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The turnover of organic carbon in subsoils.
Part 1. Natural and bomb radiocarbon in
soil profiles from the Rothamsted long-term

field experiments

D. S. JENKINSON?®, P. R. POULTON? & C. BRYANT"

“Department of Soil Science, Rothamsted Research, Harpenden AL5 2JQ, and “Natural Environment Research Council Radiocarbon

Laboratory, East Kilbride, Glasgow G75 0QF, UK

Summary

The Rothamsted long-term field experiments, started more than 150 years ago, provide unique material for
the study of carbon turnover in subsoils. Total organic C, '*C and '*C were measured on soil profiles
taken from these experiments, before and after the thermonuclear bomb tests of the mid-20th century.
Four contrasting systems of land management were sampled: land cultivated every year for winter
wheat; regenerating woodland on acid soil; regenerating woodland on calcareous soil; and old grass-
land. The mean radiocarbon ages of all the pre-bomb samples from cultivated land were 1210 years (0—
23 cm), 2040 years (2346 cm), 3610 years (46—69 cm) and 5520 years (69-92 cm). Bomb radiocarbon
derived from thermonuclear tests was present throughout the profile in all the post-bomb samples,
although below 23 cm the amounts were small and the pre- and post-bomb radiocarbon measurements
were often not significantly different. Values of 8'*C increased down the profile, from —26.3%, (0-23
cm layer, mean of all measurements) to —25.29, for the 69-92 cm layer. The C/N ratios decreased with
depth in virtually all of the profiles sampled. Excluding the surface (0-23 cm) soils from the old grass-
land, the hyperbola m = 152.1 — 2341/(1 + 0.264n) gave a close fit to the radiocarbon data from all
depths, all sampling times and all sites, where # is the organic C content of the soil, in t ha™', and m is
the radiocarbon content of the soil, in A™C units, corrected for expansion or contraction of soil layers
with time. The aberrant grassland soils almost certainly contained coal: one of them was shown by '*C-
NMR to contain 0.82% coal C. In Part 2 (this issue) of this pair of papers, these radiocarbon and total

C measurements are used to develop and test a new model for the turnover of organic C in subsoils.

Introduction

This paper presents radiocarbon and associated measurements
made on soils taken before and after the thermonuclear bomb
tests of the mid-20th century, tests which briefly doubled the
radiocarbon content of the atmosphere. The soils came from
plots on the Rothamsted long-term field experiments that have
been under substantially the same management since the mid-
19th century or from nearby areas of cultivated land that had
been abandoned in the 1880s and have since reverted to wood-
land. Radiocarbon measurements in samples taken from the
same place before and after the thermonuclear bomb tests pro-
vide a stringent test of any model for the turnover of organic
carbon (C) in soil.
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Apart from its intrinsic interest as a relatively unexplored part
of soil science, subsoil C turnover is relevant to an important
environmental issue: the effects of global warming on the stock
of organic C held in soil. Of the 1600 Gt of organic C held in the
top metre of the world’s soils (Prentice, 2001), about half is in the
25-100 cm layer (Jobbagy & Jackson, 2000; Lal & Kimble, 2000).

Radiocarbon measurements indicate that there is a sharp
increase in age down the profile (see for example, Scharpenseel
& Becker-Heidmann, 1989; Pessenda er al., 1996; Trumbore,
2000; Torn et al., 2002). Furthermore, the proportion of soil
organic C that is held as microbial biomass decreases with depth
(Dictor et al., 1998; Fierer et al., 2003; Castellazzi et al., 2004).

Global warming brought about by greenhouse gases will
result in more rapid decomposition of soil organic matter,
thus releasing more CO, to the atmosphere. This positive feed-
back will add to the warming processes, to an extent that is
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under active debate (Jenkinson et al., 1991; Kirschbaum, 2000;
Friedlingstein et al., 2001; Jones et al., 2005; Knorr et al.,
2005). A realistic sub-model for the turnover of organic C in
soil is an essential component of any fully-coupled model of
the whole global carbon cycle. As a first step, it may be suffi-
cient to treat the top metre of soil as a homogeneous unit
when modelling the turnover of soil C on a global basis, as
was done, for example, by Jenkinson et al. (1991). However, a
more realistic sub-model, in which C turnover is not assumed
to be the same down the profile, may well prove more useful to
the global carbon cycle modellers.

For this work, four contrasting systems of land management
were selected from the Rothamsted long-term experiments: land
cultivated every year for winter wheat; regenerating woodland
on acid soil; regenerating woodland on calcareous soil; and old
grassland. Some of the soil samples described in this paper were
also used by Poulton et al. (2003) in an earlier paper on the
accumulation of C and N in land reverting to woodland.

The aim of this paper is straightforward: to present and dis-
cuss measurements of organic C and radiocarbon, made on soils
sampled down the profile on selected plots from the Rothamsted
long-term experiments, before and after thermonuclear testing.
In Part 2 (this issue) we use these measurements and others taken
from the literature to develop and test a dynamic model for the
turnover of organic carbon in subsoils.

Materials and methods
Experimental sites

All of the sites were on Rothamsted Experimental Farm
(51°49'N, 0°21'W). The old cultivated site (termed ‘Broadbalk
Arable’ throughout this and the succeeding paper) was plot 08
on the Broadbalk Winter Wheat experiment, started in 1843, on
land that was marked as under cultivation on a map of 1623.
This plot receives N (144 kg N ha™'), P, K and Mg annually and
is limed as needed to prevent acidification: for details of treat-
ments and yields see Poulton (2006).

The two areas of regenerating woodland (subsequently
termed ‘Broadbalk Wilderness’ and ‘Geescroft Wilderness’)
have developed on two old cultivated areas that were fenced
off and allowed to revert to woodland in the 1880s; for site maps
and a detailed history see Poulton er al. (2003). Broadbalk
Wilderness was and is calcareous; Geescroft Wilderness,
although neutral when fenced off, is now strongly acid.

Broadbalk Wilderness is located at the top end of the field
carrying the Broadbalk Winter Wheat experiment and was once
part of this field. The starting Broadbalk samples were not taken
from the actual site of the future Wilderness, butin 1881 from the
unfertilized plot (3) on the Broadbalk Winter Wheat Experi-
ment, which runs up to the edge of the Wilderness. However,
historic measurements across the plots of the Broadbalk Winter
Wheat Experiment (see the map in Poulton et al., 2003) indicate
that there is little variability in subsoil C across the plots of the
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Broadbalk Experiment: the mean organic C content of the
23-46 cm layer for the 1881 sampling of plots 3, 5, 8, 10, 14
and 16 was 0.57 £ 0.011%; the corresponding figure for the
46-69 cm layer was 0.45 £ 0.003%.

The present Geescroft Wilderness was part of an experimental
field growing field beans between 1847 and 1878; the area that is
now Geescroft Wilderness was marked as cultivated land on the
1623 map. Some of our Geescroft samples came from areas that
had received P between 1847 and 1878, some from areas that had
not. The starting Geescroft samples were taken in 1883 from two
plots (3 and 4) of the beans experiment that had never received P.

The old grassland samples came from four subplots on the Park
Grass Continuous Hay Experiment; they are referred to in this
paper as from ‘Park Grass’. Sir John Lawes stated that the field
known as Park Grass had been under pasture for at least 150 years
before he and Sir Henry Gilbert started the Continuous Hay
Experiment in 1856. However, the field was once under the
plough; the characteristic ridge-and-furrow marks of medieval
ploughing are still faintly visible. The herbage on the Park Grass
Experiment is cut and removed twice a year (see Poulton, 2000).

The four subplots we used were: unfertilized unlimed (subplot
3d); unfertilized limed (subplot 3b); fertilized unlimed (14/2d)
and fertilized limed (14/2c). The fertilized areas receive N
(96 kg N ha~! as NaNOs), P, K and Mg annually. Lime is added
at intervals to subplot 3b to maintain topsoil pH at about 6
(Johnston, 1972). However, because no lime has yet been added
to subplot 14/2c, it and 14/2d can be regarded as replicates.

Soils

The soil on the old cultivated site and on both of the sites that
have been allowed to revert to woodland is mapped as Batcombe
Series. That part of the old grassland site from which our sam-
ples came is mapped as Hook Series, which differs from Bat-
combe only in that the depth to clay-with-flints is greater than 80
cm. The Batcombe Series soil is a moderately well-drained silty
clay loam overlying clay-with-flints, which in turn overlies chalk
at a depth of several metres (Avery & Catt, 1995). It is classified
as a Stagnogleyic Paleo-Argillic Brown Earth by the Soil Survey
of England and Wales; the USDA classification is an Aquic
Paleudalf. Particle-size analysis shows that clay increases with
depth in the Batcombe Series. The 0-23 cm layer of Geescroft
Wilderness contained 21% clay, the 23-46 cm layer 43%, the 46—
69 cm layer 55% and the 69-92 cm layer 63%; the correspond-
ing figures for Broadbalk Wilderness are 23, 30, 50 and 49%
(Jenkinson, 1971, a reference that gives the compete particle-size
analysis for soil profiles from each Wilderness). In Part 2 (this
issue) of this pair of papers, the Broadbalk Arable profile and the
Park Grass profile are taken to have the same clay contents as
Broadbalk Wilderness.

Soil sampling

Sampling in 1999 was as already described (Poulton et al., 2003).
Briefly, the samples were taken by power drill (see Poulton
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et al., 2003), using a 34-cm diameter drill for the 0-23 cm layer
and a 12.5-cm drill for the 23—46 and 46-69 cm layers. A 2.5-
cm diameter semi-cylindrical auger was used for the 69-92 cm
layer. The soil was sieved and air-dried, to give the mass of
‘fine soil” (i.e. dry soil passing a 0.635 cm sieve) and of dry
stones that did not pass the 0.635 cm sieve. The mass of ‘fine
soil’ per sampling layer, rather than bulk density, which was
unduly influenced by the occasional large flint, was used to
convert analytical measurements on a % dry soil basis to a per
hectare basis. Living plants and roots remaining on the sieve
were excluded, but dried and weighed. This living plant mate-
rial was excluded from the all the measurements presented in
the present paper. The Park Grass soils were treated differ-
ently, because of their dense root mat: the surface 5 cm, with
its mass of roots, was separated from the remainder of the
0-23 cm layer. After removal of the roots and stones, the ‘fine
soil” from the 0-5 cm layer was combined with the ‘fine soil’
from the 5-23 cm layer for analysis.

The pre-bomb samples had been taken by the traditional
Rothamsted procedure, using an open ended steel box 15 x
15 cm by 23 cm in depth (i.e. 6 x 6 x 9 inches), driven down-
wards into the soil, layer by layer (Dyer, 1902; Jenkinson,
1971). The soil was dried at 40°C, sieved (0.635 cm) to remove
stones and the ‘fine soil’ then stored at room temperature for up
to 130 years in sealed bottles. The mass of ‘fine soil” in each of
the sampling layers was obtained from the Rothamsted
archives. Blake et al. (2000) were unable to detect any change
in the C or N contents of soils from Park Grass that had been
kept air-dry in bottles for 32 years, making it likely that
changes in the total C and N contents of our stored samples
were also negligible. All ‘fine soil’ samples, pre- and post-
bomb, were ground for 3 minutes in a disc mill (Tema Model
T100, Tema Machinery Ltd., Woodford Halse, Northants,
UK) before analysis.

Geescroft was the only site with appreciable litter cover in
1999; this was collected, sieved (< 0.635 cm) and weighed from
0.66 m> areas at each sampling position, before sampling the
mineral soil. Prior to analysis (including radiocarbon dating),
a quantity of the Tema-milled litter was returned to the 0-23
cm soil sample, in proportion to the area sampled.

The number of holes sampled at each site is given in Tables 1
and 2.

Analytical methods

Total C and N were determined by combustion using a LECO
CNS Analyser (LECO Corp., St. Joseph, MI, USA). Carbonate
C was determined by manometry and organic C taken as the
difference between total C and carbonate C. Soil pH was mea-
sured in water, using a ratio of 10 g soil to 25 ml water. All
measurements (except radiocarbon and §'3C, see below) were
made individually on samples from each layer of each sam-
pling hole. Measurements are expressed on an oven-dry basis
(24 hours at 105°C). If a row in Table 1 or 2 contains the pre-
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fixes I- or NPL-, the analytical methods to obtain the data in
that row are as described by Jenkinson et al. (1992).

. 1
Radiocarbon and '>C measurements

For reasons of economy, radiocarbon measurements were car-
ried out on combined samples, containing equal masses of the
contributing soils. Soils from the sampling holes across a site
were allocated alternately to an ‘odd’ or ‘even’ sample, which
were then analysed separately for radiocarbon. The soils for
radiocarbon dating were pre-treated with acid to remove car-
bonate; for consistency this was done to all soils, whether car-
bonate was present or not. The soil samples were soaked in 0.1
M HCI for 10 hours, stirred occasionally and the pH mea-
sured to ensure that it remained < 3. They were then washed
free of mineral acid with distilled water, dried and homoge-
nized. About 3% of the organic C originally present in the
soil is lost during decalcification (Jenkinson et al. 1992); the
radiocarbon content of the C thus lost was not measured.
The total C in a known weight of decalcified soil was recov-
ered as CO, by heating with CuO in a sealed quartz tube
(Boutton et al., 1983) and the CO, then converted to graphite
by Fe/Zn reduction (Slota et al., 1987). The graphite samples
were analysed for radiocarbon at the University of Arizona
NSF-AMS facility (Donahue, 1995); these samples (Tables 1
and 2) are indicated by the prefix AA-. Tables 1 and 2 also
contain a few earlier measurements by other radiocarbon
dating laboratories, indicated by the appropriate laboratory
prefix; some of these have been published before (Jenkinson
& Rayner, 1977; Jenkinson et al., 1992). The '*C isotope
ratios were measured on a sub-sample of CO,, using a dual
inlet mass spectrometer with a multiple ion beam collection
facility (VG OPTIMA; Fisons Instruments, Middlewich,
UK). The mass spectrometer was calibrated with interna-
tional reference materials to a precision of =+ 0.1%,. The 8'*C
measurements are ultimately related to the PDB belemnite
standard and the radiocarbon data to 0.95 of the '*C activity
of the NBS standard oxalic acid.

The radiocarbon data are presented in two ways: as conven-
tional years Before Present (BP, relative to 1950), unless so
much bomb-derived radiocarbon was present that an age could
not be calculated, and as % modern absolute. The % modern
absolute values were obtained by multiplying the % modern
values (as measured) by exp(—Av), where A is the decay con-
stant (based on the true radiocarbon half-life of 5730 years)
and v is the number of years between 1950 and the year of
measurement. This correction allows for the ongoing radio-
active decay of the NBS oxalic acid reference standard since
1950 (Stuiver & Polach, 1977). For samples collected in 1999
and analysed in 2001 (Tables 1 and 2), this factor was 0.9939.
It was taken to be negligibly different from 1 for the non-
AA- measurements, which were done in the 1960s or early
1970s. The radiocarbon ages in Tables 1 and 2 were calcu-
lated from % modern (not % modern absolute) as —8033

© 2008 Rothamsted Research Ltd
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In(% modern/100), using the conventional Libby half-life of
5568 years. To allow for isotopic fractionation, all '*C meas-
urements are corrected (Stuiver & Polach, 1977) to
8"3Cppp%, = —25, using the appropriate '*C values in
Tables 1 and 2.

Calculation of equivalent depths

The mass of ‘fine soil” in the 0-23 cm layer of both Geescroft and
Broadbalk Wildernesses was markedly less in the 1999 sam-
plings than in the corresponding layers of soil taken before rever-
sion to woodland commenced (Table 1). We therefore
calculated ‘equivalent depths’, in order to allow for changes with
time in bulk density, organic matter content, etc. (Dyer, 1902;
Jenkinson, 1971; Gifford & Roderick, 2003). For the top layer,
equivalent depth is here defined as ‘the depth to which the top
layer should have been sampled at time 7, so that it contained
the same mass of organic-matter-free and calcium-carbonate-
free ‘fine soil” as at ¢z, when the first sample was taken to
a depth of 23 cm’. Similar definitions hold for deeper layers.
Equivalent depths and mass of organic C in equivalent layers
were calculated as in Poulton er al. (2003). In essence, equiva-
lent depth corrections were made by adding or taking away
a slice of material with the composition of the layer below,
assuming that transitions between layers were continuous and
smooth. In making these corrections, we also assume that sur-
face erosion was negligible over the sampling period in all of
our (near-level) sites.

The % radiocarbon absolute (") in a specified equivalent
layer (for example, the 23—46 cm layer) at time 7 was calculated
from the expression

= [fnxn —|—f”'x’”(H” _ D”)/L _fnxn(Hl _ D’)/L]/(C"),
(1)

where primes indicate layer; for example, x" is the measured
mass of organic C (in t ha™') in the 23-46 cm layer at time 7, x’
the corresponding quantity in the 0-23 cm layer and x'"’ that in
the 4669 cm layer. D" (in cm) is the measured depth to the
bottom of the specified layer (i.e. 46 cm in this case), each layer
being of thickness L cm; H” (also in cm) is the equivalent depth
at time #; ¢” is the calculated mass of organic C in the 23-46 cm
equivalent layer at time ¢ and f’ is % modern absolute, but
adjusted to the value it would have been had the soil been ana-
lysed immediately after sampling. This correction (calculated
using the true radiocarbon half-life of 5730 years, correspond-
ing to a decay constant of 0.0001210 years™') was necessary
because some of the radiocarbon measurements were made
more than a century after sampling. To make the correction,
the values of % modern absolute, as given in Tables 1 and 2,
were divided by exp(—0.000121w), where w is the period, in
years, between sampling and analysis. Finally, the values of
A'"™C, in Tables 1 and 2 are given by (10/"—1000), where A'*C,
is A™C corrected to equivalent depth.

© 2008 Rothamsted Research Ltd

NMR spectroscopy

Two 0-23 cm soils from Park Grass were analysed for coal by
solid-state '>*C NMR, one of which we thought (from radio-
carbon measurements; see Results and Discussion section)
contained coal as contaminant and the other not. The '*C
cross-polarization magic-angle spinning (CPMAS) NMR
spectra were measured on a Bruker MSL 300 spectrometer
(Bruker Analytik GmbH, Rheinstetten, Germany). The NMR
measurements were done by N. Mahieu and E. W.Randall
(private communication, 2003).

The following experimental parameters were used: spectrom-
eter frequency 75.5 MHz, contact time 1 ms, relaxation time 1 s,
and spinning speed around 4.8 kHz, elimination of spinning
side-bands using the TOSS (total suppression of sidebands)
sequence (Dixon, 1982) and line broadening 50 Hz.

Three runs were done on the putative coal-free sample; by
itself, with 1% of coal picked from the Park Grass site and with
2% coal. A fourth run was done on the coal alone. A fifth run
was done on the contaminated sample. Before analysis, the soils
had been ground for 3 minutes in a Tema disc mill, with added
coal where appropriate. The coal sample was ground likewise.
The ground samples were packed into cylindrical zirconia rotors
(5.6 x 17.0 mm internal dimensions) sealed with Kel-F caps (3M
Company, Minneapolis, MN, USA). We accumulated 601 433
scans (7 days) for the putative coal-free sample alone, 479 148
(5.5 days) for it ground with 1% coal, 346 936 (4 days) for it with
2% coal, 226 591 (2.6 days) for the contaminated sample and 56
998 (0.7 days) for coal by itself.

Results and discussion
Non-isotopic soil measurements

Organic C and total N decreased down the profile, in all except
one instance (the 69-92 cm layer sampled from plot 3d on Park
Grass in 1999; Table 2). Taking all the data in Tables 1 and 2
together, there was a close (R = 0.98) linear relationship
between percentage N and C in the soils, given by the equation:

C = 13.0N — 0.324. (2)

Except for two measurements in the 69-92 cm layer, C/N ratios
decreased with depth in all of the profiles sampled. This decrease
is caused, at least in part, by the increasing proportion of the soil
N held as fixed ammonium with depth. Bremner (1959), working
with soils from plot 07 on Broadbalk, a plot next to that used in
the present paper (08), showed that the 0-23 cm layer contained
5.6% of its N as fixed NHy, rising to 18.4% in the 4669 cm
layer and 22.6% in the 114-137 cm layer. This fixed ammo-
nium was held on clay, not on organic matter.

There was little change in pH over the last century in the
Broadbalk soils, nearly all being in the 7-8 range, as would be
expected for soils containing free CaCOj; throughout the
experimental period. The CaCOj; content did, however,
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decrease with time, as generally observed in the Rothamsted
field experiments (Bolton, 1977). Soil pH fell slightly with time
in the unlimed Park Grass unfertilized soils and rose by about
a unit in the limed unfertilized soils; it stayed just under 6 in
the fertilized unlimed treatments. In contrast, pH fell sharply
in Geescroft Wilderness, from 7.1 in 1883 to a mean of 4.4 in
1999 (see Poulton et al., 2003).

Radiocarbon measurements

Apart from some surface soils from Park Grass, which will be
considered later, radiocarbon age increased down the soil profile
(Tables 1 and 2). For soil taken in 1893 from the Broadbalk
Winter Wheat Experiment, the radiocarbon age increased from
1192 years in the 0-23 cm layer to 12 090 years in the 206-229 cm
layer. Taking all the pre-bomb cultivated soil samples together
(i.e. all the samples listed in Table 1, except those collected in
1999), there was a linear relationship (R* = 0.94) between the
radiocarbon age (x-axis) and negative depth to the middle of
each sampling layer (y-axis), given by:

y= —0.0162x + 5.28. (3)

Radiocarbon ‘ages’, as given in Tables 1 and 2, must not be taken
at their face values, as representing the depositional age of the
organic matter in a particular layer of a particular profile. The
age of a particular sample is really the age of a homogeneous
sample that has the same "*C/'2C ratio as that of the heteroge-
neous soil sample analysed. Unacceptable errors will be intro-
duced if the ages in Tables 1 or 2 are taken as those of
a homogeneous pool of C. This can be seen by considering the
1893 sample of the 0-23 cm layer from Broadbalk Arable,
which contained 29.4 t organic C ha™!, with a radiocarbon age
of 1192 years. To a close approximation, this site is under
steady state conditions, with the annual input of organic C
equal to the annual output. If we treat the organic C in this soil
as a homogeneous pool, of average age 1192 years, then the
annual steady-state input of organic C is given by 29.4/1192, or
25kg C ha™ ! year™!. This is a ludicrously small value. The aver-
age annual offtake of C in grain and straw from this plot over
the period 1990-2005 was 3500 kg C ha™'. The return of C in
stubble to the soil was about 200 kg C ha~! year ™!, and this fig-
ure does not include C returned in roots and chaff. In reality
this calculation is misleading because soil organic C contains
fractions of vastly different stabilities (see Part 2, this issue).

Taking the radiocarbon data from all the depths and all the
sites together, but excluding the Park Grass 0-23 cm soils, there
was a hyperbolic relationship (Figure 1) between the radiocar-
bon content of a soil (m, expressed as A'C,) and its organic C
content (n, in t ha™") given by

m=152.1 — 2341 /(1 + 0.264n). (4)

Paul er al. (2001) fitted a polynomial to similar data for soils
from the US Midwest; their polynomial and our hyperbola
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-600 1 = All except Park Grass surface soils
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Figure 1 Plot of the amount of organic C in a soil layer, against
A™C, for the same layer, for all the layers and all the sites listed in
Tables 1 and 2. The line shows the hyperbola m = 152.1 — 2341/(1 +
0.264 n) fitted (R> = 0.88) to all the data except the Park Grass 0-23
cm soils, where m is the radiocarbon content of the soil, expressed as
A'“C,, and n its organic C content, in t ha'. The arrow shows how
allowing for coal shifts the point for one of the Park Grass surface
soils (the 0-23 cm layer sampled in 1906 from the unlimed fertilized
treatment, with a coal C content of 0.82%).

give broadly similar radiocarbon predictions for soil C con-
tents of between 10 and 80 t C ha™'.

It is worth pointing out that the points on the lower left of
Figure 1 are from the deepest subsoils, which contain the least
C, although this C is of great age. Those at the top right are from
surface soils with much C, although this C is relatively young,
again except for the Park Grass surface soils. The principal value
of anempirical relationship like Equation (4) is that it immediately
draws attention to aberrant data like the Park Grass surface soils.

Measurements of & *°C

Values of 8'°C increased down the profile, from —26.3%, +
0.14 (SE) in the 0-23 cm layer (mean of all measurements,
excluding one outlier) to —25.8%, £ 0.17 for the 23-46 cm
layer, —25.59, + 0.11 for the 46-69 cm layer (excluding
another outlier) and —25.2%, + 0.09 for the 69-92 cm layer.
Such increases with depth are common (Boutton, 1996; Torn
et al., 2002) but not universal (Krull & Skjemstad, 2003).
There was a decrease in 8'°C as organic matter accumulated
in the 0-23 cm layer of the Wildernesses, from a starting value
in the 1880s of —25.3%, + 0.08, decreasing to —26.7%, + 0.16 in
1999 (means for both Wildernesses, again omitting one out-
lier). Excluding the same 8'*C outliers, there was a weak rela-
tionship (R*> = 0.46) between 5'C and A™C,, given by:

83C = —0.00303(A"C.) — 26.43. (5)
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Thus soil organic C gets older with depth and the discrimination
against '*C becomes less. Presumably the influence of recently-
added plant debris (with strongly negative 8'°C values)
becomes increasingly diluted by older soil organic matter (with
less negative 8'*C values) down the profile.

Carbonized material in the soils

Soils often contain carbonized material such as charcoal, coal or
lignite (Krull & Skjemstad, 2003; Rumpel ez al., 2003). Carbon-
ized C had earlier (Jenkinson et al., 1992) been measured in
some of the soils listed in Tables 1 and 2. The 0-23 cm layers of
the samples taken from Broadbalk in 1881 and from Geescroft
in 1883 each contained 0.4 t ha™! of carbonized C, roughly 1%
of the total soil organic C. There was no detectable carbonized
C in the corresponding 23-46 and 46-69 cm layers from either
site (detection limit; 0.1 t ha™! carbonized C).

Some of our Park Grass surface soils contain much more
carbonized C than the corresponding layers on Geescroft or
Broadbalk. Earlier work (Jenkinson et al., 1992) showed that
samples of 0-23 cm soil from plot 3 on Park Grass (samples
taken at various times, none corresponding to any of the sam-
ples in Table 2) contained 4.5-6.0 t ha~' carbonized C,
accounting for some 5% of the total soil organic C. Stones
larger than 0.635 cm in diameter were excluded when pre-
paring our samples for analysis and several of the Park Grass
plots sampled in 1999 contained discrete fragments of bitumi-
nous coal in the larger than 0.635 cm stone fraction. The coal-
contaminated plots are on the end of the experiment closest to
Rothamsted Manor and it is possible the coal was present in
ash from domestic fires, probably spread during the late 18th
or early 19th centuries. Several of the Park Grass surface soils
deviated considerably from Equation (4). We decided to use
BC-NMR to see if these deviations were caused by coal con-
tamination, using two Park Grass surface soils. Data from the
first (taken in 1999 from the limed section of the unfertilized
treatment, containing 3.54% C; see Table 2) fell close to the
line on Figure 1, suggesting it contained little if any coal,
whereas the other (taken in 1906 from the fertilized unlimed
treatment, containing 3.25% C) fell far below this line, sug-
gesting that it contained a considerable amount of coal. From
the height of the aromatic band at ca. 127 p.p.m. (after nor-
malising all the runs to give the same ratio (height of carbonyl
band at ¢. 173 p.p.m.)/(% soil organic C)) we calculated that
the contaminated sample contained 0.82% coal C. The arrow
on Figure 1 shows the data for the putative contaminated soil
before and after deducting coal C. This observation, that
deducting coal C in this way returned the sample point to just
below the line on Figure 1, confirms our view that coal is the
reason why some of the Park Grass 0-23 cm samples fell
markedly below this line.

A rough estimate of the amount of coal-free organic carbon in
the 0-23 cm layer of the Park Grass samples was made as fol-
lows. The difference between the value of A'*C as measured for

© 2008 Rothamsted Research Ltd

each individual sample and as given by Equation (4) was cal-
culated. The concentration of coal was calculated for each
sample of topsoil by relating this difference to that in the con-
taminated sample containing 0.82% coal. The 0-23 cm layer
of all the pre-bomb Park Grass samples contained 69.0 t coal-
free organic C ha™!: the corresponding mean for all of the
1999 samples was 75.2 t ha~ ' (Table 3: in square brackets).

Data aggregation

Table 3 presents a summary of pre- and post-bomb organic C
and radiocarbon for these Rothamsted Long-Term Experi-
ments, calculated from the mass of data in Tables 1 and 2. Data
from the part of Geescroft Wilderness that once received P have
been meaned with the corresponding data from the part that
never received P; no differences have yet been observed between
the two parts (Jenkinson, 1971; Poulton et al., 2003).

The ‘pre-bomb’ data in Table 3 are means of measurements
on samples taken between 1881 and 1906. This was done to
obtain some measure of sampling variation, assuming that all
belonged to a single population. The individual measurements in
Table 1 suggest that this is not an unreasonable assumption,
bearing in mind the paucity of data. However, it should be noted
that many of the standard errors for A'C, in Table 3 are based
on only two replicates and are therefore themselves subject to
large error.

The samples taken in 1999 from Geescroft Wilderness, Broad-
balk Wilderness and Broadbalk Arable contained more organic
C than the corresponding pre- bomb sampling, all the way down
the profile (Table 3). However, ¢ tests comparing the C content
of each layer sampled in 1999 with the C content of the corre-
sponding pre-bomb layer showed that these differences were
seldom significant (P < 0.05, here and subsequently), apart
from the surface layers. Carbon gains in the woodland sites
are discussed in detail by Poulton et al. (2003). The 1999 sam-
ples from Geescroft Wilderness, Broadbalk Wilderness and
Broadbalk Arable all contained more radiocarbon than the
corresponding pre-bomb sample (with one exception, the 23—
46 cm layer from Broadbalk Arable), although, apart from the
surface layer, none of the differences reached significance
(Table 3). One of the two 0-23 cm samples taken in 1999 from
Broadbalk Arable was much older than the other (A'C,
—116.79%,, compared with —38.29; Table 1), making the cor-
responding standard errors in Table 3 very large. The great
age of this sample (957 years) is out of line with the 1977 sam-
pling of the same plot (Jenkinson er al., 1992). We have no
explanation for this discrepancy.

The ‘pre-bomb’ data in Table 3 for the old grassland (Park
Grass) are means of measurements made in 1870, 1876 and 1906.
All the data from the 1999 sampling have also been aggregated,
partly because of the problem with coal (see above) and partly
because too few samples were taken on the different plots for
individual treatment. If the effects of coal are disregarded, there
was little change in organic Cin the 0-23 cm layer over the 100 or
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so years in Park Grass. However, if changes in coal content are
factored in, there was a small C gain in the 0-23 cm layer over the
experimental period. Each of the lower layers contained a little
more organic C when sampled in 1999 (Table 3) than in the
corresponding layer of the pre-bomb profile, although only
a few of the gains in the deeper layers reached significance
(P < 0.05). It is possible that soil organic C on Park Grass had
not yet reached equilibrium by the end of the 19th century —
the site had once been cultivated and was not under continu-
ous grass until 1700 — or earlier. The aggregated 1999 samples
from Park Grass contained significantly more radiocarbon
than the corresponding pre-bomb samples, all the way down
the profile (Table 3).
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