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Geographically Weighted Regression (GWR) is increasingly used in spatial analyses 
of social and environmental data. It allows spatial heterogeneities in processes and 
relationships to be investigated through a series of local regression models rather than 
a single global one. Standard GWR assumes that relationships between the response and 
predictor variables operate at the same spatial scale, which is frequently not the case. To 
address this, several GWR variants have been proposed. This paper describes a route map 
to decide whether to use a GWR model or not, and if so which of three core variants to 
apply: a standard GWR, a mixed GWR or a multiscale GWR (MS- GWR). The route map 
comprises 3 primary steps that should always be undertaken: (1) a basic linear regression, 
(2) a MS- GWR, and (3) investigations of the results of these in order to decide whether to 
use a GWR approach, and if so for determining the appropriate GWR variant. The paper 
also highlights the importance of investigating a number of secondary issues at global and 
local scales including collinearity, the influence of outliers, and dependent error terms. 
Code and data for the case study used to illustrate the route map are provided.
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Introduction

This article provides guidance for successful applications of geographically weighted regres-
sion (GWR), a method of spatial analysis first proposed by Brunsdon and Fotheringham (1996). 
The aim here is to guide users in how to use GWR, including their choice of GWR model and 
whether that model is appropriate for their study and data. With a wide range of model options 
now available, the article provides novice as well as more experienced users with a ‘route map’ 
to guide their analysis.

GWR (Brunsdon, Fotheringham, and Charlton 1996; Fotheringham and Brunsdon 2002) 
investigates if and how relationships between response and predictor variables vary geograph-
ically. It is underpinned by the idea that whole map (constant- coefficient) regressions such as 
those estimated by ordinary least squares may make unreasonable assumptions about the sta-
tionarity of the regression coefficients under investigation (Openshaw 1996; Fotheringham and 
Brunsdon 1999)— wrongly assuming that regression relationships are the same no matter where 
you measure them within the study region. GWR provides measures of process heterogeneity— 
geographical variation in data relationships— through the generation of mappable and varying 
regression coefficients, and associated statistical inference. It has been extensively applied in 
a wide variety of scientific and socio- scientific disciplines, such as environmental health (e.g., 
Yoneoka and Saito 2016), landscape ecology (e.g., Zhang, Bi, and Cheng 2004), soil quality 
(e.g., Song et al. 2016), air quality (e.g., You et al. 2015), water quality (e.g., Sun, Guo, and Liu 
2014), remote sensing (e.g., Foody 2003), disease patterns (e.g., Brunton et al. 2017), urban 
studies (e.g., Huang and Yuan 2019), and housing markets (e.g., Yu and Wei 2007).

Linear regression, standard, mixed, and multiscale GWR
Various forms of GWR models are referred to in this article. It is useful first to describe four 
models that are considered of primary importance to a GWR study. These build on the basic 
linear regression model (LRM), which can be defined as:

where for observations indexed by i = 1 … n, yi is the response variable, xik is the value of the 
kth predictor variable, m is the number of predictor variables, β0 is the intercept term, βk is the 
regression coefficient for the kth predictor variable, and ei is the random error term, that is, inde-
pendently normally distributed with zero mean and variance σ2. Ordinary least squares (OLS) are 
commonly used for model estimation in LRMs. Note that the model contains no reference to ge-
ography: The relationship between the x and y variables is assumed to be the same, everywhere, 
with only random (residual) departures from it at any particular location.

Standard GWR is similar to linear regression but calibrates the regression model at each 
predefined location (u, v)— geographical locations within the study region either from the sam-
pled data or, for example, a grid of locations— using other nearby data falling within a moving 
window or kernel at the center of each discrete location. Standard GWR can be defined as:
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where (ui, vi) are the spatial coordinates of the observations i, and βk (ui, vi) are the coef-
ficients estimated at those locations. Thus, in contrast to global LRMs, GWR conducts local 
regression at a series of locations to estimate local coefficients (the geographical part of GWR), 
using observations weighted by their distances to the location at the center of the moving win-
dow/kernel (the weighted part). As with the LRM, the set of ei obey an independent normal 
distribution with zero mean and variance σ2. Equations for calculating the local coefficient stan-
dard errors for GWR can be found in Fotheringham, Brunsdon, and Charlton (2002) and Harris, 
Fotheringham, and Juggins (2010). Critically, GWR creates many local models at locations 
within the study region. This enables the coefficients of those models to be compared to see if 
the regression relationships vary spatially.

The weightings in GWR are determined by a kernel- based distance decay function and its 
bandwidth. Bandwidth can be a fixed distance or a fixed number of nearest data points (i.e., an 
adaptive radius depending on the local density of points). Automated routines exist to determine 
an optimal bandwidth by minimizing some measure of model performance such as the Akaike 
information criterion (AIC) and its corrected version (AICc) (Fotheringham, Brunsdon, and 
Charlton 2002) or a leave- one- out cross- validation (CV) score (Brunsdon, Fotheringham, and 
Charlton 1996). The result of larger bandwidths is that the GWR model tends toward the OLS 
estimator of the whole map LRM.

In the standard form, a single bandwidth is used in GWR under the assumption that the 
response- to- predictor relationships operate over the same scales for all of the variables contained 
in the model. This may be unrealistic because some relationships can operate at larger scales 
and others at smaller ones. A standard GWR will nullify these differences and find a “best- on- 
average” scale of relationship non- stationarity (geographical variation).

A mixed (or semiparametric) GWR (MX- GWR) (Brunsdon and Fotheringham 1999; Mei 
and Xu 2016) was proposed to allow for a mix of local (non- stationary) and global (station-
ary) relationships between predictor and response variables. However, MX- GWR only in part 
addresses the limitation of standard GWR, as the set of locally varying relationships are all as-
sumed to operate at the same spatial scale as each other. In other words, a single local bandwidth 
is applied to them all.

To fully address this, multiscale GWR (MS- GWR) (Yang 2014; Fotheringham and Yang 
2017; Oshan et al. 2019) can be used. In this, the bandwidth for each relationship is deter-
mined separately, allowing the scale of individual response- to- predictor relationships to vary. 
Useful comparisons between MS- GWR and alternative multiscale spatially varying coeffi-
cient frameworks can be found in Wolf and Oshan (2018) and Murakami et al. (2019). LRM, 
standard GWR, and MX- GWR can all be considered as special cases of MS- GWR, with in-
creasing complexity (i.e., flexibility in the specification of the spatial relationships) moving 
from LRM to MS- GWR.

The article considers a Gaussian response case in its implementations of GWR, MX- GWR, 
and MS- GWR. A bi- square weighting kernel is used (see, inter alia, Gollini et al. 2015) where 
a single bandwidth b is found for standard GWR and also for the pre- specified local or non- 
stationary relationships in MX- GWR, whereas m + 1 bandwidths are found for MS- GWR. All 
bandwidths are optimized by minimizing the AICc.

Motivation
The motivation for this article is because GWR increasingly is used for different spatial anal-
yses across a range of disciplines, with sharp increases in the number of applications in recent 
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years. This proliferation has been driven by a number of factors. First is the increasingly 
spatial nature of data, which are now routinely collected with location attached, facilitated 
by the many GPS- enabled monitoring devices and the tagging of, for example, administrative 
data with census geographies. Second, there is a broader cross- disciplinary demand outside 
of geography for methods to quantify spatial patterns in data, commonly through some kind 
of hotspot estimation, spatial cluster analysis, or spatially informed regression technique. 
This has been accompanied by recognition of the need to cater for spatial dependencies in 
the data or the model parameters themselves, reflecting Tobler’s first law of geography that 
observes how data measured in close proximity to each other tend to display similar charac-
teristics (Tobler 1970). GWR is a method that enables this and builds on the simple LRM with 
which many students and researchers are familiar. Third, it has been implemented in a num-
ber of software packages including the ESRI ArcGIS suite of tools, five R packages (spgwr 
(Bivand, Yu, and Nakaya 2013), gwrr (Wheeler 2013), GWmodel (Lu, Harris, and Charlton 
2014; Gollini et al. 2015), McSpatial (McMillen 2013), and lctools (Kalogirou 2019)), one 
Python implementation (the mgwr package (Oshan et al. 2019) in the PySAL project (Rey and 
Anselin 2010)) and standalone implementations such as GWR3 (Charlton and Fotheringham 
2003), GWR4 (Nakaya 2015) and MGWR 1.0 (Li, Fotheringham, and Li 2019). Each software 
package has a standard GWR option complemented by a variety of alternative GWR forms 
and associated tools.

A consequence of this proliferation is the danger that new users of GWR do not ad-
equately consider whether the GWR form they chose is appropriate for their application. 
With that in mind, this article aims to provide a route map to help inform best practices and 
decision- making.

A GWR route map
The GWR route map is described using a soil case study in the Loess Plateau of China. It 
seeks to guide the reader through different modeling scenarios that are of primary importance 
to a GWR analysis. These main arteries of the route map take the reader to GWR Basecamp. 
Strategies for secondary model considerations and decisions (scaling the summit) are de-
scribed in the Discussion section. Not all secondary issues may appear in a specific GWR 
analysis, and some may interact, including interactions with those considered of primary 
importance. Although the GWR route map is presented as a linear workflow, it should be rec-
ognized that, in practice, it is often an iterative process, as may be the case in any regression 
study. The implications in this respect are that, for some spatial processes, a GWR analysis 
can be a relatively straightforward decision, while for others, decisions can be problematic 
and complex. Ultimately, the result of this two- stage primary- to- secondary strategy should 
lead to an informed, sensible, and appropriate GWR implementation, from which reliable 
and robust inferences can be made about regression relationships and their spatially varying 
nature.

Further considerations and guidance are given in the appendices of the pre- print of this arti-
cle (Comber et al. 2020) with respect to: Sample data characteristics, influences on the weight-
ing schemes, inference in GWR and alternative spatially varying coefficient models, GWR as 
a spatial predictor and GWR development through simulation experiments. These cover many 
important issues that are not fully covered here in order to provide more focus to the exposition. 
The route map is presented using real rather than simulated data. This is deliberate, as the inten-
tion is to provide ‘real world’ practical guidance to a GWR analysis. Although this article focuses 
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on a GWR application in the environmental sciences where data are commonly measured on a 
point basis, the main messages of the article are similarly relevant to social applications using 
data measured for areas such as census geographies and neighborhoods that can be represented 
by a point centroid.

Case study

Data
The case study consists of a single soil dataset of 689 observations, spaced at approxi-
mately 100 m intervals in a small watershed in the Loess Plateau, China (110.32821°E and 
38.83433°N). The data locations are shown in Figure 1 and described in Wang and Zhang 
(2009) who undertook a linear regression analysis complemented with a geostatistical anal-
ysis of the data. The data are also described in Comber et al. (2018). They include soil total 
nitrogen (STN), here taken as the response variable, and six predictor variables; soil organic 
carbon (SOCgkg), nitrate- nitrogen (NO3Ngkg), ammonium (NH4Ngkg), and percentage clay 
(ClayPC), silt (SiltPC), sand (SandPC) content. In both Wang, Zhang, and Huang (2009) and 
Comber et al. (2018), the data were transformed, and this operation is retained here: STN, 
SOCgkg, NO3Ngkg, and NH4Ngkg are transformed using natural logs and ClayPC is square 
root transformed. As with any regression analysis, due consideration should be given to the 
nature of data relationships, the use of data transforms, and associated model specification 
tasks prior to the main model fits.

Figure 1. The case study data locations. 
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Each analysis in the GWR route map below predicts STN using different predictor variable 
subsets to illustrate specific points. At no point is the intention to conduct a nuanced regression 
analysis that attempts to fully characterize and interpret the soil processes. Rather the differ-
ent data set scenarios are used to illustrate the route map. For reproducibility (Brunsdon and 
Comber 2020), the data set and the R code used to undertake the analyses are available from  
https://github.com/lexco mber/GWRro utemap.

Scenarios
Four data set scenarios were chosen to illustrate the route map decisions. These are given 
in Table 1, each with STN as the response but with different predictors. The compositional 
nature of the clay/sand/silt data is catered for by omitting at least one from each analysis. 
Importantly, the intention is to treat each scenario as a distinct and independent data set and 
not as a linked model specification exercise with respect to predictive variable selection. In 
this respect, “Analysts” are assigned to each data set, where Analysts B- D are entirely un-
aware that more predictors of STN exist. As such, model performance statistics (here AICc) 
are only compared for those models relating to each Analyst’s scenario, and not across dif-
ferent analysts.

Primary model decisions

The fundamental consideration for undertaking a GWR analysis is that it should be justified in 
terms of the aims of the analysis and the characteristics of the data. If spatial effects are evident 
in the data then a standard GWR can be considered but this requires demonstrating that alternate 
models are not suitable. This is discussed further, below. To achieve this, the following steps for 
any GWR analysis are recommended.

1. A LRM should be fitted and the results investigated.
2. A MS- GWR should be calibrated and the estimated bandwidths interrogated.
3. Based on findings (1) and (2), one from a standard GWR, MX- GWR, and MS- GWR should 

be considered for further analysis provided a spatially varying coefficient model such as 
GWR is considered suitable in the first place.

The LRM assumes fixed data relationships and provides the baseline against which all forms 
of GWR can be compared. The MS- GWR model estimates the bandwidths for each predictor- 
to- response relationship. Evaluating these directly quantifies the nature of any spatially varying 
relationships and at what spatial scale they each operate at. This in turn informs whether to 
pursue a GWR analysis and if so, which of three different GWR forms to follow. That is, given 
the MS- GWR results, can a simpler model in an LRM, standard GWR, or MX- GWR provide a 
viable and pragmatic alternative? Or is MS- GWR the only viable option?

Table 1. Data Set Scenarios in Terms of Four Different “Analysts”

SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg

Analyst A Yes Yes Yes – Yes Yes
Analyst B – – – Yes Yes – 
Analyst C Yes – – – – Yes
Analyst D Yes – – Yes Yes – 

https://github.com/lexcomber/GWRroutemap
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This approach to primary model choice is recommended first because the theory for the 
standard LRM is well developed, while theoretical developments reduce from standard GWR, to 
MX- GWR, and to MS- GWR. For example, robust versions exist for standard GWR, but not for 
MX- GWR or MS- GWR, while autoregressive versions exist for standard GWR and MX- GWR 
but not for MS- GWR (see secondary model decisions section). Second, other considerations of 
model complexity, sample size, sample configuration, and sample variation play key and inter-
twined roles, which cannot be entirely resolved through a comparison of a model performance 
statistic such as AICc. Sometimes, choosing a more basic regression over MS- GWR is to be 
preferred, even when AICc values suggest otherwise, but where this decision is informed by 
following the proposed route map. Arguments for not relying on information theory alone for 
model choice can be found, for example, in Guthery, Brennan, and Peterson (2005) in the context 
of wildlife science.

Both the LRM and MS- GWR analysis should also be investigated for the presence of 
spatially autocorrelated model residuals, say through Moran’s I (Moran 1950; Cliff and Ord 
1973). Thus, further to the four model choices (of LRM, GWR, MX- GWR, and MS- GWR), 
a fifth model is considered where an alternative fixed coefficient regression is fitted but with 
a spatially autocorrelated error term (i.e., a spatially autocorrelated model, SAM). For this 
study, the spatially autocorrelated error term is modeled by the parameterization of its co-
variance using an exponential function decaying with respect to the Euclidean distance sep-
arating sample sites. The restricted maximum likelihood (REML) method (e.g., Lark and 
Cullis 2006) is used for the estimation. The SAM will warrant consideration depending on 
the nature of spatially autocorrelated residuals from the LRM fit and also if the MS- GWR fit 
indicates that only the intercept is found to be spatially varying (Nakaya, Fotheringham, and 
Brunsdon 2005). The theory for the SAM and related models is also well developed (e.g., 
Waller and Gotway 2004; Schabenberger and Gotway 2005), where for this study the SAM 
is a linear mixed model.

The kernel bandwidth identification is the critical consideration in GWR as it determines 
how many data points are included in the data subset passed to each local regression and how 
these data points are spatially weighted. Bandwidths describe the scale of the predictor- to- 
response relationships. They dictate the degree of smoothing or variation in the local regression 
coefficient estimates, and interpretation and inference around process heterogeneity (geographi-
cal variation in data relationships) thereafter.

Determining the scale at which data relationships operate is not a straightforward task. In 
this study, bandwidths are found objectively via AICc, but this should not discount user- specified 
bandwidths when there exists some strong prior belief, theoretical justification, or expert knowl-
edge for their use. Similar discussions can be found in related kernel weighting paradigms, 
such as kernel density estimation, where automated bandwidth approaches are not necessarily 
viewed as a panacea for bandwidth selection (Silverman 1986). There are strong benefits in con-
ducting an extensive bandwidth investigation so that final model outputs can be more assured. 
Bandwidths found by AICc are preferred to those found by CV and uncorrected AIC because it 
reflects model parsimony adjusted for small degrees of freedom and its use tends to avoid over- 
fitting GWR models (AICc bandwidths tend to be larger than bandwidths found using CV and 
AIC). AICc is similarly found for the LRMs and the SAMs enabling objective comparison with 
the GWR models. For further guidance, but without reflecting model parsimony, R2 values are 
reported for all models.
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For the primary analyses, only rudimentary assessments of statistical (relationship) signif-
icance are undertaken using coefficient standard errors, t- values, and p- values from standard 
GWR, MX- GWR, and MS- GWR models. Caveats on their use with all forms of GWR are dis-
cussed in the appendices in Comber et al. (2020). Global assessments from the LRM and SAM 
fits are also reported, where for all study models only the coefficient estimates and their p- values 
are given.

Step 1: LRM and autocorrelated residuals
The first step is to undertake a global regression (i.e., the LRM). The aim here is to try to un-
derstand how the predictors relate to the response variable. Specifically: (a) which relationships 
are statistically significant, (b) whether there is evidence for specifying an autocorrelated error 
term, and (c) the fit of the LRM itself. Table 2 summarizes the LRM coefficient estimates and 
their significance from zero, for all four Analysts. The LRMs from Analysts A and C provide a 
mixture of significant and insignificant predictors of STN at the 5% level, while all predictors are 
significant for the LRMs from Analysts B and D.

To assess spatial autocorrelation of the LRM residuals, a spatial weight matrix was de-
fined and unbiased estimates of Moran’s I and their significance were determined (Table 3), 
under the expectation of random and independent residual distributions. Moran’s I for all four 
models are significant, where the spatial structure in the LRM residuals varies from relatively 
weak (Analyst A and D) to relatively strong (Analyst C), as reported by the magnitude of the 
estimates. In this case, all four data set scenarios indicate that a fixed coefficient regression 
with a spatially autocorrelated error term could be suitable (i.e., a SAM via REML estima-
tion). Table 3 also provides summaries of LRM fit for the four scenarios with AICc and R2 
values. To re- iterate an early comment, the purpose of providing these measures of model fit 
is not to compare across the analysts but to use them as a benchmark for model improvement 
for each analyst.

For all four scenarios, Table 3 indicates that a GWR analysis may be appropriate as the 
Moran’s I measures are moderately positive and statistically significant. The existence of au-
tocorrelated residuals from a LRM fit commonly suggests that a GWR analysis may be useful 
but Moran’s I of residuals gives no indication of the presence of spatially varying relationships 
between the response and predictor variables. Determining this is important for understanding 
spatial regression modeling in general but separating autocorrelation effects in the residual term 
from relationship heterogeneity effects is difficult. Useful discussions on this can be found in 
Harris (2019) and references therein.

Table 2. LRM Coefficient Estimates and their Significance (P- value)

Analyst A Analyst B Analyst C Analyst D

Estimate P- value Estimate P- value Estimate P- value Estimate P- value

Intercept −2.220 0.000 −0.723 0.000 −2.130 0.000 −1.437 0.000
SOCgkg 0.690 0.000 – – 0.918 0.000 0.683 0.000
ClayPC −0.011 0.843 – – – – – – 
SiltPC 0.015 0.000 – – – – – – 
SandPC – – −0.021 0.000 – – −0.012 0.000
NO3Ngkg 0.126 0.000 0.355 0.000 – – 0.112 0.000
NH4Ngkg −0.146 0.047 – – −0.011 0.884 – – 
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In general, but not a rule, measures of strong model fit (e.g., R2 > 0.8), coupled with weak 
or insignificant levels of spatial autocorrelation in the residuals, suggest that a LRM would be 
appropriate. Such cases suggest that the model is well specified and includes all of the likely 
factors driving the response variable. If the fit is poor and exhibits significant levels of residual 
spatial autocorrelation, then this might suggest that the model is mis- specified, perhaps missing 
key factors driving the response variable. Although the better specification of the model should 
be pursued, a GWR analysis is still an option, as is a SAM. This is returned to in the Discussion 
section.

In summary, this first step fits a LRM to identify which relationships are globally significant 
and to determine whether spatial autocorrelation effects may potentially exert an important influ-
ence on these findings. Model performance statistics (AICc and R2) enable comparison between 
SAM and GWR models.

Step 2: MS- GWR and bandwidth estimation
The second step is to undertake an MS- GWR analysis. The MS- GWR bandwidths explicitly 
describe the degree of spatial heterogeneity associated with each variable’s relationship to the 
response. This provides information about the different scales of predictor- to- response relation-
ships, where some may be local and others global, and those that are local may have different 
scale effects from one another. The focus of the MS- GWR analysis at this stage is to examine (i) 
the estimated bandwidths (ii) evidence for residual autocorrelation, and (iii) the fit of MS- GWR 
itself.

The estimated MS- GWR fixed distance bandwidths are shown in Table 4, with adaptive 
distance bandwidths illustrated for the MS- GWR model of Analyst A only. In this study, the 
maximum number of data points that can be included under an adaptive bandwidth is 689  
(the total number of observations in the data) and the maximum fixed bandwidth is 3,742 m 

Table 3. Residual Autocorrelation Measures Using Moran’s I (Estimate and P- value) and 
Performance Statistics (AICc and R2) from the Four LRMs

Moran’s I P- value AICc R2

Analyst A 0.142 0.000 1,124.0 0.609
Analyst B 0.174 0.000 1,377.4 0.430
Analyst C 0.219 0.000 1,223.1 0.545
Analyst D 0.144 0.000 1,131.0 0.603

Table 4. The Fixed Bandwidths in Meters (max = 3,742 m) for Different Models Arising from 
an MS- GWR

Intercept SOCgkg ClayPC SiltPC SandPC NO3Ngkg NH4Ngkg

Analyst A 555.9 2,483.9 3,741.7 1,080.8 – 382.5 3,741.7
Analyst A* 57 631 685 306 – 55 685
Analyst B 445.8 – – – 1,232.9 731.9 – 
Analyst C 424.9 3,741.4 – – – – 3,741.8
Analyst D 573.6 2,214.6 – – 1,066.5 378.4 – 

Note For Analyst A, * indicates an adaptive bandwidth (max = 689 observations).
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(the maximum distance between any pair of data points). The bandwidths in Table 4 should be 
interpreted in light of these values. For Analyst A, the relative bandwidth sizes are consistent 
between fixed and adaptive forms as was the case for the other three data set scenarios. This 
similarity is re- assuring but to a certain extent reflects that the study data were sampled on 
a loosely regular grid. Studies with data over an irregular sample configuration may need to 
experiment more in this respect.

The fixed bandwidths show clear patterns for each predictor variable and the scale of its 
spatially varying relationship to the response, STN.

For Analyst A, the MS- GWR bandwidths for ClayPC and NH4Ngkg both strongly tend to-
wards the maximum, global bandwidth of 3,742 m, while SOCgkg and SiltPC have bandwidths 
of about two- thirds and one- third of the global one, respectively. The bandwidths for the inter-
cept and NO3Ngkg for Analyst A are both strongly local.

For Analyst B, the bandwidths for the intercept, SandPC and NO3Ngkg are all local.
For Analyst C, the bandwidths for SOCgkg and NH4Ngkg are essentially global, while the 

intercept is local.
For Analyst D, none of the bandwidths are global and those for the intercept, SOCgkg, 

SandPC, and NO3Ngkg vary locally, but appear quite different in magnitude.
To assess model residual spatial autocorrelation for the MS- GWR fits, estimates of Moran’s 

I and their significance are given in Table 5 along with MS- GWR performance statistics. These 
can be compared with the corresponding results in Table 3 for the LRMs. Clearly, in all scenar-
ios, residual autocorrelation is now negligible, while model performance improves (lower AICc 
and higher R2) over the corresponding linear regressions.

Step 3: Choice of the primary model
The results of the initial LRM and MS- GWR analyses can guide primary model choice. First, 
from the LRM analysis in Step 1, it appears that for all four Analysts, a fixed coefficient 
model could be considered but only if calibrated with an autocorrelated error term, (i.e., 
SAM fits). Second, from the MS- GWR analysis in Step 2, some form of GWR is similarly 
worth considering, for all Analysts. This is because residual autocorrelation disappears with 
a MS- GWR fit, while at least one predictor bandwidth in addition to the intercept is clearly 
locally varying.

The following sub- sections provide guidance on how deciding on the primary model 
should be undertaken, considering the five regression possibilities (LRM, SAM, standard 
GWR, MX- GWR, and MS- GWR) and the four data set scenarios. Critical to Step 3 is the 
presentation and interpretation of the estimated coefficients and associated uncertainties from 
competing models, and not just choosing a primary model by referring to model fit statistics 
alone.

Table 5. MS- GWR Residual Autocorrelation Measures Using Moran’s I and Error Statistics

Moran’s I P- value AICc R2

Analyst A −0.007 0.604 1,050.4 0.713
Analyst B −0.013 0.700 1,264.4 0.580
Analyst C 0.005 0.381 1,106.8 0.662
Analyst D −0.009 0.636 1,057.4 0.708
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Investigating LRM and SAM for Analyst C
A LRM should be considered as a potential final model when all bandwidths from MS- GWR are 
large (i.e., tend toward the global situation), including the intercept. As a rule of thumb, this is 
when they are broadly greater than 80% of the maximum distance between data points (or 80% 
of the data points in the adaptive bandwidth case). In this respect, none of the Analysts have a 
data set that clearly suggests a LRM to be appropriate. However, from the above, it is stated that 
all analysts could consider a SAM fit (because all indicated autocorrelated residuals from their 
LRMs), and in this respect, a SAM can be further endorsed if all predictor variable bandwidths 
from MS- GWR tend to the global, but the intercept is local. This is clearly the case for Analyst 
C’s data set (from Table 4).

Thus, in this instance, the primary route map has guided Analyst C to a SAM. It is prudent 
to compare SAM outputs to the LRM outputs because only the intercept term is locally varying 
from the MS- GWR. The coefficient summaries in Table 6 indicate only marginal gains in process 
interpretation with the SAM fit, despite the AICc improvement with the SAM (1,148.4 compared 
to 1,223.1 for the LRM). In this instance, there is only marginal improvements with the inclusion 
of second- order spatial effects via a SAM, as reflected by the broadly similar coefficient esti-
mates. Thus, in summary, Analyst C could proceed with a fixed coefficient regression, where a 
LRM suffices, although choosing a SAM is also reasonable.

Note that Analyst C could have considered an MX- GWR with only the intercept locally 
varying, but as a rule, spatial effects via a SAM should be preferred due to its stronger inferential 
properties (e.g., see LeSage and Pace 2009). This is because inference in any GWR model is 
somewhat compromised by there being no- one single model, but a collection of models re- using 
sample data at multiple locations. This entails that a valid probability model is unavailable with 
GWR, making inference biased and problematic. This is not the case for a LRM or this study’s 
SAM, and is similarly not the case for many alternative spatially varying coefficient models that 
are based on linear mixed model constructs (e.g., see Wolf, Oshan, and Fotheringham 2018; 
Murakami et al. 2019).

Investigating MX- GWR and MS- GWR for Analyst A
An MX- GWR can be explored when the MS- GWR analysis suggests two distinct sets of band-
widths, with one set tending to the global and the other set tending to a similar local scale. 
This scenario appears likely for Analyst A (from Table 4), where the MS- GWR bandwidths for 
SOCgkg, ClayPC, and NH4Ngkg can be viewed as global, while those for the intercept, SiltPC, 
and NO3Ngkg can be viewed as local.

To explore this further, an MX- GWR was applied with a user- specified local bandwidth of 
700 m, as an approximate average of the local scales from Table 4, although optimal local bandwidth 
could have been determined with GWR4 (Nakaya 2015). Figure 2 shows the spatial distribution 

Table 6. Coefficient Estimates and their Significance Arising from LRM and SAM Fits for 
Analyst C

LRM SAM

Estimate P- value Estimate P- value

Intercept −2.130 0.000 −1.817 0.000
SOCgkg 0.918 0.000 0.816 0.000
NH4Ngkg −0.011 0.884 −0.086 0.284
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of the significant local coefficient estimates and the spatially varying relationships between STN 
and the intercept, SiltPC and NO3Ngkg. The global coefficient estimates for SOCgkg ClayPC and 
NH4Ngkg from the MX- GWR fit were 0.677, −0.016, and −0.193, respectively, similar to the coeffi-
cient estimates in Table 2, with ClayPC, again not found to be significant. The MS- GWR coefficient 
estimates should also be mapped for comparison and are given in Figure 3. The AICc fit of the MX- 
GWR model was 1,065.9, worse than that found for the MS- GWR (1,050.4).

Here, information from the LRM (Table 2), MX- GWR (Figure 2), and MS- GWR (Table 4, 
Figure 3) need to be jointly considered to fully interpret the nature of the relationships in Analyst’s 
A data set. On balance, STN’s relationships with SOCgkg, ClayPC, and NH4Ngkg are clearly global 
and constant across space (Table 4), where STN’s relationships with ClayPC and NH4Ngkg are not 
viewed as significant (Table 2) and noting that the NH4Ngkg relationship to STN is borderline sig-
nificant/insignificant in all fits (LRM, MX- GWR, and MS- GWR). Conversely, STN’s relationship 
with the intercept, SiltPC, and NO3Ngkg are local, where the local behavior varies little between the 
MX- GWR and MS- GWR forms. Only for NO3Ngkg do differences occur, where more distinct and 
significant areas of negative coefficient estimates were generated with MS- GWR, but not seen in 
MX- GWR. If the differences were more pronounced, then Analyst A should consider re- specifying 
the MS- GWR model with bandwidths for SOCgkg, ClayPC, and NH4Ngkg as global, while those 
for the intercept, SiltPC, and NO3Ngkg are re- estimated so that each relationship varies at its own 
local scale. However, given the similarity in the coefficient distributions, Analyst A could justifiably 
and pragmatically proceed with a MX- GWR fit, even with its marginally worse AICc.

Investigating MS- GWR only for Analyst D
The MS- GWR fit should be retained when the variable- specific bandwidths clearly suggest each 
data relationship is operating at its own unique spatial scale, as in the case of the data set for 
Analyst D (see Table 4). Figure 4 maps the distribution of the local coefficient estimates. Here, 
only the relationship for NO3Ngkg with STN changes in sign, and is the only relationship that 
varies between significant and insignificant in different locations.

Figure 2. The spatial variation of the local coefficient estimates given with P- values < 0.05 
highlighted from the MX- GWR analysis of Analyst A. 
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Investigating standard GWR and MS- GWR for Analyst B
A standard GWR is generally not an adequate model. It can be chosen over an MS- GWR only on 
the rare occasions when the intercept and all predictors have broadly similar MS- GWR estimated 
bandwidths, which is potentially found for Analyst B (Table 4). This scenario predicts STN using 
just SandPC and NO3Ngkg, for which a single local bandwidth appears reasonable. In this in-
stance, the single bandwidth can be optimally determined through a standard GWR calibration, 
where it was found via AICc to be 597.5 m.

Where possible, the bandwidth function in a standard GWR should be investigated. This 
confirms that the bandwidth optimization search has not settled on a local minimum. Figure 5 
shows the bandwidth function for an AICc minimization, which is well- behaved with a clear 
minimum. Note that if the bandwidth function was very shallow and plateaued, then a LRM 
would likely suffice. Also, small bandwidths (say, <2% of the data points when using an 

Figure 3. The spatial variation of the local coefficient estimates given with P- values < 0.05 
highlighted from the MS- GWR analysis of Analyst A. 
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adaptive bandwidth) are indicative of over- fitting (to random perturbations, for example), and 
that a standard GWR is suggesting geographical patterns when none exists. In such cases, the 
GWR analysis should cease.

Figure 6 maps the distribution of the local coefficient estimates from standard GWR. 
Here, the relationships for the intercept and SandPC with STN can change in sign. Again, 
the MS- GWR coefficient estimates are mapped for comparison (Figure 7), indicating clear 
spatial differences between standard GWR and MS- GWR coefficients. In general, MS- GWR 
indicates smaller ranges of coefficient variation (as would be expected since the estimated 
bandwidths for SandPC and NO3Ngkg are much larger with MS- GWR), but regression rela-
tionships are consistently significant across space. Thus, given these differences and that the 
AICc for standard GWR is 1,272.3 compared to that found with MS- GWR (1,264.4), here, 
it is prudent to retain the MS- GWR model rather than simplifying the analysis with standard 
GWR.

Figure 4. The spatial variation of the local coefficient estimates given with P- values < 0.05 
highlighted from the MS- GWR analysis of Analyst D. 

Figure 5. The bandwidth optimization search for standard GWR.
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Summary in terms of AICc
Table 7 summarizes the AICc results for each Analyst, where for all scenarios the MS- GWR 
model provides the most parsimonious fit in terms of AICc. The choice of any primary model 
is always an improvement in fit over the LRM (except when LRM itself is chosen) but does 
not necessarily provide an improvement in predictive performance over the corresponding MS- 
GWR model in terms of AICc. This is because: (a) The measures of relationship non- stationarity 
(via the coefficient maps, above) can sometimes remain broadly unaltered despite a poorer model 
performance (AICc) measure, as was the case when MX- GWR was chosen over MS- GWR for 

Figure 6. The spatial variation of the local coefficient estimates given with P- values < 0.05 
highlighted from the standard GWR analysis of Analyst B. 

Figure 7. The spatial variation of the local coefficient estimates given with P- values < 0.05 
highlighted from the MS- GWR analysis of Analyst B. 
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Analyst A, or (b) relationships are in essence stationary as was the case for Analyst C when a 
LRM suffices.

Discussion

GWR model choice
The route map involves balancing evidence of residual autocorrelation with coefficient non- 
stationarity in deciding between GWR alternatives (standard, MX- GWR, MS- GWR), while also 
considering stationary coefficient models (LRM, SAM). It is evident from the above that there 
are few hard and fast rules about primary GWR model choice. Rather, choices are practical, 
based on an iterative process, where spatial structures in the data are considered alongside mea-
sures of model performance (AICc) and coefficient significance:

• Analyst C could have chosen to undertake a SAM rather than a LRM (and SAM approaches 
frequently do result in larger differences in coefficients compared to those of LRM) but in 
this case, the inferential gains in the regression relationships were marginal despite a strong 
improvement in AICc.

• Analyst A could have chosen a MS- GWR but the local differences in regression relation-
ships with those of a MX- GWR were small, which were similarly reflected in the AICc 
measures in this case (1,065.9 for MX- GWR and 1,050.4 for MS- GWR).

• Analyst B experimented with a standard GWR based on the loose similarity of the MS- GWR 
bandwidths and the small differences in AICc between GWR forms (1,272.3 for standard 
GWR and 1,264.4 for MS- GWR), but standard GWR resulted in different local inferences 
where it identified fewer significant regression relationships (comparing Figures 6 and 7) 
and thus MS- GWR was retained.

• Only for Analyst D was the model choice relatively straightforward, where the MS- GWR 
(Table 4) fit indicated that each predictor- response relationship was operating at a different 
spatial scale.

This practical rather than theoretical focus potentially indicates ambiguity in the GWR route 
map. For example, there are, of course, other spatial regression models that could be used, includ-
ing the spatially lagged models. However, what is described in this route map is a largely data- led 
approach which reflects a reality of statistical modeling— there is rarely a perfect model and even 
selecting one amongst competing choices relies on some subjective judgment, informed by the ana-
lyst’s purpose and point- of- view. Here, the route map describes a process of investigations, which we 
have described with some broad guidelines or rules mitigated by practical considerations. However, 
these are embedded within wider philosophical considerations associated with the construction of 
statistical models and the analytical decisions that are made. Put simply, what the route map implies 

Table 7. AICc Values Arising from the Primary Model Analyses

LRM MS- GWR Chosen primary model

Analyst A 1,124.0 1,050.4 1,065.9 (MX- GWR)
Analyst B 1,377.4 1,264.4 1,264.4 (MS- GWR)
Analyst C 1,223.1 1,106.8 1,223.1 (LRM)
Analyst D 1,131.0 1,057.4 1,057.4 (MS- GWR)
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is that for any given user, the strength of the evidence provided by the measures of spatial structure, 
model performance, coefficient significance, etc. will depend on how well users see the data as rep-
resenting the process being considered. Weak model fits, spatial autocorrelation of residuals, local 
coefficients whose signs flip across space, spatially varying significance of the coefficients, could all 
be as a result of insufficient, or even incorrect evidence. Depending on your philosophical position 
and the way you see data, statistical models, and so forth, any relationship heterogeneity observed 
through a GWR analysis may simply be a consequence of missing predictors, i.e., global, LRM, or 
SAM misspecification. These are long- standing objections to GWR (Brunsdon and Fotheringham 
1998) rooted in a view of spatial dependencies in data as a statistical “nuisance” to be fixed (Harris 
2019). However, an alternative and more productive view is that they arise due to environmen-
tal, social, or other processes that are spatially contingent, spatially varying, scale- dependent and 
poorly described by one size fits all types of modeling. Even if the apparent spatial effects are due 
to a mis- specified model, the value of GWR remains as an exploratory tool for helping to identify 
that mis- specification. However, the greater mis- specification may actually lie in a presumption that 
regression relationships would be constant in their effects across a study region. That is a bold and 
unnecessarily limiting claim.

Secondary model decisions
Having arrived at GWR Basecamp through a primary analysis, where one from a standard GWR, 
MX- GWR, or MS- GWR form is considered suited to the observed spatially varying relationships, 
the next part of the GWR route map is the consideration of secondary GWR model issues. To avoid 
overly lengthening the article, strategies for secondary model decisions (scaling the summit) are 
described below but not investigated for their effects on the preceding models. In order of impor-
tance, the following issues should be investigated: (a) predictor collinearity, (b) the influence of 
outliers, and (c) evidence of a dependent error term. These should be examined globally using 
standard approaches and locally through the associated GWR form. These issues can be detrimental 
to a reliable GWR analysis, giving rise to say, spurious local changes in the sign of the coefficient 
estimates between positive and negative and local changes in significance. They can also compro-
mise bandwidth estimation, where GWR fits of a secondary analysis will often give rise to different 
(optimized) bandwidths or a change in the behavior of the bandwidth function to that found with the 
primary analysis, and thus, potentially changing the chosen GWR form (e.g. see respectively, Cho 
and Lambert 2010; Harris, Fotheringham, and Juggins, 2010; Gollini et al. 2015).

Collinearity
For any global regression, collinearity occurs when pairs of predictors have a strong linear relation-
ship between each other, either positive or negative. Broadly, collinearity may be a problem when 
correlation coefficients for a predictor pair are >0.8 or <−0.8 as these can affect model reliability and 
precision: It becomes increasingly difficult to reliably estimate the specific effect of a predictor on 
a response the more that predictor becomes indistinguishable from others in the model. Diagnostics 
such as matrix condition numbers (CNs), predictor variance inflation factors (VIFs), and variance 
decomposition factors (VDPs) can be found and rules of thumb applied (CNs > 30, VIFs > 10, and 
VDPs > 0.5) to indicate worrying levels of collinearity (Belsey, Kuh, and Welsch 1980). Often a 
simple remedy is to remove one or more predictors. The difficultly is in deciding which predictor(s) 
to remove, especially when all are considered important to describing the study process. Here, a pe-
nalized regression can provide a solution, as by design it includes a model specification (i.e., variable 
selection) capability (Zou and Hastie 2005; Friedman and Hastie 2010; Dormann et al. 2013).
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Collinearity may also be present in some local predictor data subsets of GWR even when 
not observed globally (Wheeler and Tiefelsdorf 2005). Compositional, categorical, and or-
dinal predictors can be particularly problematic, often resulting in exact local collinearity 
making bandwidth optimization impossible. Geographically weighted collinearity diag-
nostics (CNs, VIFs, and VDPs) are available for standard GWR (Wheeler 2007, 2013; Lu  
et al. 2014) and if any observed collinearity is considered a concern, a standard GWR can be 
replaced with a penalized GWR form (Wheeler 2007, 2009; Gollini et al. 2015; Li and Lam 
2018). Mapping geographically weighted correlation coefficients (Fotheringham, Brunsdon, 
and Charlton 2002) between predictor variable pairs can also be useful to identify areas of 
local collinearity.

Outliers
For outliers, it is first useful to examine the LRM and MS- GWR residuals of the primary 
analysis for evidence of outliers that may influence the validity of their fits. This should be 
done spatially (for example, with maps of standardized residuals), to determine where any 
GWR analysis may be compromised. Again, robust (outlier resistant) theory in the global 
regression case (e.g., Huber 1981; Marazzi 1993) has been transferred to the local case with 
robust extensions to standard forms of GWR only (Fotheringham, Brunsdon, and Charlton 
2002; Farber and Páez 2007; Harris, Fotheringham, and Juggins, 2010; Zhang and Mei 2011). 
These handle influential outliers arising globally, but also locally in each individual regres-
sion, which may go undetected in any global assessment (i.e., via the standardized residual 
maps, above).

Dependence in the error data
As with the LRM, most forms of GWR assume that the errors, ei are independently normally dis-
tributed with zero mean and constant variance σ2. To examine for a non- constant error variance 
(in a non- spatial, global manner), the LRM’s fitted values can be plotted against its residuals. A 
funnel shape indicates that a heteroscedastic regression should be considered, such as through 
some consistent estimator (see Davidson and MacKinnon 1993) or a weighted least squares 
(WLS) estimator. A direct heteroscedastic extension to standard GWR is given in Fotheringham, 
Brunsdon, and Charlton (2002) and for MX- GWR in Mei et al. (2021) wherein both instances 
the error variance varies geographically.

Although it is common for any GWR fit to reduce error spatial autocorrelation over that 
found with a LRM fit (as demonstrated in Primary model decisions section), it is likely that error 
autocorrelation will also occur for each local regression in a GWR. GWR models that account 
for local autocorrelation effects have been proposed including an extension to standard GWR 
(Brunsdon, Fotheringham, and Charlton 1998) and an extension to MX- GWR (Geniaux and 
Martinetti 2018) through autoregressive GWR model forms.

Prediction and other GW models
Finally, the clear objective of the analyses described in this study is relationship inference. If GWR 
were to be used as a spatial predictor (Harris, Fotheringham, Crespo, et al. 2010) or the geographi-
cally weighted (GW) framework used to construct a spatial classifier (Brunsdon and Fotheringham 
2007; Comber and Harris 2016) then a different route map would result (Comber et al. 2020). For 
this case, prediction/classification accuracy and its inference would be to the fore with respect to 
model choice. Further, the route map would include GW hybrids with kriging (Harris, Charlton, 
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and Fotheringham 2010; Harris, Fotheringham, Crespo, et al. 2010) and with machine learning 
(Hagenauer and Helbich 2021; Quiñones and Goyal 2021), together with GW tools for assessing 
accuracy (Comber, Brunsdon, and Charlton 2017; Tsutsumida et al. 2019).

Concluding remarks

Geographically Weighted Regression provides a framework to investigate spatial relationships 
in data, how their effects vary geographically, and their varying scales of interaction. Its use in 
analyses of environmental and socio- economic data continues to grow and is easily undertaken 
in a number of software implementations. This article describes a GWR route map of primary 
and secondary considerations to ensure the GWR analysis is justified in terms of the aims of 
the analysis and the characteristics of the data, over alternate models, with fixed regression 
coefficients. As summarized in Figure 8, the route map has the following primary steps:

1. A LRM (basic linear regression model) should always be undertaken and the results 
investigated.

2. A MS- GWR (multi- scale GWR) should always be calibrated and the estimated bandwidths 
interrogated.

Figure 8. Flowchart of the GWR route map.
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3. Following the investigations of steps (1) and (2), the analysis should proceed with a stand-
ard GWR, or a core variant in MX- GWR (mixed GWR) or MS- GWR, only if a spatially 
varying coefficient model is considered appropriate. Otherwise, a LRM or a SAM (spatially 
autocorrelated model) should be chosen.

The LRM (step 1) provides global insight into how the predictors relate to the response, 
which relationships are significant, and measures of model fit. This step includes evidence of 
global spatial autocorrelation in the residuals, for example, through a Moran’s I analysis.

The MS- GWR (step 2) provides information through the MS- GWR bandwidths about the dif-
ferent scales of relationships in the data, where some may be local and others global. The MS- GWR 
bandwidths describe the degree of spatial dependency associated with each variable’s relationship to 
the response, and thus an indication of process heterogeneity. Insignificant Moran’s I estimates of the 
spatial autocorrelation of the MS- GWR residuals provide evidence that accounting for relationship 
spatial heterogeneity using MS- GWR is capturing most of the structural variation in the data.

Investigations of the LRM and MS- GWR results (step 3), along with other candidate GWR 
models guide the choice of the final primary model (i.e., a LRM or SAM, standard GWR, MX- 
GWR, or MS- GWR). A LRM should be used when all bandwidths from MS- GWR tend towards 
the global situation, including the intercept (i.e., are greater than ~80% of the maximum distance 
between data points or 80% of the data points in the adaptive bandwidth case), and where spatial 
autocorrelation in the residuals is either absent or if present does not significantly effect process 
interpretation (as the case for Analyst C, above).

If spatial autocorrelation in the LRM residuals is present and MS- GWR bandwidths are not 
all large, then a GWR variant can be considered:

• A standard GWR should be considered in the rare situation when all of the MS- GWR band-
widths tend to the same value.

• A MX- GWR should be considered when the MS- GWR bandwidths indicate two distinct 
sets of bandwidths, with one set tending to the global and with the other set tending to a 
similar local scale.

• A MS- GWR should be considered when the all of bandwidths vary, suggesting that each 
data relationship operates at different spatial scales.

Only now can secondary GWR model decisions be considered (Figure 8), noting that not all 
primary GWR forms have all secondary model options in current implementations and that steps 
are currently being made to address this (Comber et al. 2021).

It is important to stress that the final primary/secondary model choice should not be guided 
by simply selecting the model with the lowest AICc value, especially as the aim of any GWR 
analysis is to explore relationship spatial heterogeneity and spatial variations in the process. 
Rather, interrogation of the coefficient estimates and their uncertainty arising from the different 
models, in the context of the analysis aims is paramount.
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