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Abstract 
 

This project developed RL Plus, an augmented version of the Recommended Lists for Cereals and Oilseeds, 

published by the HGCA on CD and the internet (http://www.hgca.com) to provide the cereals and oilseeds 

industry with means of interrogating and analysing data from HGCA-funded variety trials.  Given that RL 

Plus is fully documented and published in electronic form, it is not described further here.  This report is 

confined to additional research analysing relative variety performance of winter wheat in terms of site 

characteristics. 

 

A spreadsheet was constructed of treated yields of winter wheat from 43 varieties across 506 trials 

(Recommended List, National List or BSPB trials) in the UK from harvests during 1992-2002.  This 

included site information collected from the trials, and supplemented with the site location (OS co-

ordinates), soil types, meteorological data and drought index derived during the project.  Complete, or near-

complete, data existed for 249 trials from harvests during 1993-2003. These data were used to investigate 

factors associated with site variation in variety yields. 

 

Data-mining techniques were used to identify site variables that explained variation in variety yields between 

sites. This information was used to build models to describe and predict patterns of variety variability due to 

site differences. Variation in variety yields could be modelled in terms of overall variety differences (43% 

variety variation accounted for), and variety interactions with large-scale trend due to geographic location 

(general climate, 16%), small-scale location trend specific to years (micro-climates, 14%), expected site 

yield (2%), late sown crops (crops sown on/after 30 October, 0.4%), sites with sandy or shallow soil (0.5%), 

sites with low soil K index (0.4%), differences between years (4.5%), differences between sites (unexplained 

by site variables, 2%), and other unexplained variation (18%). Further investigation suggested that other site 

variables, such as previous cropping, might also influence variety variability but that the relationship was 

local (differed between regions).  

 

The results of the statistical analysis can be used to optimise use of the ‘Varieties on your Farm’ module of 

RL Plus. In general, geographic location appears to be the most important site variable influencing variation 

in variety yields across the UK. However, for particular varieties, the expected site yield, soil type or soil K 

index may be equally important. 
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Summary 
 

Introduction 

 

Variety trials show that there is variation in variety yields due to interactions between variety and the 

environment, often called genotype by environment interactions. These interactions mean that a predicted 

variety yield for a ‘typical’ site may not be appropriate to a specific site. The variability in trial environments 

can be broken down into differences between years, differences due to site characteristics, and interactions 

between site and year. Variation in variety yields due to year differences can be quantified, but cannot be 

used to predict variety yield at a specific site, due to the uncertainty in forecasting weather. Differences due 

to sites may be due to intrinsic site characteristics that do not change over time (eg. location, soil properties) 

or to crop management practices (eg. date of sowing) over which the farmer has control. If variety variability 

is related to these site variables, then the relationship can be used to give an improved prediction of variety 

yield at a specific site, although the prediction still cannot eliminate uncertainty due to unknown weather. 

The aim of the statistical analysis in this project was to identify variables that explained variation in variety 

yields between sites and build models to describe and predict patterns of variety variability due to site 

differences. 

 

Materials and Methods 

 

Typing soils 
 

Soils data from RL trials included topsoil texture, drainage (free, imperfect, or poor), organic matter, pH, P, 

K, and Mg (the last 3 as indices) and available water capacity data (AWC) were obtained from the SSLRC 

for a subset of sites.  These were used to estimate soil types as defined in the ‘Fertiliser Recommendations 

for Agricultural and Horticultural Crops’ MAFF Reference Book 209 (Anon, 2000).  Five categories of 

mineral soil were differentiated according to texture and depth as follows:  

 

Topsoil texture Drainage 
 free imperfect poor 

 RB209 soil type (for codes, see text) 
peaty loam P - - 
sandy loam S M M 
silt loam Z Z/M* M 
sandy silt loam M M - 
sandy clay loam M/C* C C 
silty clay loam Z Z/C* C 
clay loam M C C 

* judged according to locality 

 

codes being S for light sand soil, A for shallow soil, M for medium soils, C for deep clay soils, Z for deep 

fertile silty soils, O for organic soils and P for peaty soils.  Shallow soils over rock were also identified at 
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sites local to those (e.g. ‘Bridgets’ and ‘Cirencester’) known to have shallow soils, or where subsoil pH was 

low (<5.5).  Organic and peaty soils were identified for the 31% of trials that had organic matter data.  Soils 

types were distributed as follows: shallow (A) 11%, light sand (S) 9%, medium (M) 26%, deep clay (C) 

29%, deep silty (Z) 14%, organic (O) 8%, and peaty (P) 3%. 

 

Droughtedness 
 

Monthly soil moisture deficits (SMDs) were calculated from available water capacities (AWCs), rainfall and 

potential evapo-transpiration (PE), and a summary ‘index’ of droughtedness was derived, based on recent 

research on UK drought effects on wheat from April through to harvest.  AWC was derived from soil type 

(defined as above) as follows: shallow (A) 120mm, light sand (S) 110mm, medium (M) 180mm, deep clay 

(C) 200mm, deep silty (Z) 270mm, organic (O) 180mm, and peaty (P) 250mm.  Monthly SMD was 

calculated assuming that rainfall and PE were evenly distributed through each month.  The drought index 

ranged from 0.0-4.9, and had a median value of 1.0 for winter wheat. 

 

The database 
 

A spreadsheet was constructed of treated yields of winter wheat from 43 varieties across 506 trials 

(Recommended List, National List or BSPB trials) in the UK with harvest during 1992-2002. The data 

included site information collected from the trials, and supplemented with the site location (OS co-ordinates 

either provided or estimated from site names), RB209 soil types, monthly meteorological data and drought 

index derived as above.  The trials selected were required to have good site information and contain at least 8 

of the 43 varieties. Complete, or near-complete, data existed for 249 trials, harvested during 1993-2003.  

These data were used to investigate site factors associated with variation in variety yields. 

 

Data-mining techniques were used to identify environmental variables that explained variation in variety 

yields between sites. This information was used to build models to describe and predict patterns of variety 

variability due to environmental differences.  

 

Data mining 
 

To explore the nature of variety variability as a response to different environments between sites, factor 

analysis models were fitted within a model for variety yields that accounted for all sources of variation. To 

avoid potential confusion between variability due to differences between years and variability due to 

differences between sites, factor analysis models were fitted for data from each year separately. The factor 

analysis model regards yields from different environments as different traits for each variety.  The model 

then represents the large number of environments by a much smaller number of hypothetical factors. 

 



 5

For each year, the factor analysis model fits a regression model to the variety.site interaction effects where 

both the explanatory covariate (the 'factor' of factor analysis) and the regression coefficients are estimated. 

The estimated explanatory covariates represent combinations of environments that maximise variety 

variability. When considered in relation to site characteristics, these explanatory covariates may give insight 

into site characteristics that are related to variation in variety yield.  

 

Modelling variety variability 
 

An extended regression model was constructed to relate site characteristics to variations in variety yield. The 

model used standard linear regression to relate yield to the overall effect of each site variable, but allowed 

variation in the regression intercept and slope for each variety, fitted as random effects. Raw site yield data 

were adjusted to decrease correlation with other variables and improve interpretability. Results from the data 

mining analysis were used to build a preliminary model. The remaining site variables which had sufficient 

data present were converted to categorical variables so that both linear and non-linear responses could be 

detected; then these site variables were each in turn added to the model to check for an interaction with 

variety. A final model was constructed by including all the site variables found to be individually significant, 

then omitting terms to find the best subset.  

 

To investigate whether there was local variation in the relationships, the same modelling process was 

undertaken with two subsets of the data: one encompassing Central, East and Southern England, an area of 

about 300 × 400 km; the other subset in Eastern Scotland, within ~50km of the coast from the Borders to 

Aberdeenshire, an area of 250 × 100 km. Both subsets form contiguous areas with reasonable geographic 

coverage of trial sites.  

 

 

Results 

 

Data mining 
 

Factor analysis models were fitted to all data from individual years from 1998 to 2002. Models with four 

factors were fitted in 1999-2002, with only three factors required in 1998. The percentage of variety 

variability accounted for in total and by each of the estimated factors is shown in Table 1, with the site 

characteristics found to be related to the estimated factors. In each case, variation accounted for by the first 

factor includes the variety main effects. 
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Table 1. Summary of variety variability accounted for by estimated factors in factor-analysis models fitted to 
yield of winter wheat in treated trials with harvest during 1998-2002, with site characteristics related to the 
estimated factors. 
 

% Variance accounted for by factor Harvest 
Year 

Number of 
factors 1 2 3 4 

Total Site characteristics 
related to factors 

2002 4 53.8 10.2 7.6 5.9 77.5 Site yield, longitude, 
latitude, soil pH 

2001 4 48.7 14.6 10.6 7.7 81.6 Site yield, longitude, 
latitude, soil pH, lodging,  
drought index, applied N, 
previous crop 

2000 4 52.1 19.3 12.0 6.1 89.5 Latitude, soil pH 
1999 4 71.0 10.5 7.5 5.4 94.4 - 
1998 3 72.8 14.0 5.0 - 91.8 Site yield, longitude, soil 

Mg index 
 

Table 2. Site variables tested in a random regression relationship for association with variety variability, in a 

model containing variety interactions with site yield and location.  

 
Site variable Category boundaries in 

definition of the variable 
Evidence of interaction 

with variety? 
Soil type AS, MOP, CZ Yes 
Altitude 50m, 100m No 
Sowing date 7 Oct, 15 Oct, 30 Oct Yes 
Soil  AWC 150, 225 No 
Soil pH 6.25, 7.75 No 
Soil P index 1.5, 3 No 
Soil K index 1.5, 3 Yes 
Drought index 0.1, 0.5, 1 No 
Previous crop Non-cereals, cereals No 
Soil Mg index 1.5, 3 No 
N applied 200,225 No 

 

Modelling variety variability 
 

The data mining analysis strongly indicated site yield as a source of variation in variety yield. However, raw 

site average yields were confounded with site variables such as previous cropping, date of sowing and 

harvest year. The raw site yields were adjusted to predict expected site yields in a typical year for a first 

cereal crop and normal sow date. This allowed the effects of site variables to be more easily distinguished, 

and corresponded more closely with information available when predictions are made. Latitude and 

longitude were also strongly indicated as important variables from the data mining analysis. As the two 

variables together summarise average climatic conditions, the model was constructed in terms of a two-

dimensional smooth surface in terms of latitude and longitude for each variety, fitted using a smoothing 

spline. This smooth surface represented large-scale trend in variety response to climate. It was expected that 

there might also be more local trend in variety yields, and a spatial model with exponential correlation was 

fitted to represent this small-scale trend.  
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Table 2 shows the definition of the additional site variables tested and whether evidence of an interaction 

with variety was found. Evidence of an interaction was found with soil type, date of sowing and soil K index, 

with the variety response associated with specific categories: soil type AS (shallow or sandy), sowing date 

before 7 October or after 30 October, and soil K index <1.5. On fitting a joint model containing variety 

interactions with location, expected site yield, and the additional variables shown to be associated with 

variety variability, it was found that not all of the additional variables were required and a final reduced 

model was constructed.  

 

The final model contained terms to account for the overall effect of the following variables: 

• expected site yield (in average year with previous non-cereal crop, normal sow date) 

• previous crop (non-cereals, cereals) 

• date of sowing ( < 7 Oct, 7-15 Oct, 15-30 Oct,  >30 Oct) 

• geographic location (latitude, longitude) 

• shallow or sandy soil 

• low soil K index 

with terms used to model variety variability: 

• variety main effect (variety) 

• variety  × geographic location interaction, ie. two-dimensional spline, large-scale trend 

(variety.spl(location)) 

• variety interaction with expected site yield (variety.siteyld) 

• variety interaction with late sow dates, ie. after 30 Oct (variety.latesown) 

• variety interaction with shallow/sandy soils (variety.soilAS) 

• variety interaction with low soil K index (variety.lowK) 

• variety interaction with site, ie. residual variety.site variation unaccounted for by other 

environmental variables 

• variety variation between years (variety.year) 

• variety interaction with location within year, fit using spatial model, ie. within-year short-scale trend  

(variety.year.spatial(location)) 

• variety interaction with trial, ie. residual variety.site.year variation 

and with additional terms in the model used to account for variation due to year, region, site and trial and 

their interactions. 

 

Some of the variety interaction terms could be used to predict variety yields at given sites, but others could 

not be used for prediction. For terms associated with variety variability, Table 3 shows the variance 

component associated with each term, whether it could be used for prediction and an estimate of the average 

percentage of the total variety variation accounted for by the term. Variety main effects accounted for 43% 

of the variety variation in the model, with interactions with site accounting for 21% and interactions with 
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year accounting for 36%. Although this model accounted for most of the variety × site variability, the year-

to-year variation was still unpredictable. Predictions from the model, appropriate to a notional 'typical' year, 

may therefore tend to be inaccurate for any particular year. However, the model could predict which varieties 

tended to prefer which environments in a typical year. 

 

 

 

 

Table 3. Variety interaction terms in the final model. Terms are classified according to whether they can be 
used to predict variety yield at a new site (given appropriate site information) and the average percentage of 
the total variety variation accounted for by each term. 
 

Model term Type of term % variety variation 
accounted for 

Variety Predictive 43.3 
Variety.spl(location) Predictive 15.6 
Variety.siteyld Predictive 2.0 
Variety.latesown Predictive 0.4 
Variety.soilAS Predictive 0.5 
Variety.lowK Predictive 0.4 
Variety.site Non-predictive 1.9 
Variety.year Non-predictive 4.5 
Variety.year.spatial(location) Non-predictive 13.7 
Variety.trial Non-predictive 17.8 

 

The three largest sources of variety variability (after the main effects) were the large-scale location trend, 

small-scale location trend and noise (variety.trial). The large-scale location trend could be used in prediction 

and may represent variety response to large-scale changes in climatic conditions across the UK. The 

following varieties showed strong evidence of large-scale location trend with other factors held fixed: 

Soissons, Hereward, Scorpion 25, Mercia, Hunter, Claire, Malacca, Tanker, Madrigal, Rialto and Spark. 

 

For the small-scale location trend, the estimated spatial correlation parameter indicated strong correlation 

(0.89) between locations 20km apart, dropping to 0.75 for locations 50km apart and 0.56 for locations 

100km apart. This suggests that micro-climates (~50km diameter) existed within which particular varieties 

performed better (or worse) than expected. However, this small-scale pattern appeared to be inconsistent 

across years, and so could not be used to predict relative variety yield at a given site. The variety.trial 

interaction term represented random variation in variety response across trials and could be regarded as 

random noise, in that it had no apparent pattern and would be unpredictable for new sites or future years. 

 

Although the remaining site variables each accounted for only a small percentage of the variety variation, 

each variable showed evidence of a large effect on the yield of one or more varieties, and should not be 

ignored when predicting site yield for these varieties. Varieties Scorpion 25, Robigus, Xi 19 and Tanker had 

a positive interaction with expected site yield, ie. these varieties showed a larger increase in yield than 
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average as overall site yield increased. In contrast, varieties Hereward, Mercia, Spark, Soissons, Malacca and 

Shamrock had a negative interaction with expected site yield,  ie. these varieties showed a smaller increase in 

yield than average as overall site yield increased. The variety interaction effects with expected site yield 

showed a strong correlation with overall variety yield, indicating that high-yielding varieties tended to give a 

better response to high-yielding sites. Variety Riband had a negative interaction with late sowing, indicating 

a worse response then average to these conditions. Varieties Hereward and Rialto had a negative interaction 

with shallow or sandy soils, while Deben had a positive interaction. Finally, variety Hereward had a positive 

interaction with low soil K index. 

 

Analysis of the two subsets (Central, East & South (CES) England or East Scotland) was used to examine 

whether effects were consistent across the whole UK. In both cases, there was no evidence of either large-

scale or small-scale smooth location trend in variety response. The large-scale trend was not expected in 

these smaller subsets. The small-scale trend was expected to be detected, but there was possibly not enough 

information to estimate the spatial parameters within the subsets. Where variety interaction terms occurred in 

models for both the full data and subsets, the variance components were of similar size. For the CES England 

subset, variety yields were found to be related to position along a NW-SE axis within the area, expected site 

yield, late sown crops, sandy/shallow soils, previous crop and soil pH. For the East Scotland subset, variety 

yields were found to be related to latitude, expected site yield and late sown crops. However note that there 

were very few sandy/shallow soils or late sow dates within this subset. There was a high correlation between 

the variety main effects and variety.siteyield interactions obtained from the two subsets.  

 

Discussion 

 

The statistical analysis identified site variables associated with variation in relative variety yields between 

sites. These site variables were used to improve predictions of variety performance on a given site using 

information readily available to the grower. The subset analyses indicated that although the relationship of 

variety yield with expected site yield held across the UK, site variables such as previous crop and soil pH 

might have a more local interaction with variety. Further work and an extension of the methodology are 

required to detect local influence of site variables on variety yield. 

The results of the statistical analysis can be used to optimise use of the ‘Varieties on your Farm’ module of 

RL Plus. In general, geographic location appears to be the most important site variable influencing variation 

in variety yields across the UK. However, for particular varieties, the expected site yield, soil type or soil K 

index may be equally important. 
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Technical Report: Modelling relative variety performance in terms of site 

characteristics 
S J Welham & R Thompson, Rothamsted Research 

 

1. Introduction 
 

Within the UK, systems of testing over several years and many locations have been used to decide which 

varieties of arable crops should be adopted onto the National List and Recommended List, and summary 

results of the trials are published to guide growers in their choice of varieties. Traditionally, the summary 

results indicate average variety performance over several years of trials. However, Talbot (1984) 

demonstrated that substantial genotype by environment interaction existed in Recommended List trials. The 

genotype by environment interaction can be decomposed into variety interactions due to differences between 

years, differences between locations, and interactions with combinations of location and year. Genotype by 

year interactions can be quantified, but are not helpful in predicting future variety yield, due to the 

uncertainty in forecasting weather. Interactions due to trial locations may be due to intrinsic site 

characteristics that do not change over time (eg. geographic location, soil properties) or to crop management 

practices (eg. date of sowing) over which the grower has control. If variety by location interactions could be 

related to these site variables, then that relationship could be used to give an improved prediction of variety 

yield at a specific site, although the prediction still cannot eliminate uncertainty due to unknown weather. 

More recently, internet-based tools such as RL Plus (http://www.hgca.com) have made it possible 

for growers to estimate variety performance from specified subsets of trials. Whilst this added flexibility may 

lead to more appropriate variety predictions, it is also possible that these results could be misleading if the 

subsets specified become too small for reliable inference or if there was substantial correlation between site 

characteristics. The aim of the work described in this paper was to use a large data set containing variety 

means from trials at different locations across the UK during 10 years to identify site characteristics that 

explained genotype by location interactions and to build models to describe and predict site-specific variety 

yields. The results of these analyses can be used to inform growers of important site characteristics and 

improve the design of tools such as RL Plus. 

The problem of modelling variety by location interactions in terms of site characteristics has been 

previously examined, most recently by Theobald et al. (2002) and Denis et al. (1997, 1998). Denis et al. 

(1998) considered the use of multiple site covariates, but fit all variety.covariate interactions as fixed model 

terms. Denis et al. (1997) also used multiple site covariates with fixed variety.‘site covariate’ interactions, 

but also allowed genotype covariates, and fitted the variety.‘genotype covariate’ interactions as random  to 

allow for correlation and heterogeneity between varieties. Theobald et al. (2002) used a Bayesian approach 

with site covariates so that variety effects and interactions could be considered as random. The approach in 

this paper extends the standard linear mixed model used for analysis of variety trial data (see for example 

Talbot, 1984) to fit variety effects and interactions with site covariates as random regression terms in the 

model. We also consider the problem of including two-dimensional site variables, such as geographic 
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location, within the model. We accommodate variety interactions with location using thin-plate splines 

within the mixed model framework to account for large-scale trend, and allowing spatial correlation between 

locations to account for small-scale trend. 

Section 2 describes briefly the data set used in the analysis. Section 3 describes the methods and 

results for the exploratory data analysis phase, which are used to develop the random regression models 

presented in section 4. Finally, in section 5 we discuss the merits and implications of our approach, and 

consider further work that could be done to improve the model and methods. 

 

2. Data set 
 

2.1 Classifying sites for soil type 
 

The aim was to provide a categorisation of soils throughout the UK which (i) would be easily recognisable to 

the cereals industry, (ii) could be identified for most or all trials from the RL data (1992-2002), and (iii) had 

the best chance of relating to cereal crop performance, and hence may identify interactions with variety, or 

variety type.  The data from RL trials had seven columns on soils: topsoil texture, drainage (free, imperfect, 

or poor), organic matter, pH, P, K, and Mg (the last 3 as indices).  In addition, available water capacity data 

(AWC) were obtained from the SSLRC for about 60% of sites.  The most widely recognised soil 

categorisation in current use by the industry is defined in the ‘Fertiliser Recommendations for Agricultural 

and Horticultural Crops’ MAFF Reference Book 209 (Anon, 2000).  This provides five categories of mineral 

soil, differentiated according to texture and depth, plus organic and peat soils as follows: light sand soil (S), 

shallow soil (A), medium soil (M), deep clay soil (C), deep fertile silty soil (Z), organic soil (O) and peaty 

soil (P).  This categorisation is to be used in future variety testing, and all new sites, from 2003, are being 

classed accordingly.  Hence RB209 soil types were adopted and estimated from RL trials data, as shown in 

the following table. 

 

Topsoil texture Drainage 
 free imperfect poor 

 RB209 soil type (for codes, see text) 
peaty loam P - - 
sandy loam S M M 
silt loam Z Z/M* M 
sandy silt loam M M - 
sandy clay loam M/C* C C 
silty clay loam Z Z/C* C 
clay loam M C C 

* judged according to locality 

 

It was possible to categorise all sites in this way, with the following modifications.  Shallow soils over rock 

(coded A) were identified where sites (e.g. ‘Bridgets’ and ‘Cirencester’) or grid references local to these sites 

are known to have shallow soils.  A few sites with AWCs much less than indicated by their topsoil texture 

(or with low pH values - see below) were also reclassified as shallow.  Of the 31% of the treated winter 
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wheat trials that had organic matter data, any soil with 9-16% organic matter, and any sandy loam with 5-9% 

organic matter, was classed as organic (O).  Soils with 17% organic matter or more were classed as peaty 

(P).  (Since 69% or soils were not open to this check, it is likely that some organic soils have not been 

recognised.)  The three trials with topsoil pH<5.5 (all Scottish, in 1997) were also classed as shallow (A).  It 

should be noted that 3 sites (one with 3 trials) with soil P index=0, and five sites with soil K index=0 were 

not excluded from the data.  About 60 trials with no soil records were classified by association with sites of 

the same name.  At a few sites where topsoils were not consistent, and are known to be variable, past 

cropping was used to adjudicate on soil type, it being unlikely that root crops would be grown on clay soils 

in the west of England!  Soils types, according to RB209, were thus distributed as follows: 

 

Soil type Sites 
 % 

Shallow (A) 11 
Light sand (S) 9 
Medium (M) 26 
Deep clay (C) 29 
Deep silty (Z) 14 
Organic (O) 8 
Peaty (P) 3 

 

2.2 Classifying sites for droughtedness 
 

Various drought indices have been devised previously in both the USA (Palmer 1965) and the UK 

(Thomasson 1979).  The method adopted here was based on the latter, but modified according to recent 

research, as follows (where AE is actual evapotranspiration and PE is potential evapotranspiration, as 

estimated by the Met. Office): 

1. Soil moisture deficit (SMD) was calculated for each month, using monthly mean meteorological data, 

and assuming AE = 30% x PE before April, AE = 50% x PE during April and AE = PE (i.e. full crop 

cover) through May, June & July. 

2. Working from the findings of Foulkes et al. (2001) it was assumed that drought effects would occur 

when  

− SMD in May = 0.5 x AWC  

− SMD in June & July = 0.65 x AWC  

3. The extents (in mm) to which SMDs for each month exceeded these levels were added, and then divided 

by 100 to give a scale which, for almost all sites, ranged from 0-4 (although greater values were 

possible). 

Note that only monthly met data were available, so it has been assumed that rainfall and evapo-transpiration 

were evenly distributed through each month.  If most of the rain fell (for example) at the end of any month, 

the drought effect will inevitably have been underestimated, and vice versa.   

AWCs used were not those obtained from SSLRC but were estimated from soil types as follows:  
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Soil type & code Typical 
texture 

Stoniness 
 

(%) 

AWC # 
 

(%) 

Depth 
 

(cm) 

Total 
AWC 
(mm) 

  topsoil subsoil topsoil subsoil topsoil subsoil topsoil subsoil  
 Shallow A ZCL ZC 0 25 18 15 20 100 120 
 Light sand S LS S 0 15 12 8 30 150 110 
 Medium M SCL SC 0 0 17 15 25 120 180 
 Deep clay C CL C 0 0 18 15 20 130 200 
 Deep silty Z ZL ZL 0 0 22 19 30 140 270 
 Organic O OSCL SC 0 0 18 15 25 120 180 
 Peaty P PL C 0 0 30 18 30 120 250 

# modified from MAFF / ADAS Soil Texture leaflet 895. 

 

Drought index values ranged from 0.0-4.9, and had a median value of 1.0 for winter wheat, 0.9 for oilseed 

rape, and 0.7 for spring barley. 

 

2.3 Collation of site data 
 

A spreadsheet was constructed from treated yields (t/ha) of winter wheat from 43 varieties across 506 trials 

(Recommended List, National List or British Society of Plant Breeders trials) in the UK with harvest during 

1992-2002. Yield values were the predicted variety means using REML estimation for a mixed model with 

fixed variety effects and random terms to account for the block structure within the trial. Trials used 2, 3 or 4 

replicates. The residual mean square error from each trial analysis was also stored. Site information collected 

from the trials included trial location (Ordnance Survey grid reference either provided for the trial or 

estimated from site names), altitude, date of sowing, soil pH, indication of soil type, index values for soil P, 

K and Mg status and amount of nitrogen applied.  Missing values of site location were replaced where 

possible using knowledge of trial sites. These values were supplemented with soil type, redefined according 

to MAFF RB209 (Anon, 2000) as above, soil available water capacity (AWC) and drought index values 

derived as above.  Trials included in the statistical analyses were required to contain at least 8 of the 43 

varieties. Within this subset, complete or near-complete site data existed for 249 trials with harvest during 

1993-2003.  

 

3. Exploratory analysis: factor analysis models 
 

3.1 Methods 
 

Factor analysis models were fitted within a mixed model for variety yields, as described by Smith et al. 

(2001, 2002), to explore the nature of variety variation as a response to different environments between sites. 

Models were constructed for data from each year 1998-2002 separately in order to avoid potential confusion 

between variability due to differences between years and variability due to differences between trial sites. In 

this context, we regard yields from different trials as representing different traits for each variety, and model 

the covariance structure of the variety.trial interaction as separable, using a factor analysis model between 

trials within varieties, and assuming independence between varieties (see Smith 2001 for details).  The factor 
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analysis model represents the large number of environments by a much smaller number of hypothetical 

factors that we aim to interpret in terms of site characteristics. For each year, the factor analysis model 

effectively fits a linear regression model to the variety.trial interaction effects where both the explanatory 

covariate (the ‘factor’ of factor analysis) and the regression coefficients are estimated. The within-year 

model could be written as: 

ijijiij eutcy +++=      (1) 

where yij is the mean yield for variety i (i=1…m) from trial j (j=1…p) in the given year, c is a constant term, 

tj represents the effect of trial j, uij represents the interaction of  variety i and trial j, and eij represents error in 

the variety mean from the within trial analysis. Note that all effects are specific to the year under 

consideration. The constant and trial effects were fitted as fixed, and the variety.trial interaction and error 

were fitted as random. The variety.trial interaction was fitted assuming a separable structure, with 

independence between varieties, and a factor analysis model with up to 4 factors across trials. For k factors, 

the factor analysis model is defined by 

ij

k

r
irjrij fu δλ∑

=

+=
1

 

where λjr is the loading for trial j in factor r, and fir is the corresponding score for variety i in factor r. Using 

the analogy with linear regression, λr = ( λ1r … λpr )T is the estimated covariate, and fir is the corresponding 

(random) regression coefficient for variety i, with residual δij. In addition, it is assumed fr = (f1r … fmr )T ~ 

N(0, Im) with  fr, fs independent for r≠s and δj = (δ1j … δmj )T ~ N(0,ψjIm) with δj, δl independent for j≠l, and 

fr, δj independent for all r, j. It then follows that for ui = ( ui1 … uip )T,  

( ) ΨΛΛ += T
iuvar  

where Λ is a p× k matrix with entries [Λ]jr=λjr and Ψ=diag( ψ1 … ψp ), with ui, uj independent for i≠j. This 

covariance model allows for heterogeneity in the interaction effects between trials. Within each variety, the 

correlation between interaction effects from different trials reflects the overall similarity of variety responses 

between trials, and the variance of the effects depends on heterogeneity due to the estimated factors, λr, and 

on the site specific variances, ψj. Because the data consisted of predicted variety means from each trial, plot 

error from the within-trial analysis and the variety.trial interaction become confounded. The plot error 

consists of noise that we wish to ignore, whereas we intend to model the variety.trial interaction. To separate 

the two terms, we approximate the plot error contribution for each trial by the trial residual mean square 

( 2
jpσ̂ ) divided by the variety replication used in the trial (nj) and use a fixed diagonal variance matrix with 

( ) jpij n/ˆe
j

2var σ=  

Model (1) was fitted to data from each year by the REML method using the XFA option in ASREML 

(Gilmour et al., 2002). Following analysis, the estimated factors were rotated to the principal components 

representation (see Smith et al., 2001). The rotated factors then represented combinations of trials that 

maximised variety.trial interaction. When considered in relation to site characteristics, these explanatory 

covariates might give insight into site characteristics related to variation in variety yield. Rotated loadings 
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were therefore plotted again the available site variables and simple linear regression was used to investigate 

these relationships. All post-processing was done using the Genstat statistical package (Payne, 2000). 

 

3.2 Results 
 

Factor analysis models were fitted to data from all trials with at least 8 varieties present within individual 

years from 1998 to 2002. Earlier years could not be used because the amount of data decreased rapidly. For 

1997 and earlier, data was available for less than 20 varieties, compared with 38 varieties in 2000. Models 

with four factors were fitted in 1999-2002, with only three factors required in 1998. Following Smith et al. 

(2001), we calculated the percentage of genetic (variety) variation accounted for by rotated factor r as  

( )ΨΛΛ +×∑
=

'~p

j
jr trace100

1

2λ  

where λ~  represents the rotated loadings. The percentage of variety variation accounted for in total and by 

each of the estimated factors in each year is shown in Table 1. In each case, variation accounted for by the 

first factor includes the variety main effects. Site characteristics related to the estimated factors could be 

found in all years except 1999. Table 2 shows the site variables with adjusted R2 value of >20% in a simple 

linear regression relating the rotated factor to the site variable. 

 

Table 1. Summary of data sets with percentage of variety variation accounted for by estimated 
factors in factor-analysis models fitted to yield of winter wheat in treated trials with harvest 
during 1998-2002. 

 
 

Number of  
% Variance accounted for 

by factor 
 
 
Harvest Year varieties trials observations factors 1 2 3 4 

 
 

Total 
2002 35 29 948 4 53.8 10.2 7.6 5.9 77.5 
2001 36 34 713 4 48.7 14.6 10.6 7.7 81.6 
2000 38 42 767 4 52.1 19.3 12.0 6.1 89.5 
1999 29 37 587 4 71.0 10.5 7.5 5.4 94.4 
1998 23 43 544 3 72.8 14.0 5.0 - 91.8 

 

  

 

4. Random regression models 
 

4.1 Methods 
 Within the dataset, although trials were sited in similar areas across years, these could be some 

distance apart. There was therefore a need to define locations to represent groups of trials in close proximity, 

which could be considered to experience the same climatic conditions. Locations were therefore defined 

using hierarchical cluster analysis on a similarity matrix constructed using Euclidean distances, using the 

complete linkage (furthest neighbour) clustering method, with the clustering threshold set so that sites within 
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the same cluster (location) were <15km apart. This resulted in 56 location groups. Trial sites and their 

allocation to locations are shown in Figure 1. 

 

 
Table 2. Site characteristics found to be correlated with the rotated factors estimated from model 
(1) for harvest years 1998-2002, with sign of correlation and adjusted R2 value from simple linear 
regression of rotated factor on the site variable. 

 
Harvest 
Year 

Rotated 
factor 

Site characteristics 
related to rotated factor  

Sign of 
correlation 

Adjusted 
R2 (%) 

2002 1 
2 
4 
4 
4 

Site yield  
Site yield  
Longitude 
Latitude 
Soil pH 

+ 
+ 
- 
+ 
- 

31 
25 
41 
30 
31 

2001 1 
1 
1 
2 
2 
2 
2 
4 
4 

Site yield 
Previous crop 
Soil pH  
Longitude  
Latitude 
Soil pH  
Drought index 
Applied N 
Lodging 

+ 
- 
+ 
- 
+ 
- 
- 
+ 
- 

21 
20 
23 
30 
28 
38 
28 
21 
20 

2000 1 
1 

Latitude 
Soil pH 

+ 
- 

22 
31 

1998 1 
1 
2 

Longitude 
Site yield 
Soil Mg index 

+ 
+ 
- 

26 
25 
23 

 

Figure 1. Trial sites across the UK present in the statistical analysis, using OS grid coordinates at 
the scale 1 unit = 0.1km. Symbols and shades are used to group sites considered to be within the 
same location and locations have a diameter of <15km. 
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The factor analysis models strongly indicated site yield as a source of variation in variety yield. 

However, raw site average yields were strongly affected by site variables such as previous cropping, date of 

sowing and harvest year. The variety mean yields were used to predict expected site yields in a typical year 

for a first cereal crop and normal sow date. This decreased the correlation between site variables, and 

provided values that more closely corresponded with information available to the grower when predictions 

are required. The expected site yield values were obtained from a variance components model that accounted 

for type of previous cropping and date of sowing plus all sources of variation in the data, and could be 

written

)jk(ir)jk(irijkikij)jk(rjkkji)r(t)r(sijk e)vT()vYl()vl()vY(T)Yl(lYvdpcy ++++++++++++=  (2) 

where yijk represents the trial mean yield from variety i (i=1…43) in harvest year j (j=1993…2002) at 

location k (k=1…56). Several trials might occur within the same location either within or across years, and 

trials are numbered as r=1…429 across years and locations, given by r(jk). Then c is a constant term in the 

model, s(r) indicates whether trial r is a first cereal crop (s(r)=1) or preceded by a cereal crop (s(r)=2) and 

ps(r) is the effect of previous cropping, t(r) indicates the date of sowing for trial r as a categorical variable 

(t(r)=1: <7 Oct, 2: 7-15 Oct, 3: 15-30 Oct, 4: >30 Oct) and dt(r) is the effect of the sow date category. The 

constant, previous crop and sow date effects are all fitted as fixed terms in the model, with the remaining 

terms fitted as random. The main effects of variety i, year j, location k and trial r are represented by vi, Yj, lk 

and Tr and are assumed mutually independent with associated variance components 2
iσ ,  2

jσ , 2
kσ  and 2

rσ  

respectively. Interactions of year.location, variety.year, variety.location, variety.year.location and 

variety.trial follow in the obvious notation for both effects and variance components, with all random effects 
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assumed mutually independent.  As for the factor analysis model, plot error from the within-trial analysis is 

represented by er with a fixed diagonal variance matrix with values 

( ) rpir nˆe
r

2var σ=  

The model was fitted by REML estimation using the mixed model facilities in Genstat (Welham & 

Thompson, 2000). Expected site yields for a first cereal crop sown during 7-15 October in an average year 

for an average variety were predicted for each trial from the fitted model using the methods of Welham et al. 

(2004). The expected site yield for trial r is denoted zr. 

Model (2) can be regarded as the baseline model for the variety mean yields. The aim of the 

statistical modelling in this section is to explain the variety.location and variety.trial interactions in terms of 

site variables and produce a model to produce improved predictions of relative variety yield at a specific site. 

For convenience, we abbreviate model (2) as 

irijki)r(t)r(sijk euvdpcy +++++=     (3) 

where uijk represents the composite term 

)jk(irijkikij)jk(rjkkjijk )vT()vYl()vl()vY(T)Yl(lYu +++++++=  

with definitions as above. 

Expected site yield was added to the baseline model (2) via an overall regression term representing 

the average yield response to changes in expected site yield, and random regression terms for the variety 

responses to expected site yield. The random regressions assume that the regression intercept and slope vary 

according to a bivariate normal distribution across the set of varieties, with variance and covariance 

parameters to be estimated. Use of a random rather than fixed interaction has the advantage that the predicted 

variety response to site yield then has minimum mean square of prediction. The model including expected 

site yield then takes the form 

irijkrziirz)r(t)r(sijk euzwvzadpcy +++++++=     (4) 

where az is a fixed parameter representing the overall response in treated yield to a unit increase in expected 

site yield, and wzi is a random parameter representing the deviation in  response to a unit increase in expected 

site yield for variety i, with 

( )2432

2

43 0N
0
0

N ΣII
w
v

z

⊗=

















⊗
















,,~

zvz

vzv

σσ
σσ

 

for wz = (w1 … w43 )T. The variety effects vi then represent deviations in the intercept for variety i. The 

covariance parameter σvz allows correlation in variations between intercept and slope for each variety and 

makes the model invariant to changes of origin in the regression variable. 

Latitude and longitude were also strongly indicated as important variables from the factor analysis 

models. As the two variables together summarise average climatic conditions, it was decided to build the 

model in terms of a two-dimensional smooth surface in terms of latitude and longitude for each variety, fitted 

using a smoothing spline. Let the OS co-ordinates of trial r be represented by (x1r, x2r) where x1r is the 

latitude and x2r is the longitude. The definition of the two-dimensional smoothing spline is given in Appendix 
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A, and requires definition of a set of knots. The knots were chosen to be representative of the trial locations 

and were determined as for the location grouping, but with the clustering threshold set to 70km. This gave 27 

groups, and the 27 group average locations were used as the set of knot points. The two-dimensional spline 

term could then be added to model (4): 

irijkijj
j

rjririrzii

rrrzrtrsijk

euExwxwzwv

xaxazadpcy

+++++++

++++++=

∑
=

)(
24

1
2211

2211)()(

εδ
   (5) 

where Erj represents the rjth element of matrix Ex defined in appendix A, δ = (δ1 … δ24)T are random effects 

associated with an overall smooth response to location, and  εi = (εi1 … εi24)T are random effects associated 

with the smooth response to location for variety i, with 

), N(0,~), N(0,~ s2s1 GεGδ 2
si

2
s σσ  

and δ, εi mutually independent for all i=1…43 and  εi, εj mutually independent for i≠j. In addition, the 

random coefficients (vi, wzi, w1i, w2i) then have a joint distribution with zero mean and an unstructured 4×4 

covariance matrix Σ4, with 10 unknown parameters, ie. for wj = ( wj1 … wj43 )T, j=1,2 then 

( )443

2

1

0N ΣI

w
w
w
v

⊗



















,~z  

The smooth spline surface was designed to represent large-scale trend in variety response to climate. 

It was expected that there might also be more local trend in variety yields, and a spatial model with 

exponential correlations was fitted to represent this small-scale trend. The exponential correlation model 

assumes correlations of the form φd(r,s) between locations r and s, where d(r,s) represents the Euclidean 

distance between the two locations  and φ is a parameter to be estimated with | φ |<1. Two forms of the local 

spatial model were tried, the first model fitted spatial correlations across locations within varieties using the 

variety.location interaction, the second model fitted spatial correlations across locations within varieties and 

years using the variety.year.location interaction. The fit of the two models was compared using the residual 

log-likelihood of the fitted models, and the model with the highest log-likelihood was chosen. 

 There was little consistent evidence from the factor analysis models to link other site variables with 

variety by location interactions, and so each site variable was considered in turn to see if it could be used to 

improve the model. The remaining site variables were redefined as categorical variables, so that both linear 

and non-linear interactions with variety could be detected. Each categorical site variable in turn was added 

into model (5) as a fixed term, to represent the overall effect of each category, then as a random interaction 

with variety so that any interaction could be detected. The random interaction was fitted using either a 

common variance parameter or separate variance parameters for each level of the categorical variable. Fitting 

separate variance parameters indicated whether the interaction was associated with specific categories. The 

two random interaction models were compared to the model without the random interaction using -2 × 

difference in residual log-likelihood, and comparing this to a mixture of χ2 distributions according to the 
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results of Stram and Lee (1994). A final model was constructed by including all the site categorical variables 

found to be individually significant, then omitting terms to find the best subset, again using the change in 

residual log-likelihood to check for improvements in the model.  

To investigate whether there was local variation in the relationships, the same modelling process was 

undertaken with two subsets of the data. The first subset was defined to lie within latitudes 1000-4000 and 

longitude 3000-7000, using the OS grid co-ordinates shown on Figure 1. This area encompassed Central, 

East and Southern (CES) England, an area of about 300 × 400 km and included 2320 data values. The other 

subset covered Eastern Scotland, within ~50km of the east coast between latitudes 6000-8500, an area of 250 

× 100 km containing 995 data values. Both subsets formed contiguous areas with reasonable geographic 

coverage of trial sites. 

 All models were fitted by REML estimation of variance parameters using either the mixed model 

facilties in GenStat (Payne, 2000), or the program ASREML (Gilmour et al., 2002). 

 

 

 

4.2 Results 
 

The estimated variance components from model (2) are shown in table 3, labelled according to the symbolic 

form of the model: 

 fixed  ~  constant + prevcrop + fsowdate 

 random  ~  variety + year + location + year.location + trial + variety.year  + variety.location +  

      variety.year.location + variety.trial + ploterror 

 var(ploterror) = diag[ rp n
r
/ˆ 2σ ; r=1…429 ] 

where all variable names indicate factors, and the variance matrices for individual terms are identity matrices 

scaled by a variance component unless indicated otherwise. There were large components of variance due to 

years, locations, the year.location interaction and trials, reflecting patterns in variation of overall trial yield. 

The presence of a large location component indicated similarity between trials within the same geographical 

location, and justified the use and definition of this term. However, the large trial variance component 

indicated that there was also substantial variation between trials within locations. 

 

Table 3. Estimated variance components from model (2) without site variables, model (6) with 
site variables for geographic location and expected site yield, and model (7), the final fitted 
model. 
 

Estimated variance component from  
Model term Model (2) Model (6) Model (7) 
year .5375 .5010 .5027 
location .5420 0 0 
year.location .5785 .0599 .0631 
trial .6596 .0550 .0536 
variety .1629 .1501 .0015 
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variety.lin(long) - .0016 .0015 
variety.lin(lat) - .0041 .0044 
variety.lin(siteyield) - .0048 .0048 
variety.spl(lat,long) - .2325 .2249 
variety.latesown - - .0090 
variety.soilAS - - .0073 
variety.lowK - - .0075 
variety.year .0255 .0150 .0152 
variety.location .0192 .0088 .0066 
variety.year.location .0408 .0457 .0466 
variety.trial .0603 .0630 .0606 

 

 

 After adding random regressions for expected site yield, latitude and longitude and the two-

dimensional spline terms to fit model (5), it was discovered that the overall spline term had a zero variance 

component and so was dropped from the model. On investigating the need for local spatial models, it was 

found that the model did not converge when fitting spatial correlation within the variety.location term, but 

that the residual log-likelihood increased substantially when spatial correlation was fit across locations 

within the variety.year.location term. The symbolic form of the fitted model could then be written as: 

 fixed  ~  constant + prevcrop + fsowdate + lin(siteyield) + lin(lat) + lin(long) 

 random  ~  variety + variety.lin(long) + variety.lin(lat) + variety.lin(siteyield) + variety.spl(lat,long)  

 + year + location + year.location + trial + variety.year  + variety.location  

 + variety.year.location + variety.trial + ploterror 

 var(ploterror) = diag[ rp n
r
/ˆ 2σ ; r=1…429 ] 

 var( variety, variety.lin(long), variety.lin(lat),  variety.lin(siteyield) ) = I43 ⊗ Σ4 

 var( variety.year.location ) = I43 ⊗ I10 ⊗ exp(φ)       (6) 

where lin(x) indicates a linear function of the variable x after mean correction, and spl(x,z) indicates a two-

dimensional spline in terms of variables x and z, as defined in Appendix A, exp(φ) represents an exponential 

correlation function with parameter φ, siteyield represents the expected site yield values, and lat, long 

represent the latitude and longitude in terms of OS grid co-ordinates for each trial. The estimated variance 

parameters for model (6) are shown in table 3. Including the expected site yield as a covariate reduced the 

location, year.location and trial variance components substantially. The year component was largely 

unaffected because the expected site yield values were adjusted to average over year effects. The variety.year 

component was reduced as a side-effect of introducing spatial correlation within the variety.year.location 

interaction. The variety.location component was reduced due to the interaction of variety interactions with 

expected site yield and the spine term representing large-scale trend. Within the small-scale spatial trend 

term, the spatial correlation parameter φ was estimated as 0.58, indicating a correlation of 0.58 between trials 

100km apart.  Model (6) was then the best model that could be found for variety interactions in terms of the 

expected siteyield and geographic location variables and was used as a baseline for testing whether other site 

variables could be used to improve the model. 
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Table 4 shows the definition of the additional site variables tested, the change in log-likelihood and 

whether there was evidence of an interaction with variety.  

 
Table 4. Site variables tested in a random regression relationship for association with variety 
variability, in a model containing variety interactions with site yield and location.  

 
Increase in log-likelihood on adding 

interaction with 
Site variable Category boundaries 

in definition of the 
variable 

Evidence of 
interaction with 

variety? common variance separate variance 
for each category 

Soil type AS, MOP, CZ Yes 0 2.98 
Altitude 50m, 100m No 0 0.18 
Sowdate 7 Oct, 15 Oct, 30 Oct Yes 0.64 4.68 
Soil  AWC 150, 225 No 0.63 0 
Soil pH 6.25, 7.75 No 0 0 
Soil P index 1.5, 3 No 0 0.18 
Soil K index 1.5, 3 Yes 0.09 2.67 
Drought index 0.1, 0.5, 1 No 0.39 0.74 
Previous crop Non-cereals, cereals No 0.84 0.13 
Soil Mg index 1.5, 3 No 0 0.01 
N applied 200, 225 No 0.04 0.21 

 

 

Evidence of an interaction was found with soil type, date of sowing and soil K index, with the variety 

response associated with specific categories: soil type AS (shallow or sandy), sowing date before 7 October 

or after 30 October, and soil K index <1.5. New variables were calculated to represent the single categories, 

taking value 1 for units within the category and zero otherwise. On fitting a joint model containing variety 

interactions with location, expected site yield, and the additional variables shown to be associated with 

variety variability, it was found that the early sowdate variable did not improve the model and so was 

omitted. The variables ‘late sowdate’, ‘soil type AS’ and ‘low K index’ were retained to give a final model, 

in symbolic form: 

 fixed  ~  constant + prevcrop + fsowdate + lin(siteyield) + lin(lat) + lin(long) + soilAS + lowK 

 random  ~  variety + variety.lin(long) + variety.lin(lat) + variety.lin(siteyield) +  variety.spl(lat,long)  

   + variety.latesown + variety.soilAS + variety.lowK 

 + year + location + year.location + trial + variety.year  + variety.location  

 + variety.year.location + variety.trial + ploterror 

 var(ploterror) = diag[ rp n
r
/ˆ 2σ ; r=1…429 ] 

 var( variety, variety.lin(long), variety.lin(lat), variety.lin(siteyield) ) = I43 ⊗ Σ4 

 var( variety.year.location ) = I43 ⊗ I10 ⊗ exp(φ)       (7) 

where latesown is a 0/1 variable indicating trials sown after 30 October, soilAS is a 0/1 variable indicating 

trials on sites with sandy/shallow soil, and lowK is a 0/1 variable indicating trials with soil K index < 1.5. 

The estimated variance components from model (7) are shown in table 3. Within the small-scale spatial trend 

term, the spatial correlation parameter φ was estimated as 0.56. There were few changes in variance 

parameters from model (4), but there was a further reduction in the unexplained variety.location interaction. 
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The estimated correlations (in the variance matrix Σ4) between the variety intercepts and slopes for the 

random regressions on longitude, latitude and expected site yield are shown in table 5. There were high 

correlations between the variety intercepts and slopes for the regressions on longitude and expected site 

yield, indicating a connection between variety overall yield and response to both expected site yield and 

longitude. 

 
Table 5. Estimated correlation parameters in variance matrix Σ4 from model (7) between the 
variety intercepts and slopes for the random regressions on longitude, latitude and expected site 
yield. 
 

Variety intercepts  1  0.78  0.28  0.89 
Variety.lin(long) slopes  0.78  1  0.11  0.78 
Variety.lin(lat) slopes  0.28  0.11  1 -0.06 
Variety.lin(siteyield) slopes  0.89  0.78 -0.06 1 
 Variety 

intercepts 
Variety.lin(long) 
slopes 

Variety.lin(lat) 
slopes 

Variety.lin(siteyield) 
slopes 

 
 

Estimated fixed effects from model (7) are shown in table 6, and represent the effects of site variables on 

overall trial yield. These terms cannot be considered a sensible model for overall site yield because of the 

regression on expected site yield, although this term is essential in understanding variety interactions with 

site. The regression coefficient for expected site yield is greater than 1.0 due to shrinkage in the prediction of 

expected site yields, and because the other site conditions that impinge on overall yield all cause a reduction 

in yield. The estimated regression coefficients for longitude and latitude, and the effects of low soil K index 

and sandy/shallow soil are all close to zero, but are retained in the model so that variety interactions can be 

modelled as deviations from the overall value. 

 

Table 6. Estimated fixed effects from model (7). Longitude and latitude are measured as OS grid 
co-ordinates. †Intercept term estimates trial yield for longitude=4189, latitude=4027 and expected 
site yield of 10.2 t/ha, for a trial with non-cereal previous crop sown before 7 October with non-
sandy/shallow soil and soil K index > 1.5. Effects different from zero are indicated by *. 

 
Model term Estimated effect Standard error 
Intercept†  10.41*  0.24 
Slope of regression on (longitude − 4189)   -0.61 × 10-5  2.53 × 10-5 
Slope of regression on (latitude − 4027)   -0.40 × 10-5  1.49 × 10-5 
Slope of regression on (expected site yield − 10.20)    1.370*  0.287 
Cereal previous crop  -0.657*  0.056 
Sowdate 7-15 October  -0.192*  0.062 
Sowdate 15-30 October  -0.347*  0.071 
Sowdate >30 Oct  -0.788*  0.075 
Site with soil K index < 1.5  -0.066  0.071 
Site with sandy/shallow soil   0.011  0.064 

 

Some of the variety interaction terms in the model are suitable for use in prediction of relative 

variety yields at new sites, but other terms cannot be used for prediction. To assess the impact of the model 
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on prediction of relative variety yields, the percentage of variety variation in the dataset associated with each 

variety interaction term was calculated as  

( ) ( )∑×
i

T
iii

T
iii ZGZZGZ tracetrace100  

where Zi is the design matrix with respect to the full dataset for the ith variety interaction term with variance 

matrix Gi, where Gi includes any scalar parameters, and i sums over all variety (main effect and) interaction 

terms in the model. This calculation reflects both the amount of variation associated with the term and the 

importance of the term in the dataset. The contribution of longitude and latitude were calculated jointly, 

including both the correlated random regression terms and the two-dimensional spline term at the mean value 

of expected site yield (10.2 t/ha). The contribution for expected site yield was calculated at the mean value of 

longitude (=4189) and latitude (=4027). For variety interaction terms, Table 7 shows the estimated variance 

component associated with each term, whether it could be used for prediction and the calculated percentage 

of the total variety variation accounted for by the term. Variety main effects accounted for 43% of the variety 

variation in the model, with interactions with site accounting for 21% and interactions with year accounting 

for 36%. Although this model accounted for most of the variety × site variability, the year-to-year variation 

was still unpredictable. Predictions from the model, appropriate to a notional ‘typical’ year, may therefore 

tend to be inaccurate for any particular year. However, the model could predict which varieties tended to 

prefer which environments in a typical year. 

 

Table 7. Variety interaction terms in the final model. Terms are classified according to whether 
they can be used to predict variety yield at a new site (given appropriate site information) and the 
percentage of the total variety variation in the dataset accounted for by each term. 

 
Model term Type of term % variety variation 

accounted for 
Variety Predictive 43.3 
Variety.spl(location) Predictive 15.6 
Variety.siteyld Predictive 2.0 
Variety.latesown Predictive 0.4 
Variety.soilAS Predictive 0.5 
Variety.lowK Predictive 0.4 
Variety.site Non-predictive 1.9 
Variety.year Non-predictive 4.5 
Variety.year.spatial(location) Non-predictive 13.7 
Variety.trial Non-predictive 17.8 

 
 

The three largest sources of variety variability (after the main effects) were the large-scale location trend, 

small-scale location trend and noise (variety.trial). The large-scale location trend could be used in prediction 

and may represent variety response to large-scale changes in climatic conditions across the UK. Figures 2-4 

in appendix B show the predicted response to large-scale trends in climate across the UK for a selection of 

varieties as a deviation from variety mean yield. These surfaces were calculated assuming an expected site 

yield of 10.20 t/ha held constant across the UK, with a first wheat crop sown date 7-15 October on a site with 

soil K index > 1.5 and non-sandy/shallow soil. To assess the strength of the climatic trend, predictions were 
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also made at the 27 knot points and compared to the mean across those 27 sites. Varieties Claire, Hereward, 

Hunter, Madrigal, Malacca, Mercia, Rialto, Scorpion 25, Soissons, Spark and Tanker showed large variation 

in yield across the 27 sites compared to the mean. These varieties are shown in figures 2-4, along with 

variety Consort that showed little response to climatic conditions. For the small-scale location trend, the 

estimated spatial correlation parameter indicated strong correlation (0.89) between locations 20km apart, 

dropping to 0.75 for locations 50km apart and 0.56 for locations 100km apart. This suggests that micro-

climates (~50km diameter) existed within which particular varieties performed better (or worse) than 

expected. However, this small-scale pattern appeared to be inconsistent across years, and so could not be 

used to predict relative variety yield at a given site. The variety.trial interaction term represented random 

variation in variety response across trials and could be regarded as random noise, in that it had no apparent 

pattern and would be unpredictable for new sites or future years. 

Although the remaining site variables each accounted for only a small percentage of the variety 

variation, each variable showed evidence of a large effect on the yield of one or more varieties, and should 

not be ignored when predicting site yield for these varieties. The BLUPs for variety main effects and 

interactions with expected site yield, late-sown crops, sandy/shallow soil and low soil K index are shown in 

table 10 in Appendix C. Varieties Robigus, Scorpion 25, Tanker and Xi 19 had a positive interaction with 

expected site yield, ie. these varieties showed a larger increase in yield than average as overall site yield 

increased. In contrast, varieties Hereward, Malacca, Mercia, Shamrock Soissons and Spark had a negative 

interaction with expected site yield,  ie. these varieties showed a smaller increase in yield than average as 

overall site yield increased. The variety interaction effects with expected site yield showed a strong 

correlation with overall variety yield, indicating that high-yielding varieties tended to give a better response 

to high-yielding sites. Variety Riband had a negative interaction with late sowing, indicating a worse 

response then average to these conditions. Varieties Hereward and Rialto had a negative interaction with 

shallow or sandy soils, while Deben had a positive interaction. Finally, variety Hereward had a positive 

interaction with low soil K index. 

Analysis of the two subsets (Central, East & South (CES) England or East Scotland) was used to 

examine whether effects were consistent across the whole UK. In both cases, there was no evidence of either 

large-scale or small-scale smooth non-linear location trend in variety response. The large-scale trend was not 

expected to be found at the scale of the subsets. The small-scale trend was expected to be found, but there 

was possibly not enough information to estimate the spatial parameters within the subsets. Where variety 

interaction terms occurred in models for both the full data and subsets, the variance components were of 

similar size (see table 8). For the CES England subset, variety yields were found to be related to position 

along a NW-SE axis within the area, expected site yield, late sown crops, sandy/shallow soils, previous crop 

and soil pH. For the East Scotland subset, variety yields were found to be related to latitude, expected site 

yield and late sown crops. However note that there were very few sandy/shallow soils or late sow dates 

within the East Scotland subset. Correlations between the estimated effects from the full analysis and the 

subsets are shown in Table 9.  
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Table 8. Estimated variance components from the final fitted model (7) for the full data set, and 
from models for the CES England and East Scotland subsets 
 

Estimated variance component from  
Model term Model (7) 

full data set 
CES England 

subset 
East Scotland 

subset 
year .5027 .5521 .4314 
location 0 0 .0345 
year.location .0631 .0670 .0074 
trial .0536 .0638 .0381 
variety .0015 .1780 .1853 
variety.lin(long) .0015 - - 
variety.lin(lat) .0044 - .0053 
variety.lin(NW-SE axis) - .0021 - 
variety.lin(siteyield) .0048 .0064 .0075 
variety.spl(lat,long) .2249 - - 
variety.latesown .0090 .0082 .0612 
variety.soilAS .0073 .0044 - 
variety.lowK .0075 - - 
variety.prevcrop - .0048 - 
variety.pH - .0016 - 
variety.year .0152 .0294 .0368 
variety.location .0066 0 .0009 
variety.year.location .0466 .0277 .0194 
variety.trial .0606 .0532 .0613 

 

Table 9. Correlation between BLUPs for variety main effects and interactions from the final fitted 
model (7) for the full data set, and from models for the CES England and East Scotland subsets 
 

Correlation between BLUPs from  
 
Model term 

Full data  
vs  

CES England subset 

Full data  
vs  

East Scotland subset 

CES England  
vs  

East Scotland subsets 
variety 0.912 0.861 0.811 
variety.lin(lat) - 0.636 - 
variety.lin(siteyield) 0.961 0.715 0.752 
variety.latesown 0.797 0.461 0.191 
variety.soilAS 0.851 - - 

 

There was high correlation between the variety main effects and variety.siteyield interactions across all three 

models. There was also high correlation between the variety.latesown interaction effects from the full data 

set and the CES England subset, but much lower correlation with the East Scotland subset. This difference 

could be accounted for by the small number of late-sown crops in the East Scotland subset.  

 

5. Discussion 
 

The statistical analysis identified site variables associated with variation in relative variety yields between 

sites. Including these variables in the model increased the percentage of variety variation accounted for by 

terms useful in prediction from 53% in model (2), excluding site variables, to 62% in the final fitted model 

(7). The variety.location component of variance, that describes variety.site variation not accounted for by 
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other site variables, was reduced to 34% of its original value. The final fitted model would therefore be 

expected to give an improved prediction for specific sites. However, there remains much variation associated 

with variety by year interactions that remained unexplained and would add much uncertainty to predictions.  

The results of the statistical analysis can be used to optimise use of the ‘Varieties on your Farm’ module of 

RL Plus. In general, geographic location appears to be the most important site variable influencing variation 

in variety yields across the UK. However, for particular varieties, the expected site yield, soil type or soil K 

index may be equally important. An improved version of RL Plus might use the results of these analyses as 

prior information in the model fitting process. 

The subset analyses indicated that although the relationship of variety yield with expected site yield 

held across the UK, site variables such as previous crop and soil pH might have a more local interaction with 

variety. Preliminary work using varying coefficient models indicates that previous crop may have a spatially-

varying interaction with variety. Further work and an extension of the methodology are required to determine 

the best methods to fit and detect local influence of site variables on variety yield. 

Inclusion of expected site yield as a variable in the model gives rise to several potential problems. 

Within the model, expected site yield is treated as a known variable, whereas in fact it has been estimated 

with error from the response variable in the model. We have ignored these issues because of the clear 

influence of site yield on variety interactions. Further work is required to determine better statistical methods 

for inclusion of site yield in the model. Problems of interpretation also arise from the inclusion of expected 

site yield in the model, as expected site yield also varies spatially across the UK. The contour maps in 

Figures 2-4 were presented for a fixed value of expected site yield. An improved prediction of variety yield 

could be calculated taking into account both geographic position and site yield as a function of geographic 

position. In both cases, care is required in interpretation of the predicted surfaces. 

 Several statistical issues were raised during development and interpretation of the models. It had 

been hoped that use of the factor analysis models would lead to the detection of important interactions 

between site variables. Use of the factor analysis models within single years meant that there were too few 

sites within each year to reliably identify interactions. Using a combination of years within the factor-

analysis models would have increased the number of sites and the chance of detecting interactions, but could 

have introduced year-to-year variation that could not be modelled by site variables. Development of an 

improved factor-analysis model that separates site and year variation is required to solve these problems. 

One advantage of the factor analysis models is their ability to model heterogeneity between environments, 

and the random regression models used here could possibly be improved by using a factor-analysis term to 

account for residual variation rather than simple variance components terms. Again, improvements in model 

fitting techniques are required to make this a realistic proposition. A curious feature of the scan for the 

inclusion of site variables into model (6) (see table 4) was that none of the homogenous variety interactions 

with site variables indicated that the interaction would improve the model, whereas an improvement was 

clear for several variables with the heterogeneous model. This might be explained by sub-optimal 

categorisation of the variables, although several other categorisations were also tried, but indicates a 
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potential problem in detecting interactions with standard variance component models where the interaction 

occurs at only one factor level. 

 In conclusion, the statistical methods used in this project have proved useful in detecting and 

describing variety interactions with site variables. Improvements in the techniques could lead to further 

improvements in the modelling process, but this potential improvement is limited by the large proportion of 

variety variation associated with unpredictable weather factors. The same modelling process could be 

undertaken with summary weather variables, and could lead to an improvement in variety prediction if 

relatively reliable quantitative long-term weather forecasts became available.



 29

6. References 

 

Anon (2000) Fertiliser Recommendations for Agricultural and Horticultural Crops, MAFF Reference Book 

209, 7th Edition. 

Denis JB, Piepho HP & van Eeuwijk FA (1997) Modelling expectation and variance for genotype by 

environment data. Heredity 79, 162-171. 

Denis JB, Piepho HP & van Eeuwijk FA (1998) Predicting cultivar difference using covariates. JABES 3, 

151-162. 

Foulkes, M.J., Scott, R.K. & Sylvester-Bradley, R. (2001).  A comparison of the ability of wheat cultivars to 

withstand drought in UK conditions: resource capture.  Journal of Agricultural Science 137, 1-16. 

Gilmour AR, Gogel BJ, Cullis BR, Welham SJ & Thompson R (2002) ASREML User Guide Release 1.0. 

VSN International Ltd, Hemel Hempstead UK, 290pp. 

Green PJ & Silverman BW (1994) Nonparametric regression and generalised linear models. Chapman & 

Hall, London. 182pp. 

Palmer WC. (1965). Meteorological Drought. Research Paper No. 45, 58pp. Department of Commerce, 

Washington DC. (cited by Dai, A. Trenberth, AE & Tarl, T. (1998). Global variations in droughts and 

wet spells: 1900-1995. Geophysical Research Letters 25, 3367-3370.) 

Payne RW (2000) The Guide to GenStat. VSN International, Hemel Hempstead, UK. 

Smith AB, Cullis BR & Thompson R (2001) Analyzing variety by environment data using multiplicative 

mixed models and adjustments for spatial field trend. Biometrics 57, 1138-1147. 

Smith A, Cullis B & Thompson, R (2002) Exploring variety-environment data using random effects AMMI 

models with adjustments for spatial field trend, Parts 1 & 2. In: Quantitative Genetics, Genomics and 

Plant Breeding. Ed: M S Kang. CABI, UK. 400pp. 

Stram DA & Lee JW (1994) Variance components testing in the longitudinal mixed effects model. 

Biometrics 50, 1171-1177. 

Talbot M (1984) Yield variability of crop varieties in the UK. Journal of Agricultural Science 102, 315-321. 

Theobald C, Talbot M & Nabugoomu (2002) A Bayesian approach to regional and local-area prediction 

from crop variety trials. JABES 7, 403-419. 

Thomasson, A.J. (1979). Assessment of soil droughtiness. In: Soil survey applications (ed. M. G. Jarvis & D. 

Mackney) Soil. Surv. TECH. Monogr. 13, 43-50. 

Wahba G (1990) Spline models for observational data. SIAM: Philadelphia, 169pp. 

Welham SJ, Cullis BR, Gogel BJ, Gilmour AR & Thompson R (2004) Prediction in linear mixed models. 

Australian and New Zealand Journal of Statistics 46, 325-347. 

Welham SJ & Thompson R (2000) Chapter 5: REML analysis of mixed models. In The Guide to GenStat, 

Part 2: Statistics, Ed. RW Payne. VSN International, Hemel Hempstead, UK. 

 

 



 30

Appendix A. Definition of two-dimensional smoothing spline 
 

The two-dimensional smoothing spline used in the statistical analysis is derived as a thin-plate spline (Green 

& Silverman, 1994) with reduced knots, and fitted within a mixed model using REML estimation of the 

smoothing parameter. For simplicity, we consider a model with data y = (y1 … yn ) measured at n locations 

with co-ordinates (x1, x2), xj = (xj1 …xjn )T, j=1,2.  

 

Following Green & Silverman (1994, p142), for a set of r knots (t1, t2 ), tj = (tj1 … tjr )T, j=1,2, the bivariate 

function g(u,v) is a natural thin-plate spline if and only if g is of the form  
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The vector of spline values at the observed locations is then written 

( ) cEXaxx x,g +=21  

where X = (1 x1 x2), [Ex]ij = η( d( x1i, x2i ;  t1j, t2j
 ) ) and we explicitly impose the constraint TTc = 0 by finding 

a matrix C such that CTT = 0, then c = Cδ for unknown parameters δ.  The spline is fitted by minimising the 

penalised sum of squares  

( ) ( ) CδECδCδEXayCδEXay txx
TTT λ+−−−−  

in terms of a and c, where [Et]ij =  η( d( t1i, t2i ;  t1j, t2j
 ) ) for a given smoothing parameter λ. Wahba (1990, 

p32) shows that the matrix  CTEtC is positive definite. Following the arguments of Verbyla et al. (1999) in 

the univariate case, it can then be shown that, for fixed λ, the solution that minimises the penalised sum of 

squares is a best linear unbiased predictor (BLUP) from a mixed model with the constant, x1 and x2 as fixed 

terms and random term with design matrix Ex and random effects δ = (δ1 … δr-3)T with  

( )ss,~ Gδ 20N σ  

where Gs = (CTEtC)-1 and 22
sσσλ =  where σ2 represents the residual variance. We then estimate the 

smoothing parameter using REML estimation in analysis of the mixed model via the variance component 
2
sσ . The advantage of this formulation is that the two-dimensional smoothing spline term can be included 

alongside other terms in the mixed model.
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Appendix B. Varietal response to large-scale climate trends modelled as a two-
dimensional smoothing spline 
 
 
 
Figure 2: Predicted response in treated yield (t/ha) to large-scale trends in climate for varieties Claire, 
Consort, Hereward and Hunter. Values shown are deviations from average yield for each variety, with 
expected site yield held constant at 10.2t/ha across the UK, assuming first wheat crop with sow date 7-15 
October.  Varieties Claire, Hereward and Hunter show strong evidence of response to location. Trial sites 
where each variety was grown are indicated by ×. Contour lines for yield deviations: 1=-0.3 2=-0.25, 3=-0.2, 
4=-0.15, 5=-0.1, 6=0, 7=0.1, 8=0.15, 9=0.2, 10=0.25 11=0.3t/ha. 
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Figure 3: Predicted response in treated yield (t/ha) to large-scale trends in climate for varieties Madrigal, 
Malacca, Mercia and Rialto. Values shown are deviations from average yield for each variety, with expected 
site yield held constant at 10.2t/ha across the UK, assuming first wheat crop with sow date 7-15 October. All 
varieties show strong evidence of response to location. Trial sites where each variety was grown are 
indicated by ×. Contour lines for yield deviations: 1=-0.3 2=-0.25, 3=-0.2, 4=-0.15, 5=-0.1, 6=0, 7=0.1, 
8=0.15, 9=0.2, 10=0.25 11=0.3t/ha. 
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Figure 4: Predicted response in treated yield (t/ha) to large-scale trends in climate for varieties Scorpion 25, 
Soissons, Spark and Tanker. Values shown are deviations from average yield for each variety, with expected 
site yield held constant at 10.2t/ha across the UK, assuming first wheat crop with sow date 7-15 October.  All 
varieties show strong evidence of response to location. Trial sites where each variety was grown are 
indicated by ×. Contour lines for yield deviations: 1=-0.3 2=-0.25, 3=-0.2, 4=-0.15, 5=-0.1, 6=0, 7=0.1, 
8=0.15, 9=0.2, 10=0.25 11=0.3t/ha. 
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Appendix C. Variety effects (with prediction standard errors) in the final model 

for selected site variables 
 

Table 10. Predicted effects (with prediction standard errors) in the final model for variety main effects and 
interactions with expected site yield, late sown crops (after 30 Oct), shallow or sandy soil or soils with low K 
index (<1.5). * indicates cases where predictor/(prediction standard error) > 2. 
 

Interaction effects for variety × Variety Variety 
main effects siteyield latesown soilAS lowK 

Brigadier   0.091 (0.141)  0.033 (0.031) -0.009 (0.069)  0.032 (0.061) -0.074 (0.066) 
Buster -0.131 (0.141) -0.007 (0.032)  0.043 (0.080) -0.010 (0.062) -0.035 (0.065) 
Hereward -0.807*(0.126) -0.117*(0.027)  0.053 (0.060) -0.107*(0.054)  0.141*(0.057) 
Hunter  0.068 (0.147)  0.004 (0.032) -0.035 (0.075)  0.046 (0.063) -0.032 (0.070) 
Hussar -0.086 (0.136) -0.038 (0.029)  0.015 (0.065) -0.013 (0.058)  0.001 (0.063) 
Mercia -1.052*(0.150) -0.231*(0.033)  0.010 (0.083) -0.027 (0.064)  0.015 (0.071)  
Rialto   0.084 (0.131)  0.039 (0.028) -0.040 (0.060) -0.112*(0.056)  0.093 (0.059) 
Riband  -0.105 (0.130) -0.019 (0.028) -0.209*(0.062)  0.041 (0.056)  0.017 (0.059) 
Spark                    -0.923*(0.143) -0.154*(0.032)  0.104 (0.068) -0.052 (0.061)  0.047 (0.068) 
Soissons  -0.635*(0.134) -0.145*(0.029)  0.060 (0.065) -0.027 (0.059)  0.009 (0.064) 
Consort -0.054 (0.129) -0.018 (0.027) -0.065 (0.069) -0.006 (0.056)  0.022 (0.057) 
Charger  -0.131 (0.136) -0.058 (0.030) -0.017 (0.067)  0.084 (0.059) -0.108 (0.063) 
Reaper  -0.030 (0.146)  0.009 (0.034)  0.083 (0.083)  0.054 (0.063)  0.057 (0.067) 
Equinox  0.162 (0.139)  0.067*(0.031)  0.039 (0.074)  0.050 (0.061) -0.065 (0.061) 
Madrigal   0.200 (0.141)  0.008 (0.031)  0.008 (0.073)  0.035 (0.061)  0.000 (0.061) 
Malacca  -0.456*(0.145) -0.094*(0.032) -0.049 (0.068) -0.007 (0.063) -0.016 (0.063) 
Savannah  0.476*(0.140)  0.045 (0.030)  0.062 (0.069) -0.011 (0.060) -0.018 (0.060) 
Buchan  0.030 (0.152) -0.008 (0.034)  0.008 (0.074)  0.017 (0.065)  0.002 (0.065) 
Claire  -0.133 (0.144) -0.025 (0.032) -0.022 (0.070) -0.023 (0.063)  0.064 (0.063) 
Shamrock -0.428*(0.145) -0.096*(0.032)  0.082 (0.069) -0.087 (0.063)  0.013 (0.063) 
Napier   0.318*(0.158)  0.045 (0.035) -0.058 (0.072) -0.016 (0.066)  0.015 (0.066) 
Biscay   0.262 (0.159)  0.062 (0.035) -0.011 (0.075) -0.025 (0.069)  0.033 (0.070) 
Deben  0.204 (0.159)  0.008 (0.035) -0.037 (0.075)  0.153*(0.069)  0.101 (0.070) 
Option   0.201 (0.159)  0.025 (0.035) -0.049 (0.075)  0.004 (0.069)  0.064 (0.070) 
Tanker   0.689*(0.159)  0.114*(0.035)  0.040 (0.075) -0.026 (0.069) -0.013 (0.070) 
Access   0.353*(0.164)  0.065 (0.036) -0.039 (0.080)  0.039 (0.073) -0.031 (0.074) 
Chatsworth    -0.221 (0.165) -0.045 (0.037)  0.024 (0.083) -0.019 (0.073)  0.012 (0.075) 
Macro   0.206 (0.164)  0.037 (0.037) -0.095 (0.083)  0.030 (0.073) -0.089 (0.075) 
Phlebas   0.165 (0.164)  0.066 (0.037) -0.003 (0.083)  0.084 (0.073) -0.001 (0.075) 
Richmond     0.224 (0.164)  0.041 (0.037)  0.055 (0.083) -0.023 (0.073)  0.016 (0.075) 
Solstice  -0.117 (0.163) -0.033 (0.036)  0.031 (0.078) -0.087 (0.073)  0.088 (0.074) 
Xi19   0.226 (0.163)  0.087*(0.036) -0.039 (0.078)  0.065 (0.073) -0.024 (0.074) 
Brunel   0.069 (0.172)  0.020 (0.040) -0.021 (0.084) -0.001 (0.076) -0.060 (0.075) 
Carlton  -0.075 (0.173)  0.002 (0.040)  0.047 (0.085) -0.028 (0.076) -0.013 (0.076) 
Chardonnay   0.030 (0.172) -0.003 (0.040)  0.047 (0.084) -0.026 (0.076) -0.023 (0.075) 
Einstein   0.281 (0.172)  0.043 (0.040)  0.029 (0.084)  0.015 (0.076)  0.042 (0.075) 
Goodwood    0.144 (0.172) -0.016 (0.040)  0.004 (0.084) -0.048 (0.076) -0.051 (0.075) 
NSL WW39   0.013 (0.172)  0.002 (0.040)  0.048 (0.084) -0.044 (0.076) -0.066 (0.075) 
Robigus   0.526*(0.172)  0.116*(0.040) -0.046 (0.084)  0.033 (0.076) -0.010 (0.075) 
Scorpion 25   0.102 (0.172)  0.081*(0.040) -0.032 (0.084)  0.026 (0.076)  0.013 (0.075) 
Tellus   0.013 (0.172)  0.016 (0.040)  0.056 (0.084) -0.062 (0.076) -0.058 (0.075) 
Warlock 24   0.172 (0.172)  0.065 (0.040) -0.043 (0.084)  0.056 (0.076) -0.008 (0.075) 
Wizard  0.075 (0.173)  0.006 (0.040) -0.028 (0.085)  0.027 (0.076) -0.069 (0.076) 
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