98) linear relationship

between percentage N and C in the soils, given by the equation:

C ¼ 13:0N � 0:324: ð2Þ

Except for two measurements in the 69–92 cm layer, C/N ratios

decreased with depth in all of the profiles sampled. This decrease

is caused, at least in part, by the increasing proportion of the soil

N held as fixed ammoniumwith depth. Bremner (1959), working

with soils from plot 07 on Broadbalk, a plot next to that used in

the present paper (08), showed that the 0–23 cm layer contained

5.6% of its N as fixed NH4, rising to 18.4% in the 46–69 cm

layer and 22.6% in the 114–137 cm layer. This fixed ammo-

nium was held on clay, not on organic matter.

There was little change in pH over the last century in the

Broadbalk soils, nearly all being in the 7–8 range, as would be

expected for soils containing free CaCO3 throughout the

experimental period. The CaCO3 content did, however,
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decrease with time, as generally observed in the Rothamsted

field experiments (Bolton, 1977). Soil pH fell slightly with time

in the unlimed Park Grass unfertilized soils and rose by about

a unit in the limed unfertilized soils; it stayed just under 6 in

the fertilized unlimed treatments. In contrast, pH fell sharply

in Geescroft Wilderness, from 7.1 in 1883 to a mean of 4.4 in

1999 (see Poulton et al., 2003).

Radiocarbon measurements

Apart from some surface soils from Park Grass, which will be

considered later, radiocarbon age increased down the soil profile

(Tables 1 and 2). For soil taken in 1893 from the Broadbalk

Winter Wheat Experiment, the radiocarbon age increased from

1192 years in the 0–23 cm layer to 12 090 years in the 206–229 cm

layer. Taking all the pre-bomb cultivated soil samples together

(i.e. all the samples listed in Table 1, except those collected in

1999), there was a linear relationship (R2 ¼ 0.94) between the

radiocarbon age (x-axis) and negative depth to the middle of

each sampling layer (y-axis), given by:

y ¼ � 0:0162x þ 5:28: ð3Þ

Radiocarbon ‘ages’, as given inTables 1 and 2,must not be taken

at their face values, as representing the depositional age of the

organic matter in a particular layer of a particular profile. The

age of a particular sample is really the age of a homogeneous

sample that has the same 14C/12C ratio as that of the heteroge-

neous soil sample analysed. Unacceptable errors will be intro-

duced if the ages in Tables 1 or 2 are taken as those of

a homogeneous pool of C. This can be seen by considering the

1893 sample of the 0–23 cm layer from Broadbalk Arable,

which contained 29.4 t organic C ha�1, with a radiocarbon age

of 1192 years. To a close approximation, this site is under

steady state conditions, with the annual input of organic C

equal to the annual output. If we treat the organic C in this soil

as a homogeneous pool, of average age 1192 years, then the

annual steady-state input of organic C is given by 29.4/1192, or

25 kg C ha�1 year�1. This is a ludicrously small value. The aver-

age annual offtake of C in grain and straw from this plot over

the period 1990–2005 was 3500 kg C ha�1. The return of C in

stubble to the soil was about 200 kg C ha�1 year�1, and this fig-

ure does not include C returned in roots and chaff. In reality

this calculation is misleading because soil organic C contains

fractions of vastly different stabilities (see Part 2, this issue).

Taking the radiocarbon data from all the depths and all the

sites together, but excluding the Park Grass 0–23 cm soils, there

was a hyperbolic relationship (Figure 1) between the radiocar-

bon content of a soil (m, expressed as D14Ce) and its organic C

content (n, in t ha�1) given by

m ¼ 152:1 � 2341=ð1 þ 0:264nÞ: ð4Þ

Paul et al. (2001) fitted a polynomial to similar data for soils

from the US Midwest; their polynomial and our hyperbola

give broadly similar radiocarbon predictions for soil C con-

tents of between 10 and 80 t C ha�1.

It is worth pointing out that the points on the lower left of

Figure 1 are from the deepest subsoils, which contain the least

C, although this C is of great age. Those at the top right are from

surface soils with much C, although this C is relatively young,

again except for the Park Grass surface soils. The principal value

ofanempirical relationship likeEquation (4) is that it immediately

draws attention to aberrant data like the ParkGrass surface soils.

Measurements of d 13C

Values of d13C increased down the profile, from �26.3& �
0.14 (SE) in the 0–23 cm layer (mean of all measurements,

excluding one outlier) to �25.8& � 0.17 for the 23–46 cm

layer, �25.5& � 0.11 for the 46–69 cm layer (excluding

another outlier) and �25.2& � 0.09 for the 69–92 cm layer.

Such increases with depth are common (Boutton, 1996; Torn

et al., 2002) but not universal (Krull & Skjemstad, 2003).

There was a decrease in d13C as organic matter accumulated

in the 0–23 cm layer of the Wildernesses, from a starting value

in the 1880s of �25.3& � 0.08, decreasing to �26.7& � 0.16 in

1999 (means for both Wildernesses, again omitting one out-

lier). Excluding the same d13C outliers, there was a weak rela-

tionship (R2 ¼ 0.46) between d13C and D14Ce, given by:

d13C ¼ � 0:00303
�
D14Ce

�
� 26:43: ð5Þ

Figure 1 Plot of the amount of organic C in a soil layer, against

D14Ce for the same layer, for all the layers and all the sites listed in

Tables 1 and 2. The line shows the hyperbola m ¼ 152.1 � 2341/(1 þ
0.264 n) fitted (R2 ¼ 0.88) to all the data except the Park Grass 0–23

cm soils, where m is the radiocarbon content of the soil, expressed as

D14Ce, and n its organic C content, in t ha�1. The arrow shows how

allowing for coal shifts the point for one of the Park Grass surface

soils (the 0–23 cm layer sampled in 1906 from the unlimed fertilized

treatment, with a coal C content of 0.82%).
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Thus soil organic C gets older with depth and the discrimination

against 13C becomes less. Presumably the influence of recently-

added plant debris (with strongly negative d13C values)

becomes increasingly diluted by older soil organic matter (with

less negative d13C values) down the profile.

Carbonized material in the soils

Soils often contain carbonized material such as charcoal, coal or

lignite (Krull & Skjemstad, 2003; Rumpel et al., 2003). Carbon-

ized C had earlier (Jenkinson et al., 1992) been measured in

some of the soils listed in Tables 1 and 2. The 0–23 cm layers of

the samples taken from Broadbalk in 1881 and from Geescroft

in 1883 each contained 0.4 t ha�1 of carbonized C, roughly 1%

of the total soil organic C. There was no detectable carbonized

C in the corresponding 23–46 and 46–69 cm layers from either

site (detection limit; 0.1 t ha�1 carbonized C).

Some of our Park Grass surface soils contain much more

carbonized C than the corresponding layers on Geescroft or

Broadbalk. Earlier work (Jenkinson et al., 1992) showed that

samples of 0–23 cm soil from plot 3 on Park Grass (samples

taken at various times, none corresponding to any of the sam-

ples in Table 2) contained 4.5–6.0 t ha�1 carbonized C,

accounting for some 5% of the total soil organic C. Stones

larger than 0.635 cm in diameter were excluded when pre-

paring our samples for analysis and several of the Park Grass

plots sampled in 1999 contained discrete fragments of bitumi-

nous coal in the larger than 0.635 cm stone fraction. The coal-

contaminated plots are on the end of the experiment closest to

Rothamsted Manor and it is possible the coal was present in

ash from domestic fires, probably spread during the late 18th

or early 19th centuries. Several of the Park Grass surface soils

deviated considerably from Equation (4). We decided to use
13C-NMR to see if these deviations were caused by coal con-

tamination, using two Park Grass surface soils. Data from the

first (taken in 1999 from the limed section of the unfertilized

treatment, containing 3.54% C; see Table 2) fell close to the

line on Figure 1, suggesting it contained little if any coal,

whereas the other (taken in 1906 from the fertilized unlimed

treatment, containing 3.25% C) fell far below this line, sug-

gesting that it contained a considerable amount of coal. From

the height of the aromatic band at ca. 127 p.p.m. (after nor-

malising all the runs to give the same ratio (height of carbonyl

band at c. 173 p.p.m.)/(% soil organic C)) we calculated that

the contaminated sample contained 0.82% coal C. The arrow

on Figure 1 shows the data for the putative contaminated soil

before and after deducting coal C. This observation, that

deducting coal C in this way returned the sample point to just

below the line on Figure 1, confirms our view that coal is the

reason why some of the Park Grass 0–23 cm samples fell

markedly below this line.

A rough estimate of the amount of coal-free organic carbon in

the 0–23 cm layer of the Park Grass samples was made as fol-

lows. The difference between the value of D14C as measured for

each individual sample and as given by Equation (4) was cal-

culated. The concentration of coal was calculated for each

sample of topsoil by relating this difference to that in the con-

taminated sample containing 0.82% coal. The 0–23 cm layer

of all the pre-bomb Park Grass samples contained 69.0 t coal-

free organic C ha�1: the corresponding mean for all of the

1999 samples was 75.2 t ha�1 (Table 3: in square brackets).

Data aggregation

Table 3 presents a summary of pre- and post-bomb organic C

and radiocarbon for these Rothamsted Long-Term Experi-

ments, calculated from the mass of data in Tables 1 and 2. Data

from the part of Geescroft Wilderness that once received P have

been meaned with the corresponding data from the part that

never received P; no differences have yet been observed between

the two parts (Jenkinson, 1971; Poulton et al., 2003).

The ‘pre-bomb’ data in Table 3 are means of measurements

on samples taken between 1881 and 1906. This was done to

obtain some measure of sampling variation, assuming that all

belonged to a single population.The individualmeasurements in

Table 1 suggest that this is not an unreasonable assumption,

bearing inmind the paucity of data. However, it should be noted

that many of the standard errors for D14Ce in Table 3 are based

on only two replicates and are therefore themselves subject to

large error.

The samples taken in 1999 fromGeescroftWilderness, Broad-

balk Wilderness and Broadbalk Arable contained more organic

C than the corresponding pre- bomb sampling, all the way down

the profile (Table 3). However, t tests comparing the C content

of each layer sampled in 1999 with the C content of the corre-

sponding pre-bomb layer showed that these differences were

seldom significant (P < 0.05, here and subsequently), apart

from the surface layers. Carbon gains in the woodland sites

are discussed in detail by Poulton et al. (2003). The 1999 sam-

ples from Geescroft Wilderness, Broadbalk Wilderness and

Broadbalk Arable all contained more radiocarbon than the

corresponding pre-bomb sample (with one exception, the 23–

46 cm layer from Broadbalk Arable), although, apart from the

surface layer, none of the differences reached significance

(Table 3). One of the two 0–23 cm samples taken in 1999 from

Broadbalk Arable was much older than the other (D14Ce

�116.7&, compared with �38.2&; Table 1), making the cor-

responding standard errors in Table 3 very large. The great

age of this sample (957 years) is out of line with the 1977 sam-

pling of the same plot (Jenkinson et al., 1992). We have no

explanation for this discrepancy.

The ‘pre-bomb’ data in Table 3 for the old grassland (Park

Grass) aremeans ofmeasurementsmade in 1870, 1876 and 1906.

All the data from the 1999 sampling have also been aggregated,

partly because of the problem with coal (see above) and partly

because too few samples were taken on the different plots for

individual treatment. If the effects of coal are disregarded, there

was little change in organicC in the 0–23 cm layer over the 100 or
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so years in Park Grass. However, if changes in coal content are

factored in, therewas a small C gain in the 0–23 cm layer over the

experimental period. Each of the lower layers contained a little

more organic C when sampled in 1999 (Table 3) than in the

corresponding layer of the pre-bomb profile, although only

a few of the gains in the deeper layers reached significance

(P < 0.05). It is possible that soil organic C on Park Grass had

not yet reached equilibrium by the end of the 19th century –

the site had once been cultivated and was not under continu-

ous grass until 1700 – or earlier. The aggregated 1999 samples

from Park Grass contained significantly more radiocarbon

than the corresponding pre-bomb samples, all the way down

the profile (Table 3).
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