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ABSTRACT

Several studies with test-day models for the lactation
curve show heterogeneity of residual variance over
time. The most common approach is to divide the lacta-
tion length into subclasses, assuming homogeneity
within these classes and heterogeneity between them.
The main drawbacks of this approach are that it can
lead to many parameters being estimated and that
classes have to be arbitrarily defined, whereas the resid-
ual variance changes continuously over time. A method-
ology that overcomes these drawbacks is proposed here.
A structural model on the residual variance is assumed
in which the covariates are parametric functions of
time. In this model, only a few parameters need to be
estimated, and the residual variance is then a continu-
ous function of time. The analysis of a sample data set
illustrates this methodology.
(Key words: lactation curves, random regression
model, heterogeneity of variances)

Abbreviation key: EM = expectation-maximization
algorithm, GLM = generalized linear models.

INTRODUCTION

In the longitudinal data framework, part of the heter-
ogeneity of variances across time in the population can
be modeled via random regression (6, 16) or covariance
functions (7, 11). Nevertheless, heterogeneity usually
remains in the residual variances. More specifically, in
the case of the analysis of test-day records for milk
production in dairy cattle, different studies (1, 18) have
shown that the residual variance changes over time.
To cope with this heterogeneity, authors divide the lac-
tation length into different intervals, assuming homo-
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geneity within intervals and heterogeneity between
them (6, 13). However, this method can lead to many
variance parameters being estimated. This method re-
quires the definition of arbitrary subclasses within
which the variance is assumed constant, whereas the
change of the residual variance is continuous over time.

Recently, Rekaya et al. (12) proposed a change-point
technique to account for the heterogeneity of residual
variances along lactation. This approach offers a way to
continuously model the changes of the residual variance
over time, but assumptions need to be made about the
number of change points and the relationship between
the residual variance and the number of DIM. More-
over, the number of parameters that have to be esti-
mated may still be quite large and the estimation (us-
ing, for instance, Bayesian techniques) time consuming.

The aim of this paper was to propose another way to
account for this heterogeneity and to model the changes
of the residual variance along lactation as a continuous
function of time. For this purpose, a structural model,
as proposed by Foulley and Quaas (4) is assumed on
the residual variances, and the covariates of this model
are parametric functions of time. This procedure offers
two main advantages: the number of parameters to be
estimated for the residual variances is reduced com-
pared with a purely heterogeneous model, and the
changes in the residual variance are considered to be
continuous over time, so there is no need to define arbi-
trary classes of heterogeneity.

The estimates of the parameters for this model on
the variances were obtained using an expectation-max-
imization (EM) REML-type algorithm. The equivalence
between this system of equations and the generalized
linear models (GLM) estimating equations has been
shown by Lee and Nelder (9). This methodology is illus-
trated by an analysis of a real data set of monthly
records for milk production in dairy cattle.

MATERIALS AND METHODS

Model

Consider a population with I individuals, with indi-
vidual i having ni observations. The time and the num-
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ber of measurements may be different for each individ-
ual. For the sake of simplicity, a simple mixed model
(8) for the analysis of longitudinal data was assumed:

yij = x′
ijβ + z′

ijui + eij [1]

where yij is measurement j on individual i at time tij (i
= 1, ..., I and j = 1, ..., ni). β is vector of the fixed effects
associated with the incidence matrix X (of row x′ij), and
ui is the vector of random effects for individual i with
incidence matrix Z (of row z′

ij). It is assumed that u =
(u′

1, . . ., u′
I)′ ∼ N(0, G), and that the residuals eij are

independent, such that

eij ∼ N(0,σ2
eij

) [2]

To model the heterogeneity of the residual variances
over time, a structural model (4, 5) was assumed:

lnσ2
eij

= p′
ijδ [3]

For instance, if a quadratic function of time is appro-
priate for the data studied, then

lnσ2
eij

= a + btij + ct2
ij [4]

and p′
ij = (1 tij t2

ij). The model can easily be extended to
higher-order polynomials or other parametric functions
of time. A stepwise procedure could be used to choose
the covariates in the structural model, as discussed by
Foulley and Quaas (4).

By using an EM-REML procedure (2) and Lee and
Nelder’s (9) result (as detailed in the appendix), estima-
tion of all the parameters in this model can be obtained
by iterating between the following procedures, which
can be achieved with existing software (SAS, Genstat,
AS-REML, etc.).

1. Mixed-model equations are constructed assuming
a fixed residual variance to obtain estimates of the fac-
tors in the model and residuals êij.

2. A regression model is applied to the natural log
of the squared residuals (GLM equations described in
the appendix) to obtain an estimate of δ in Equation [3].

3. Mixed-model equations are constructed again but
using the regression function to determine the appro-
priate residual variance for each time tij, and σ2

eij
, the

inverse of which is used as the weighting of the mixed-
model equations.

4. Repeat from Step 2 until convergence is reached.
Other algorithms, such as those proposed by Foulley

et al. (3), Verbyla (17), and Schnyder et al. (14), could
be used for estimating the parameters in the structural
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model and may differ in convergence rate, ability to
remain in the parameter space, and computing time.

Application

The preceding theory was applied to the data set used
by White et al. (18). Lactation curves were fitted to test-
day records of milk production for 2885 progeny of 30
Holstein-Friesian sires in 503 herds. The lactation
stage of animals entering the first test varied between
4 and 40 d, with successive tests at approximate 30-
d intervals (10 tests for each cow). The fixed effects
considered were the age at calving, the percentage of
Holstein genes, and herd-test-month. White et al. (18)
considered a sire model and modeled the mean curve of
the population as well as the genetic and environmental
effects non-parametrically by using smoothing splines.

Here, the exponential curve of Wilmink (19) was fit-
ted as a fixed-regression model for the general mean
curve of the population:

g(t) = b0 + b1t + b2exp(−Dt) [5]

where t is DIM. The parameter D was assumed to be
known and equal to 0.068, chosen based on previous
studies (1, 18). A sire model was considered, and qua-
dratic random regressions were assumed to model both
the genetic and environmental effects:

yij = x′
ijβ + ak0 + ak1tij + ak2t2

ij + bi0 + bi1tij [6]
+ bi2t2

ij + eij

where yij is the milk production of cow i taken at time
tij, x′

ijβ are the fixed effects described above, ak0 + ak1tij

+ ak2t2
ij is the quadratic random regression for the ge-

netic effect (sire k), and bi0 + bi1tij + bi2t2
ij is the quadratic

random regression for the environmental effect (for cow
i within sire k). Parameters ak = (ak0, ak1, ak2)′ and bi =
(bi0, bi1, bi2)′ are assumed to follow multivariate normal
distributions, and eij is the residual term (eij ∼ N(0,σ2

eij
)).

Two different models for the residual variances were
considered: Model 1: 10 classes were assumed for the
residual variances, i.e., one for each measurement as
considered by White et al. (18); and Model 2: a struc-
tural model was assumed on the residual variances, as
Equation [4], a quadratic polynomial of time, was being
considered. The estimates of the parameters for the
latter model were obtained by iterating between AS-
REML for the mixed-model equations and SAS for the
GLM equations, but this procedure could also easily be
incorporated in a REML package.
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Table 1. Mean DIM, variance estimates (kg2), and heritabilities by test.1

Model 1 Model 2

Test DIM G E R h2 G E R h2

1 18 3.08 9.17 4.93 0.21 3.11 9.20 5.16 0.21
2 48 3.02 7.90 4.10 0.24 3.05 7.91 4.17 0.24
3 78 3.11 7.42 3.74 0.26 3.13 7.42 3.49 0.27
4 109 3.25 7.31 3.23 0.29 3.26 7.31 3.01 0.29
5 139 3.36 7.33 2.36 0.32 3.37 7.32 2.72 0.31
6 169 3.41 7.33 2.69 0.31 3.42 7.32 2.54 0.32
7 199 3.43 7.33 2.49 0.32 3.44 7.32 2.46 0.32
8 229 3.45 7.49 2.43 0.32 3.47 7.49 2.47 0.32
9 259 3.56 8.09 2.07 0.32 3.60 8.11 2.57 0.31

10 290 3.90 9.63 3.56 0.28 3.96 9.69 2.78 0.29

1G = genetic, E = environmental, and R = residual.

RESULTS

Fixed-effect solutions were very similar for both mod-
els and were also similar to those obtained by White et
al. (18), who fitted a 10-knot spline on the same data
set. The breed difference (Holstein-Friesian) was esti-
mated in the first model at 1.56 kg (SE = 0.44) and in
the second model at 1.51 kg (SE = 0.44), and the effect
of age at calving was 0.18 kg/mo (SE = 0.02) in the two
models. As shown in Table 1, the estimates of genetic
parameters were also very similar in the two models
and were very close to the results of White et al. (18).

Figure 1 shows that the quadratic function was a good
representation for the changes of the residual variance.
Table 2 gives the estimates of the parameters of the
structural model (Model 2) with their standard errors.
All were significantly different from 0, and the qua-
dratic function for the residual variances was

Figure 1. Changes of the residual variance over time for the two
models. Model 1: 10 different classes of heterogeneity (1 for each
test); Model 2: structural model on the residual variance (lnσ2

eij
= 0.97

− 0.073 tij + 0.018 t2
ij, where tij = (DIM − 150)/30).
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lnσ2
eij

= 0.97 − 0.073 tij + 0.018 t2
ij [7]

where tij = (DIM − 150)/30. Although this quadratic
function seemed to be quite appropriate, the likelihood
was higher for the first than the second model (differ-
ence of 32 for the log likelihood). Nevertheless, because
fewer parameters for the residual variance were esti-
mated in the second (three) than in the first model (ten),
a criterion such as Schwarz Bayesian Criterion (15) is
more appropriate. This criterion penalizes the likeli-
hood with respect to the number of parameters and is
defined by

log likelihood −
1
2 × number of parameters in the model × Log n*

where n* = n − p when using REML with n, the number
of observations in the data set, and p, the number of
fixed effects. This criterion showed a slightly better fit
for the second than the first model (difference of four).

DISCUSSION

The improvement in fit of the structural model on
the residual variance compared with the heterogeneous
model (assuming 10 different classes of heterogeneity)
was not great. However this method would prove to be
much better in the case of high heterogeneity within
classes. For instance, with Model 1 modified so that the

Table 2. Estimates and SE of the parameters of the structural model
on the residual variances (Model 2) (P < 0.001 for each parameter).

Parameters Estimate SE

a 0.970 0.008
b −0.073 0.002
c 0.018 0.001
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lactation was divided into 5 intervals rather than 10,
the likelihood was greater for the second than the first
model (difference of nine for the log likelihood), even
though Model 2 still had fewer parameters.

Nevertheless, the polynomial functions may not be
the most appropriate, especially because of their lack
of flexibility to model the variances at the beginning
and at the end of the lactation. Other more flexible
parametric functions could be considered using the
same methodology.

This method offers two important advantages: fewer
parameters are estimated than in the classical hetero-
geneous model, and the variance is a continuous func-
tion of time with no arbitrary classes. This approach
could also be a useful alternative for other longitudinal
studies that arise in animal breeding, for instance
growth curve analyses.

Other factors of heterogeneity could be taken into
account in the structural model on the residual vari-
ances (4), for instance the age at calving, month of
calving, region, year, and even the herd-test-month
(perhaps as a random effect). This aspect of the hetero-
geneity of variances, which applies to the residual vari-
ances as well as the genetic and permanent environ-
mental variances, should be investigated more thor-
oughly.

ACKNOWLEDGMENTS

We are most grateful to Sue Brotherstone for her
contribution to the application on dairy cattle data.
Thanks also to Peter Visscher, Vincent Ducrocq, Jean-
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APPENDIX

The REML estimates of the parameters in the struc-
tural model for the residual variance were obtained
using an EM algorithm (2).

Letting c = (y′, θ′)′ be the complete set of data, andΘ
= (β′, u′)′ the vector of the missing values. The likelihood
function of the complete data is

p(c|δ, G) = p(y|β,u, δ)p(β, u|G) [8]

Therefore, the log likelihood is

−2lnp(c|δ, G) = −2L(δ, G; c) = −2L(δ; e) [9]
− 2L(G; u)

and the estimation of δ can then be separated from that
of G, considering the log likelihood

−2L(δ; e) = const. + ∑
I

i=1
∑
ni

j=1

[lnσ2
e ij

+ 1
σ2

eij

e2
ij] [10]

The E-step is defined as usual, i.e., at iteration (r)
one calculates the conditional expectation of L(δ; e)
given the data y and δ = δ(r).
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Q(δ|δ(r)) = E(−2L(δ; e)|y, δ(r)) [11]

Q(δ|δ(r)) = const. + ∑
I

i=1
∑
ni

j=1




lnσ2

eij
+ 1
σ2

eij

Ec(e2
ij)





[12]

where Ec(e2
ij) is the conditional expectation E(e2

ij|y,
δ(r)), and

E(e2
ij|y, δ(r)) = (E(eij|y, δ(r)))2 + trace(Var(eij|y, δ(r))) [13]

= ê2
ij + Var(eij|y, δ(r)) [14]

The M-step consists of calculating the next value δ(r+1)

by minimizing the function Q(δ|δ(r))with respect to δ,

∂Q
∂δ = ∂Q

∂σ2
eij

∂σ2
eij

∂lnσ2
eij

∂lnσ2
eij

∂δ . [15]

Then

∂Q
∂δ = ∑

I

i=1
∑
ni

j=1




1 − 1

σ2
eij

Ec(e2
ij)




pij [16]
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∂Q
∂δ = ∑

I

i=1
∑
ni

j=1

(1 − wij)



1 − 1

σ2
eij

d*
ij




pij [17]

where wij = 1
σ2

eij

Var(eij|y, δ(r)) and d*
ij = ê2

ij/(1 − wij).

Lee and Nelder (9) showed that this system of equa-
tions is equivalent to the estimating equations for a
GLM (10) with response d*

ij [where d*
ij is the square of

the residuals divided by the weight (1 − wij)], mean
σ2

eij
, error gamma, log-link (ln(σ2

eij
)), linear predictor ξij

= p′
ijδ, and prior weight (1 − wij).

The values of ê2
ij and Var(eij|y, δ(r)) can be calculated

from the solutions of the mixed-model equations as
follows:

êij = yij − x′
ijβ̂ − z′

ijû [18]

where β̂ and û are the BLUP solutions.
Letting θ = (β′, u′)′ and bij = (x′

ij, z′
ij), then eij = yij −

bijΘ and, therefore,

Var(eij|y, δ(r)) = bij Var(Θ|y, δ(r))b′
ij [19]

where Var(θ|y, δ(r)) corresponds to the inverse of the
coefficient matrix in the mixed-model equations.


