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A B S T R A C T   

The value of physical archives of soil material from field sampling activities has been widely recognized. If we 
want to use archive material for new destructive analyses to support a task, such as spatial mapping, then an 
efficient sub-sampling strategy is needed, both to manage analytical costs and to conserve the archive material. 
In this paper we present an approach to this problem when the objective is spatial mapping by ordinary kriging. 
Our objective was to subsample the physical archive from the Ethiopia Soil Information System (EthioSIS) survey 
of the Southern Nations, Nationalities and Peoples Region (SNNPR) for spatial mapping of two variables, con-
centrations of particular fractions of selenium and iodine in the soil, which had not been measured there. We 
used data from cognate parts of surrounding regions of Ethiopia to estimate variograms of these properties, and 
then computed prediction error variances for maps in SNNPR based on proposed subsets of the archive of 
different size, selected to optimize a spatial coverage criterion (with some close sample pairs included). On this 
basis a subsample was selected. 

This is a preregistered experiment in that we have proposed criteria for evaluating the success of our approach, 
and are publishing that in advance of receiving analytical data on the subsampled material from the laboratories 
where they are being processed. A subsequent short report will publish the outcome. The use of preregistered 
trials is widely recommended and used in areas of science including public health, and we believe that it is a 
sound strategy to promote reproducible research in soil science.   

1. Introduction 

Soil information is required to support, among other activities, 
agricultural development, environmental protection and the improved 
management of soil and crop systems to ensure that food provides suf-
ficient micronutrients (Gashu et al., 2021). Much of the cost of acquiring 
soil information is associated with field work and sampling (Lark and 
Knights, 2015). For this reason, it is good practice wherever possible to 
maintain a physical archive of soil material from any significant field 
survey. This has been costed into proposed national-scale soil 

monitoring schemes (e.g. Black et al., 2008). The existence of a physical 
archive of soil from past sampling has enabled advances such as the 
development of the RothC soil carbon model, using data from soil 
samples from the long-term experiments at Rothamsted Experimental 
Station (Jenkinson and Rayner, 1977). The re-analysis of soil samples 
from the National Soil Inventory of England and Wales provided data on 
elemental concentrations in these soils, determined by X-ray fluores-
cence spectrometry. A total of 53 elements were measured in this way, in 
contrast with the total of 17 measured from the samples at the time of 
the original survey (Rawlins et al., 2012). 
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When a problem arises which can be tackled by making new mea-
surements on soil in a physical archive, the question follows: which 
specimens in the archive should be used? If possible we might use the 
whole archive, but there are two problems with this. First, the soil 
archive, as a snapshot of the soil over a limited time window, is irre-
placeable. Any destructive analysis therefore reduces its future value. 
Second, the costs of new analyses may be large, so it makes sense to 
select a subset of material for examination depending on the question in 
hand. In the case of spatial mapping by ordinary kriging the utility of the 
spatial predictions of a soil property, as measured by the kriging vari-
ance, depends on the spatial dependence of the variable of interest and 
the spatial distribution of the sample (McBratney and Webster, 1981). 
This means that an appropriate subsample of the physical archive can be 
selected for new soil analyses to allow spatial prediction of the new 
variable by ordinary kriging, if we know the original locations of all the 
specimens, and have a statistical model of the spatial dependence of the 
variable. This model can be derived from data in neighbouring or 
otherwise comparable locations. Similarly, if the soil data are combined 
with exhaustive covariates in a linear mixed model for spatial prediction 
by the empirical best linear unbiased predictor (equivalent to kriging 
with an external drift), then the prediction error variance can be 
computed in advance for locations where the covariates are measured, 
given the original locations of points in the physical sample, and an 
approximation to the parameters of the linear mixed model. 

In this study we had the task of selecting a subset of samples from the 
physical archive of the Ethiopian Soil Information System (EthioSIS) to 
allow spatial mapping by ordinary kriging of soil variables not measured 
in the orginal project, but which can be determined by new chemical 
analyses of the archived material. This study is focussed in the Southern 
Nations, Nationalities and Peoples Region of Ethiopia (SNNPR). The 
EthioSIS survey, conducted by the Ethiopian government’s Ministry of 
Agriculture and the Ethiopian Agricultural Transformation Agency 
(ATA), gathered and analyzed soil samples from each of Ethiopia’s 
18,000 agricultural local administrations (kebeles), cataloguing over 
100,000 samples. The primary objective of the project was to develop 
maps of soil health and fertility which would facilitate location-specific 
recommendations on fertilizer blending and to support decisions on land 
use and the suitability of different crops and varieties. 

Recent studies in sub-Saharan Africa, including Ethiopia, have 
shown that the mineral micronutrient status of human populations, 
staple crops and the properties of soils including measures of micro-
nutrient concentration show related, spatially dependent, geographical 
distributions, (Ligowe et al., 2020; Gashu et al., 2021; Belay et al., 2020; 
Belay et al., 2021). This implies that information on such properties of 
the soil could help to direct interventions to tackle mineral micro-
nutrient deficiency, particularly in countries where deficiency is prev-
alent, and many people depend on locally-grown staple crops. For this 
reason, information on micronutrient status of soils could be useful, 
alongside more conventional properties of agronomic relevance. In 
Ethiopia iodine and selenium deficiencies have been reported to be 
prevalent, which may partly be explained by poor supply from the soil, 
given the historically small rates of salt-iodization and selenium forti-
fication coupled with heavy dietary dependence on cereals and legumes. 

Although soils collected for the EthioSIS project were analyzed to 
measure the concentrations of several macro- and micro-nutrients, 
iodine and selenium were not included. Furthermore, there are spe-
cific extractions of these elements which are most likely to relate to the 
crop-available supply of the element and these have not been used in the 
EthioSIS project (Gashu et al., 2021). 

To fill this gap and shed light on the link between soil and human 
mineral status, a subset of the total sample collected by EthioSIS from 
Ethiopia’s SNNP regional states is to be selected for further examination 
of the soil iodine and selenium concentrations which are bio-available 
for plant uptake. This is to be done with particular extractants, 
described below, and the extractions are to be analyzed using an 
inductively coupled plasma mass spectrometer (ICP-MS) to determine 

concentrations of organic iodine and soluble selenium. Our specific 
objective is to facilitate spatial mapping of these fractions of soil iodine 
and selenium to identify spatial variations in the supply to crops and 
local communities. 

We propose to select the subsample from the EthioSIS archive for 
SNNPR for these analyses such that ordinary kriging predictions of the 
target variables have adequate precision as judged by the expected or-
dinary kriging variances. This requires a prior variogram model for the 
soil properties of interest (McBratney and Webster, 1981). We shall use 
estimated and validated variogram models from existing data in the 
Amhara, Tigray and Oromia Regions of Ethiopia which were collected as 
part of the GeoNutrition Project (Gashu et al., 2021). No fieldwork was 
done in SNNPR for this project. Fig.S1 in the supplementary information 
shows the regions of interest, and Fig. 1 shows the distribution of sample 
points from the GeoNutrition Project in Amhara, Tigray and Oromia, 
and the distribution of EthioSIS sample points in SNNPR. 

This is a pre-registered experiment. At the time of submission the 
data from the analysis of the subsample of the EthioSIS physical archive 
are not complete or available to the analytical team. This is in line with 
innovations to improve the reproducibility of science, by proposing in 
advance the details of an experiment and the criteria on which it will be 
evaluated. This is widely done in medical science and public health (e.g. 
Lowe et al., 2020), and increasingly in other domains such as agronomy 
(Botoman et al., 2020). In the following sections we set out the meth-
odology for selecting a subsample of the EthioSIS physical soil survey in 
SNNPR, and the criteria by which results from the final analysis will be 
evaluated to judge how successful the selection of the subset was. 

2. Methods 

2.1. The EthioSIS soil sampling strategy 

Sampling sites were selected in two steps. First, the 97 confluence 
points in Ethiopia, i.e. the intersection of lines of latitude and longitude 
at 1-degree intervals, were identified. Second, at each confluence point a 
10-× 10-km area was subdivided into 16 tiles, and within each of these 
tiles 10 sample points were selected at random. Given that the main 
focus of the EthioSIS project was to develop customized fertilizer 
recommendation for crop cultivation, the EthioSIS team selected sample 
sites primarily from areas used for cereal production (80 percent) while 
the remaining 20 percent of the samples were drawn from areas with 
capability for crop production in future. Sites that were deemed un-
suitable for cereal production were excluded. 

A soil sample was collected from the pre-defined primary sampling 
point and eight additional sub-sampling points located 15 meters away 
from the center of the primary sampling point. This sampling approach 
was employed to minimize potential bias that could arise from conve-
nience composite sampling. In line with the effective root depth of most 
annual crops, samples were collected from a uniform depth of 20 cm 
using a 1.2-metre auger. Soil samples collected from each of the nine 
sites were pooled into one plastic bucket. After mixing, a representative 
sub-sample of 1 kg was retained and placed into a labelled sample bag. 
The sample label includes the district ID, sample plot ID, date of sam-
pling, sample depth and a unique bar code. Samples were finally shipped 
to the nearest regional or national soil laboratory for further processing. 
After analysis the remaining material was preserved in a physical 
archive. Gelaw et al. (2018) give an overview of the project. 

2.1.1. Defining a prediction domain 
The objective of this study was to enable predictive mapping of 

soluble Se and organic I in the cultivated soils of SNNPR after new an-
alyses of a subset of archived soil material from the Region. Note that 
this objective was consistent with the selection principles for the 
EthioSIS survey under which sites were selected from land in use for 
cereal production, or with capability for this use. We defined the domain 
for the spatial predictions from a 500-m raster grid across SNNPR. At 
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each of the grid nodes the probability that cropping is the landuse had 
been computed by the AfSIS project (Walsh et al., 2019). These proba-
bilities were output from a machine learning algorithm with covariates 
derived from remote sensor data and digital elevation models (AfSIS, 
2015) as inputs, and calibration observations made by trained observers 
using high-resolution satellite imagery. Fig. 2(a) shows these 

probabilities across SNNPR discretized into three intervals. In Fig. 2(b) 
the locations of the EthioSIS sample sites in the region are mapped. The 
Figure shows that the region where the probability of cropping exceeds 
0.3 encompasses almost all the EthioSIS sample points, although some of 
this region is relatively empty of points. On this basis it was decided to 
treat the raster nodes where probability of cropping exceeds 0.3 as the 

Fig. 1. Map of Tigray, Amhara, Oromia and SNNP Regions of Ethiopia (see Supplementary Fig.1). The black symbols are GeoNutrition sample sites, the grey symbols 
are EthioSIS sample sites within SNNP Region. 

Fig. 2. a). Probability that land is cropped on a grid across SNNPR. White: P < 0.3; Light grey: 0.3⩽P < 0.9; Dark grey: 0.9⩽P. b). Distribution of sample points across 
SNNPR (solid black symbols). The grey mask represents where the probability of cropping is greater than 0.3. 
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domain for purposes of spatial prediction of soil properties. This corre-
sponds to 62% of the area of the region. 

2.2. The GeoNutrition data and their analysis 

To complete the task of selecting a subset of EthioSIS samples in 
SNNPR for new analyses to allow ordinary kriging predictions of organic 
I and soluble Se at points in the prediction domain we require variogram 
models for the target variables. From these it is possible to compute 
ordinary kriging variances for the variables based only on the spatial 
distribution of the selected archive sites. Data on the soil variables were 
available from the GeoNutrition project from samples collected across 
Amhara, Tigray and Oromia regions of Ethiopia, but not SNNP, (Gashu 
et al., 2021). The spatial distribution of these data are shown by the 
black symbols in Fig. 1. 

2.2.1. Collection and chemical analysis 
A detailed account of the soil sampling protocol for the GeoNutrition 

survey is given by Gashu et al. (2021). In summary, the sample locations 
were selected by balanced spatial sampling with spatial spread using the 
cube method of Deville and Tillé (2004). Spatial balance means that the 
mean coordinates of the sample points should be close to the mean co-
ordinates of the sampled domain, and spatial spread means that the 
points give good spatial coverage avoiding clustering, see Grafström and 
Schelin (2014). Five soil cores (to depth 150 mm, diameter 50 mm) 
were collected from within a 100-m2 circular plot. These were thor-
oughly mixed and then oven-dried at 40 ◦C for 24 – 48 h. The soil in each 
sample was then disaggregated and sieved to pass 2 mm. Subsamples 
were formed by coning and quartering to produce 150-g aliquots. These 
were shipped for analysis at the University of Nottingham (for the 
measurements reported here). 

The soil variables we consider here were measured as part of a 
sequential fractionation procedure adapted from the methods of Math-
ers et al. (2017) and Shetaya et al. (2012) to extract three fractions of Se 
and I. Of these the ‘soluble’ fraction was extracted in 0.01-M KNO3 and 
the ‘organic’ fraction was extracted in 10% tetramethylammonium hy-
droxide (TMAH). Selenium and I in the extracts were analysed using 
QQQ-ICP-MS operated in oxygen cell mode with Se mass-shifted from 
m/z 80 to m/z 96 (SeO+) to avoid interference from the argon dimer. We 
refer to the variables as soluble Se and organic I in the remainder of this 
paper. 

2.2.2. Spatial analysis of the GeoNutrition data 
As we do not have any data on the target variable from soils of 

SNNPR, the objective is to obtain variograms from data on those vari-
ables in the GeoNutrition data set from adjacent regions of Ethiopia. The 
GeoNutrition data on the target variables show pronounced North-
–South trends in both the soluble Se and organic I in the Amhara, Oro-
mia and Tigray data. Figs.S2 and S3 in the supplementary material show 
the spatial distribution and the quartiles of both variables. In both the 
larger values are particularly predominant in the southern part of the 
data set, particularly for organic I. The SNNP Region is south of the 
sample locations in the GeoNutrition project at longitudes up to about 
41 degrees. On inspection of the post plots in Figs.S2 and S3, it was 
decided to use only the GeoNutrition data from latitudes of 10 degrees or 
less north, on the grounds that these were more likely to resemble data 
in SNNPR than samples from further north. Some north–south trend may 
remain in this restricted subset of the GeoNutrition data. However, this 
is compatible with ordinary kriging, in which only the local mean is 
assumed to be constant. Attempting to model a trend would not help 
with our task, because it could not confidently be extrapolated across 
SNNPR. 

To check this decision further the Soil Reference Groups (World 
Reference Base, 2007) mapped on the Soil Atlas of Africa (Jones et al., 
2013) were extracted for the EthioSIS SNNPR sites, and for the Geo-
Nutrition sample sites with latitudes ⩽10 degrees north. The relative 

proportions of the different groups in the two subsets are shown in Fig. 
S4 in the supplementary material. While the compositions of the subsets 
with respect to the soil groups are not identical they are broadly similar, 
with Vertisols, Nitosols, Luvisols and Leptosols the commonest groups in 
both subsets, and Fluvisols, Cambisols, Alisols, Andosols and Phaeozems 
occurring in smaller proportions. The data on organic I and soluble Se 
from locations on latitude 10 degrees or less North are referred to as the 
data subset. 

2.2.3. Variogram estimation, modelling and validation 
Summary statistics for the data subset on soluble Se and organic I 

were computed, and are shown in Table 1. Histograms with super-
imposed box-and-whisker plots, and Q-Q plots of the quantiles of the 
data against the corresponding normal quantiles were also computed 
(supplementary Figs. 5–7). The octile skewness in Table 1 is a robust 
measure of skewness (Brys et al., 2003) based on the asymmetry of the 
seventh and eighth octile around the median value. A rule of thumb is to 
consider a transformation for variables with a conventional skewness 
coefficient outwith the interval [ − 1, 1] (Webster and Oliver, 2007), but 
this coefficient can be unduly influenced by outlying values, so the octile 
skewness is also considered, along with data plots. Rawlins et al. (2005) 
found that a corresponding rule of thumb for a range of distributions is 
to consider transformation if the octile skewness is not in the range 
[ − 0.2, 0.2]. On this basis all further analyses were conducted on the 
soluble Se data transformed to natural logarithms, and on the untrans-
formed data on organic I. 

Empirical variograms for the transformed soluble Se and organic I 
data subsets were computed for lag-bins using the standard estimator 
due to Matheron (1962). Distances between observations were 
computed from their recorded latitude and longitude on a spherical 
approximation using the distVincentySphere function from the geosphere

package of functions for the R platform (Hijmans, 2019; R Core Team, 
2020). There was no evidence of directional-dependence in these esti-
mates (Figs.S7 and S8 in the supplementary material), so isotropic 
variograms were computed. In addition, isotropic variograms were 
computed with the robust estimators due to Cressie and Hawkins (1980) 
and Dowd (1984). Although exploratory analysis of the data did not 
indicate the presence of any marginal outliers, with spatial data one 
must also consider the possible occurrence of spatial outliers, values 
which are very unusual in their spatial context, and which might have an 
undue influence on estimates of the variogram based on the mean- 
squared difference over different lag distances (Lark, 2000). The 
robust estimators damp such effects, although in different ways. 

All estimated variograms were then fitted with exponential models 
by weighted least squares, weighting by the number of pair-comparisons 
within each lag bin (Webster and Oliver, 2007). The exponential model 
was used because it corresponds to a limiting form of the Matérn var-
iogram model which is positive-definite on the sphere (Gneiting, 2013). 
The empirical variograms and fitted models are shown in Fig. 3 (Se) and 
Fig. 4 (I). The fitted models were then assessed by leave-one-out cross- 
validation. The standardized squared prediction errors (squared pre-
diction errors divided by the kriging variance) were computed from the 

Table 1 
Summary statistics for soluble Se (Sesol) and organic I (Iorg) concentration in 
GeoNutrition soil samples at or south of latitude 10◦ north.  

Variable Sesol Iorg 

Units μg kg-1 log (μg kg-1) mg kg-1 log (mg kg-1) 

Mean  3.90  1.17  17.33  2.68 
Median  3.14  1.14  17.51  2.86 
Q1  2.11  0.75  9.69  2.27 
Q3  5.09  1.63  23.26  3.15 
SD  2.61  0.61  9.01  0.63 
Skewness  2.08  0.03  0.37  0.03 
Octile  0.37  0.03  − 0.04  − 0.36 
skewness          
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cross-validation results. The expected value of the median standardized 
squared prediction error is 0.455 for normal kriging errors, and we 
followed Lark (2000) in using this statistic as a diagnostic, and using 
Matheron (1962)’s estimator if its standardized squared prediction error 
fell within the 95% confidence interval given the sample size. Otherwise 
the variogram models fitted to the robust estimates would be 

considered. 
The cross-validation errors for the variogram models both variables, 

fitted to the estimates obtained by Matheron’s estimator, appeared close 
to normal in distribution (Figs.S9 and S10 in the Supplementary Mate-
rial), and, as seen in Table 1, the standardized squared prediction errors 
had median values close to the expectation for a valid model and well- 

Fig. 5. Illustration of the method for selection of the basic subset of EthioSIS archive samples. The grey discs represent nodes within a subset of the sample domain 
represented in the Figure. The large circles are the centroids of nine clusters of domain nodes formed by the spcosa package. The black symbols represent the location 
of samples in the EthioSIS archive, the larger black triangles being the closest point to each of the respective centroids, selected for the subsample. 

Fig. 6. a) Map of SNNPR showing the sampling domain (grey) where the probability of cropping as the dominant land use equals or exceeds 0.3. The open symbolds 
show the centroids of 180 polygons formed by k-means clustering of the domain points. b) as in Fig. 4a, but with the location of EthioSIS sample sites closest to each 
sample domain centroid indicated by a black triangle. The yellow triangle near 20 of these locations indicates an EthioSIS sample to be included as a close-paired 
observation. 
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within the 95% confidence interval. On this basis these models, with 
parameters in Table 1, were used for all further analyses. 

2.3. Sampling objectives and design 

For purposes of the analyses all coordinates on EthioSIS sample lo-
cations and prediction domain nodes in SNNPR were converted to units 
of metres relative to the datum of the UTM Zone 57 N projection. This is 
because the methods described in the following section require locations 
on rectilinear coordinates. We denote by S the set of m vectors 
{s1,…, sm}, where si ∈ S denotes the coordinates (UTM37N) of the ith 

archive sample. 

2.3.1. Spatial coverage sampling 
As noted in Section 2.1.1 above, our prediction domain is defined as 

those nodes on a 500-m raster grid across SNNPR where the probability 
of cropping activity exceeds 0.3. These are the locations at which we 
wish to form predictions of soil properties from analyses of sampled 
material from the EthioSIS archive. The sample units, in contrast, are 
items in the archive, with associated coordinates, {s1,…, sm}. 

The basic subsample of EthioSIS samples that we draw from the 
archive was to be a spatial coverage sample (De Gruijter et al., 2006). A 
spatial coverage sample gives good coverage of a region of interest in the 
sense that the average distance from a random location in the region to 
the nearest sample point is minimized. In a uniform infinite plane a 
spatial coverage sample can be achieved on a grid of sample points at the 
vertices of tesselating equilateral triangles, but in finite irregular regions 
simple rules cannot be applied. One useful numerical approach is to take 
a regular discretization of the region (such as our 500-m grid nodes) and 
to partition these into n clusters formed by a k-means algorithm on their 
rectilinear coordinates. This was implemented by Walvoort et al. (2010) 
in the spcosa package for the R platform. Our approach was to use k- 
means clustering on the rectilinear (UTM 37 N) coordinates of the nodes 
in the prediction domain to form n clusters for some specified n. If D 

denotes the set of n cluster centroids ci, i = 1,…, n created this way (each 
a vector of UTM37N coordinates), where ci ∈ D denotes the ith centroid, 
then our objective is to find the subset of archive locations s⊂S such 
that for each ci ∈ D there exists some sj ∈ s such that the Euclidean 
distance 

⃒
⃒ci − sj

⃒
⃒ = min{|ci − sk| }k∈ [1,m].

In general the number of elements in s, |s| = n, but it is possible that 
|s| < n, implying that one or more si ∈ s is the nearest neighbouring 
sample point in the archive to more than one cluster centroid. For all 
cases in this study there was one unique nearest neighbour to each 
cluster centroid. We illustrate this in Fig. 5 which shows a notional 
extract from the prediction domain, with the nodes of the domain shown 
as grey symbols. The centroids of nine clusters are shown (large open 
circles), and notional EthioSIS sample locations are shown as black 
symbols, the nearest EthioSIS site to each of the centroids is shown as a 
black triangle, these are the EthioSIS sites which would be selected for a 
spatial coverage subsample, (other EthioSIS sites are shown as black 
discs). 

Fig. 6a shows the cluster centroids for n = 180 across SNNPR. The 
black triangles in Fig. 6b correspond to the locations of the nearest- 
neighbouring sample points in the EthioSIS archive, selected to form 
the spatial coverage subsample. 

2.3.2. Supplementary points 
The spatial coverage sample from the archive, sj ∈ s⊂S , provide a 

sound basis for spatial prediction by interpolation, using the empirical 
best linear unbiased predictor (E-BLUP) for an appropriate spatial mixed 
model. In this case here our linear mixed model has an unknown mean as 
the only fixed effect, and the E-BLUP is the ordinary kriging prediction 
(Stein, 1999). However, the spatial coverage sample is not, in general, 
sufficient to support the estimation of the linear mixed model itself 
because observations at short distances, relative to the spacing of the 
coverage sample, are needed to estimate variance parameters. This was 
explored by Lark and Marchant (2018), who suggested that about 10% 
of the total sample size could be selected as close-paired observations to 
spatial coverage points. 

We considered subsamples of the EthioSIS archive consisting of a 
total of N sample locations, comprising M = N/10 close-pair samples 
aligned with M of the n = N − M spatial coverage points. After selection 
of the spatial coverage sample, as described in the previous section, M of 
these were selected with the lcube function from the BalancedSampling

package for R (Grafström and Lisic, 2019). This uses the cube method of 
Deville and Tillé (2004) to select a sub-sample which is spatially 

Fig. 7. a) The 90th percentile of kriging variances at a spatially balanced sample of locations in the target domain across SNNPR as a function of the total sample size 
deployed for a) log of soluble Se and b) organic I. 
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balanced (i.e. for which the mean coordinates are close to those of the 
sampled set), and spatially spread. Each of the spatial coverage sample 
units had an equal inclusion probability for selection for a close pair. 

Once the close pair sites were selected each one was considered in 
turn, and the nearest neighbouring observation in the EthioSIS set, S 

not already selected for sampling was identified. In Fig. 6b these close- 
pair sites are shown as yellow triangles. 

2.3.3. Criteria for selection of a sampling density 
With a total of N points selected from the sample archive, comprising 

n spatial coverage points and M close neighbours, the ordinary kriging 
variance for soluble S and for organic I at each node of the prediction 
domain grid was computed, using the variogram parameters presented 
in Table 2. If we denote the value of the variogram according, to the 
model parameters in Table 2, for the interval between the locations of 
the ith and jth observations in the subset of archive sites by γ

(
si, sj

)
and the 

value for the interval between the ith archive location and the location in 
the prediction domain at which an ordinary kriging prediction is 
required, c0 by γ(si, c0), then the ordinary kriging variance is given by 

σ2
OK = bTA− 1b, (1)  

where 

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(s1, c0)

γ(s2, c0)

⋅
⋅
⋅
γ(sN , c0)

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(s1, s1) γ(s1, s2) ⋯ γ(s1, sN) 1
γ(s2, s1) γ(s2, s2) ⋯ γ(s2, sN) 1
⋅ ⋅ ⋯ ⋅ ⋅
⋅ ⋅ ⋯ ⋅ ⋅
⋅ ⋅ ⋯ ⋅ ⋅
γ(sN , s1) γ(sN , s2) ⋯ γ(sN , sN) 1
1 1 ⋯ 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The ordinary kriging variance is the expected squared error of the pre-
diction. It is the quantity minimized in ordinary kriging. 

We considered a range of total sample sizes, N, up to 300, and added 
in 1000 as total sample size for comparison. In each case 10% of the 
samples were allocated as close-paired observations to a spatial 
coverage sample comprising the remaining observations. The locations 
of the spatial coverage sample points and close pairs were selected as 

Fig. 3. Empirical variograms of soluble Se concentration (transformed to natural logarithms) forGeoNutrition soil data at or south of latitude 10◦ north. The var-
iogram estimators are those of a) Matheron (1963), b) Cressie and Hawkins (1980) and c) Dowd (1984). The continuous lines are exponential variogram functions 
fitted by weighted least squares. 

R. Alemu et al.                                                                                                                                                                                                                                  



Geoderma 424 (2022) 116013

8

described in Section 2.3 above. We computed, for each variable, the 
ordinary kriging variance at each location in the prediction domain. 

The ordinary kriging variance varies in space due to the variation in 
the numbers and locations of archive observations. It is smallest near to 
an archive location selected for use, and largest at locations furthest 
from such observations. As a summary we extracted the 90th percentile 
of the kriging variance across the whole prediction domain for each 
variable, and plotted this against the total sample size. The results are 
shown in Fig. 7 (a) for log-transformed soluble Se and (b) for organic I. 

It was decided that a subsample of 200 would be satisfactory. This 
was based on the computed ordinary kriging variance, and the shape of 
the plots in Fig. 7, which suggested that the marginal reduction in 
kriging variance for further increases in the total sample size would be 
small. 

The sample locations for the total sample of 200 were extracted and 
provided to colleagues for extraction from the EthioSIS archive. 

2.4. Subsampling the archive 

2.4.1. Procedure for subsampling 
All soil samples archived through the EthioSIS were stored at 

Ethiopia’s National Soil Testing Center. Each sample has a unique 
identification number and information on geographic location (the 
easting and northing (WGS system) and elevation in meter). Lab tech-
nicians used the unique sample Identification Numbers (IDs) to identify 
the soil samples located in the 200 pre-identified locations. Once iden-
tified, 50 mg of soil was extracted from the each archived sample and 
placed in a plastic bag which was then sealed to prevent any cross- 
contamination. 

2.4.2. Problems encountered 
Of the 200 archive samples identified for extraction, 36 could not be 

found, presumed lost. For each of the missing locations the three nearest 
neighbours, excluding any in the original subset of 200, were identified, 
and the IDs provided to the colleagues doing the extraction with the 

Fig. 4. Empirical variograms of organic I concentration for GeoNutrition soil data at or south of latitude 10◦ north. The variogram estimators are those of a) 
Matheron (1963), b) Cressie and Hawkins (1980) and c) Dowd (1984). The continuous lines are exponential variogram functions fitted by weighted least squares. 

Table 2 
Variogram parameters for selected models, with cross-validation outputs, for natural log of soluble Se and organic I concentration in GeoNutrition soil 
samples at or south of latitude 10◦ north.  

Variable Estimator c0 c1 ϕ Median SSPE 95% confidence interval for  
SSPE with valid model 

log Sesol Matheron 0.107 0.336 86.1 0.44 [0.38,0.53] 
Iorg Matheron 52 716 5000 0.40 [0.38,0.53]  
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closest (first-choice substitute) and furthest of the three indicated in 
each case. By selection from one of these candidate samples a replace-
ment samples was found for half (18) of the missing samples, but none of 
the three were available in the archive for the remaining 18 sites. 
Because of limited time to work in the archive a total sample size of 182 
was accepted. 

3. Planned analyses and criteria for evaluation 

The sub-samples were then shipped to the University of Nottingham 
for analyses of organic iodine and soluble selenium concentrations as 
described above.The following subsections describe the procedures 
which will be followed when these analyses are complete. 

3.1. Initial data screening 

In each extraction batch we shall include three operational blanks 
(one for each fraction) to check for potential contamination. Batches will 
be rejected if blanks show apparent contamination (i.e., 3 times greater 
than the background signal of the ICP-MS). The reproducibility of the 
analysis is tested by repeating at least 10% of the samples in duplicate 
which allows us to test the variation within the analytical run and be-
tween runs. The precision is determined by calculating the relative 
standard deviation (RSD; %) which is the ratio of the within-duplicate 
standard deviation to the overall standard deviation of the material 
expressed as a percentage. Values of the RSD are expected to be < 10%. 
When we suspect, based on our knowledge, that the elemental concen-
tration of a sample is an outlier, we further investigate that sample by re- 
analysing in triplicates. 

3.2. Exploratory data analysis 

We shall compute the same summary statistics and plots of the 
SNNPR data as presented in this paper for the GeoNutrition data. If any 
observations appear to be outliers, then we shall discuss these with EB 
and AM to see whether there are any technical grounds for exclusion, 
although this is unlikely given the initial screening. If outliers remain, 
then we shall complete the analyses below with these included, and 
repeat the same analysis after exclusion of the outliers. 

3.3. Geostatistical analysis 

3.3.1. Primary analyses 
By primary analyses we mean the analyses to test our central prop-

osition that the variogram estimated from the subset of GeoNutrition 
data south of 10 degrees latitude provides a basis to select a subset of the 
EthioSIS soil physical archive specimens for spatial prediction of soluble 
Se and organic I across SNNPR by ordinary kriging. This will be deemed 
to have been validated if the ordinary kriging variances from the subset 
show comparable dependence on sample density and comparable ab-
solute values to those displayed in Fig. 7. If the spatial dependence of the 
new data from the SNNPR EthioSIS subset is appreciably different from 
the GeoNutrition data used here, then the kriging variance might decline 
more rapidly, or more slowly, as a function of sample density than is 
shown in Fig. 7, and the absolute values of the kriging variance may be 
different. Our hypothesis is that the 90th percentile of the kriging vari-
ances calculated at the nodes of the prediction domain from the vario-
gram models estimated from the new SNNPR EthioSIS analyses will vary 
by no more than 10% from the values expected from the variogram 
computed on the GeoNutrition data, and the location of the selected 
EthioSIS sites (noting that there were eventually fewer of these than 
orginally planned due to missing material). 

We shall use the same procedures described above to estimate and 
cross-validate variograms for the variables on the SNNPR data. When 
this is done, we shall compute the kriging variances across the same 
nodes of the prediction domain. We shall plot the percentiles of these 

kriging variances against the corresponding percentiles based on the 
variogram parameters in Table 2 for the GeoNutrition data. This will 
show whether the GeoNutrition variogram tends to over- or under- 
predict the kriging variances obtained with the data from the SNNPR 
subset. 

Because the absolute values of the SNNPR and GeoNutrition vari-
ances may differ, we shall compute the kriging variances for the same 
subsets of SNNPR EthioSIS locations used to produce Fig. 7(a) and (b), 
and standardize these by the a priori variance (i.e. the sill variance) of 
the corresponding variograms. This will show whether (i) the magnitude 
of the kriging variance (90th percentile) for the GeoNutrition variogram, 
and that for the newly-estimated SNNPR variograms differ as a pro-
portion of the variance of a notional independent sample and (ii) 
whether the reduction in kriging variance (90th percentile), as a pro-
portion of the a prior variance, on changing the total sample size from 
150 to 200 to 250 differs for the two variograms. This latter analysis will 
show whether there are practically significant differences in the scale- 
dependence of the target variables between the SNNPR and Geo-
Nutrition data sets. 

3.3.2. Secondary analyses 
In the secondary analysis we shall follow the procedures of Lark et al. 

(2017) to fit a linear mixed model to the new data on soluble Se and 
organic I by a Bayesian method. We shall use the same code for this 
analysis, but shall adjust the range of the uniform prior for the variance 
terms to [0,10v] for each variable where v is the sample variance. 

The Bayesian analysis will provide empirical posterior probability 
densities for the variogram parameters for each variable. We shall 
compare these with the estimated parameters from the GeoNutrition 
data set in Table 1 of this paper. We shall also use them to compute the 
probability density functions for the 90th decile of kriging variance 
across the prediction domain for alternative subsets from the SNNPR 
archive, and compare this with the values shown in Fig. 7. 

4. Discussion 

This is a pre-registered experiment, so final results will be presented 
subsequently. The activities reported above highlight a number of 
questions which require attention in further work on the problem of how 
best to subsample a soil archive in the light of our eventual results. 

The first question relates to the assumptions made about the spatial 
dependence for a variable not yet analysed. In this study we have used 
data on organic I and soluble Se from measurements made in adjacent 
regions of Ethiopia. However, this is not without its problems. In this 
study we were able to show, using the soil map units of the Soil Atlas of 
Africa, that there were clear similarities in the general soil conditions of 
the SNNPR region and the adjacent reference regions for which we had 
data. However, we found a pronounced north–south trend in the refer-
ence observations, which meant that a more-or-less arbitrary decision 
had to be made on how to identify a subset of the reference data to be 
used to obtain a variogram model to use for the subsampling decisions. It 
might be possible to identify appropriate reference data more objec-
tively, perhaps if these and the EthioSIS had first been analysed by 
laboratory-based spectral methods. One might identify a subset of the 
reference data which fall within some envelope of spectral values which 
includes the data from the archive to be subsampled. 

Another issue arises from differences in the sample support between 
the GeoNutrition survey and the EthioSIS survey. First, there could be 
systematic differences between the two sets of measurements because 
the former were from depth interval 0–15 cm whilst the latter was from 
interval 0–20 cm. For our purposes this difference matters only in so far 
as it affects the variance of the observations. We hypothesize that the 
effect is small, but may be relatively larger for organic I than for soluble 
Se because the latter might be expected to show marked variation with 
depth reflecting the distribution of organic matter. Second, whilst both 
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samples are composite, the GeoNutrition samples were each a compo-
sition of five cores from within a circle of radium 5.6 m (area 100m2) 
whilst the EthioSIS samples were each formed from nine aliquots, a 
central core and eight at locations 15 m from the centre. This difference 
in support might result in differences in the empirical variograms. If the 
GeoNutrition variograms were estimated from data each obtained from 
a single core, then they could be regularized to reflect the EthioSIS 
support (see Webster and Oliver, 2007). This is not the case, so there is 
no direct solution. Because the difference in support is relatively small, 
we hypothesize, again, that the effect on the variogram shape, and ab-
solute variances will be small. This will be tested when we finally 
analyse the data. 

An alternative approach would be not to assume that a reference data 
set could be treated as a proxy for the archive soil values, yet to be 
determined. Rather, one might subsample the archive in more than one 
phase, completing the laboratory analyses at the end of each phase and 
then analysing these data statistically to develop a spatial model used in 
the selection of the next subset of archive material. Marchant and Lark 
(2006) proposed such an adaptive sampling strategy for field soil sam-
pling. Early phases of sampling are focused on development of the 
spatial model, and then the final phase uses this model to select a final 
set of sample points to complete the sample for the final analysis to 
address the project objective. The feasibility of this approach will 
depend on the time available, and whether the archive and laboratory 
are in reasonably close proximity. 

For some variables, systematic examination of the literature might 
provide a plausible variogram model to use in particular conditions. See, 
for example, the average variograms published by Paterson et al. (2018). 
This could be used either directly to compute kriging variances for 
proposed subsets of archive samples, or to provide a prior variogram 
model for the adaptive approach described above. However, no such 
information was available for our particular variables. 

Second, we note that a not insignificant number of our initial set of 
selected archive specimens were not found. This underlines the impor-
tance of good record keeping for a physical archive. We propose that 
such an archive should have a catalogue, in which one may record 
missing samples, samples for which material has been lost or used in 
new analyses, and samples which further analysis has suggested might 
be contaminated or otherwise atypical. This would be useful in further 
use of the archive so that scientists have a definitive list of available 
material. Field notes from the original sampling campaign could also 
usefully be linked to such a catalogue. 

Third, we note that our resampling of the EthioSIS archive was done 
specifically to allow spatial mapping of the variables to be analyses by 
ordinary kriging. For this reason the criterion for selection was the or-
dinary kriging variance. If we had other objectives then other criteria 
might be more appropriate. For example, if the objective were to esti-
mate a spatial mean of the new variable across the sample region, or a 
few large subregions, then a spatially balanced subsample would be a 
good option (Deville and Tillé, 2004). If the aim were to calibrate a 
predictive model for the new soil variable based on spectral measure-
ments already made on the samples, or exhaustive covariates which can 
be linked to all the samples (e.g. remote sensor data), then one might 
select a subset which is ‘spread’ in the feature space defined by the 
covariates, for example by application of the cube algorithm (Grafström 
and Tillé, 2012). 

Finally, we make an observation about this preregistered study. On 
submission of this paper we wait to see the soil data, and how far our 
analysis has allowed us to be efficient in selection of a subset of the 
archive for further analysis. Our hypothesis is that the information from 
the reference observations in the adjacent regions will allow us to guide 
the selection of the subset rationally, such that the kriging variances at 
the nodes of the prediction domain computed from the new data match 
our expectations from the application of the variograms estimated from 
the GeoNutrition data within the tolerances given above. This hypoth-
esis is subject to a genuine test, because no post hoc decisions about 

criteria for assessment, subregions of the reference data to use, strategies 
for outlier identification etc. can be made. We believe that such an 
approach is a useful contribution to making soil science more 
reproducible. 
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