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Forward genetic screens are an excellent tool to assign gene

function, but it is often necessary to employ map-based cloning

to identify the causal genes. This can be laborious and represents

a bottleneck in plant fundamental and applied research. With

advances in DNA technology, it is becoming increasingly afford-

able to sequence large populations. Krasileva et al. (2017) exome

sequenced tetraploid and hexaploid wheat ethyl methanesul-

fonate (EMS) mutagenized populations, primarily to facilitate

reverse genetic screens. Gene redundancy allows a very high

mutant load of 35–40 mutations per kilobase, and the popula-

tions of ~1500 and ~1200 lines each harbour ~22–23 missense or

truncation mutations per gene. Here, we show that burden tests,

a simple form of rare-variant association analysis developed for

human disease genetics (Lee et al., 2014), can be used to identify

causal genes in the hexaploid wheat (Triticum aestivum) cv.

Cadenza mutant population, without the need for map-based

cloning.

The statistical power to detect association with rare variants is

very limited (Lee et al., 2014), and most mutations in the

Cadenza EMS population are singletons (Krasileva et al., 2017).

Burden tests work by collapsing multiple variants within a gene

(or other functional groups) into a single test score, thereby

increasing frequency and providing greater power (Lee

et al., 2014). However, this power relies on the selected variants

mostly being causal and having the same direction and magni-

tude of effect (Lee et al., 2014). Such assumptions likely hold for

mutant populations where causal variants are most frequently

deleterious (Meinke, 2013), and their severity can be predicted

from sequence analysis (Kumar et al., 2009). The absence of

genetic structure in mutant populations should simplify associa-

tion studies and collapsing homoeologous groups, that lack

functional divergence in ‘recent’ polyploids like wheat (Krasileva

et al., 2017), should also improve power.

To investigate whether burden tests can be applied to the

Cadenza population, we measured the fatty acid composition of

lipids in individual M4 grains (caryopses) from 1188 exome-

sequenced lines using gas chromatography and calculated the

proportion of unsaturated fatty acids that are polyunsaturated (x-
6 desaturation efficiency or x-6DE), which is a simple adaptive

metabolic trait (Menard et al., 2017) and a determinant of edible

oil quality (Hajiahmadi et al., 2020). As summarized in Figure 1a,

we extracted a list of putative deleterious mutations in the M2

population (Krasileva et al., 2017) using BioMart within Ensembl-

Plants (https://plants.ensembl.org/biomart/martview) and col-

lapsed them by gene and by homoeologous group (triad)

(Ram�ırez-Gonz�alez et al., 2018). These mutations were given

equal weight and include stop codon gained, start codon lost,

splice donor and acceptor variants and non-synonymous muta-

tion with a SIFT (sorting intolerance from tolerance) score <0.05
(Kumar et al., 2009). We then performed gene and triad-based

burden tests using a single-locus linear model (CMLM) imple-

mented in GAPIT (genome association and prediction integrated

tool) (Lipka et al., 2012).

We identified three genes and two triads that are significantly

(P < 0.05) associatedwithx-6DE, after applying Bonferroni correc-
tion (Figures 1b,c and S1). The three genes TraesCS6A02G280000,

TraesCS6B02G309400 and TraesCS6D02G260200 form one triad

and are predicted to encode homologues of FATTY ACID

DESATURASE 2 (FAD2) (Hajiahmadi et al., 2020). FAD2 is a micro-

somal x-6 fatty acid desaturase that is known to control x-6DE in

Arabidopsis thaliana seeds (Menard et al., 2017; Okuley

et al., 1994). Hexaploid wheat contains eleven putative FAD2

genes (Hajiahmadi et al., 2020), and TraesCS6A02G280000

(TaFAD2.1), TraesCS6B02G309400 (TaFAD2.6) and TraesCS6D

02G260200 (TaFAD2.8) are the most strongly expressed in devel-

oping grains of cv. Azhurnava (Figure 1d; Ram�ırez-Gonz�alez

et al., 2018). The second triad (TraesCS7A02G378300, TraesCS7

B02G280100 and TraesCS7D02G375100) encode putative homo-

logues of REDUCED OLEATE DESATURATION 1 (ROD1), which

supplies FAD2with substrate (Lu et al., 2009).

TaFAD2 and TaROD1 transcripts are average length for wheat

(~1.6 and ~1.5 kb), encoding proteins of ~390 and ~ 300 amino

acid residues, respectively. The 1188 M4 lines that we screened

contained 22–24 putative deleterious mutations in each TaFAD2

gene, and 6–9 in each TaROD1 gene, when theM2 generation was

exome sequenced (Krasileva et al., 2017). To confirm that disrup-

tion of the TaFAD2 genes causes a reduction inx-6DE, we selected

two independent lineswithmutations in each gene that had lowx-
6DE in our screen (Figure 1e). We backcrossed them to wildtype

and identified five homozygous and five wildtype segregant BC1F2
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plants using KASP (kompetitive allele specific PCR) assays and

further confirmed their genotype by DNA sequencing (Krasileva

et al., 2017). We then analysed the fatty acid composition of their

BC1F3 grains and found that x-6DE is significantly (P < 0.05) lower

in all the homozygous TaFAD2 mutants (M) versus wildtype (WT)

segregants (Figure 1e). The decrease in x-6DE is small (<9%), but

owing to the high broad-sense heritability of the trait (H2 ~0.9), the
effect size is very large (Cohen’s d > 0.8).

Figure 1 Applying burden tests to the Cadenza exome-sequenced EMS population to identify genes that control grain x-6 fatty acid desaturation

efficiency (x-6DE). (a) Workflow diagram. White boxes show resources created by Krasileva et al. (2017). Manhattan plots showing trait associations with

(b) 82 950 genes and (c) 17 616 triads. Collapsed variant frequency threshold = 0.002. Dotted line marks significance threshold after Bonferroni correction

for a = 0.05. Putative TaFAD2 and TaROD1 genes are highlighted. Quantile–quantile plots shown on right. (d) TaFAD2 expression in grains at hard dough

stage (mean � SE, n = 3). tpm is transcripts per kilobase million. RNA-seq data from Ram�ırez-Gonz�alez et al. (2018). (e) Box plots for x-6DE in M4 grain

from all mutant lines containing putative deleterious (D) and non-deleterious (ND) variants in each TaFAD2 gene (n = 22–1166) and from two independent

BC1F2 homozygous mutants (M) and their wild type segregants (WT) (n = 5). Asterisks denote significant differences (P < 0.05, unpaired Student’s t-test).

Cadenza line numbers and TaFAD2 mutations leading to amino acid substitutions or premature stop codons* are 0277 (W107*), 0290 (P31S), 1569

(W107*), 1235 (L347F), 1366 (Q167*) and 1423 (W92*).
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In conclusion, we show that gene and homoeologous group-

based burden tests can identify causal genes for a simple

metabolic trait in an exome-sequenced polyploid mutant popu-

lation. Many rare-variant association analysis methods have been

developed and may be applicable, including burden tests with

more sophisticated weighting, variance-component and com-

bined tests (Lee et al., 2014). We have collapsed point mutations

in the Cadenza population, but deletions are also present

(Krasileva et al., 2017) and could be included. The gene redun-

dancy that exists in polyploid mutant populations likely provides a

trade-off between power and effect size when applying burden

tests. Redundancy allows polyploids to tolerate high mutant loads

(Krasileva et al., 2017), providing smaller populations with more

collapsible variants per gene (and homoeologous group). How-

ever, redundancy also hides the phenotypic effects of variants

(Krasileva et al., 2017). It is intuitive that more heritable traits

that are controlled by fewer (and larger) genes will likely be more

amenable to genetic dissection using burden tests. Mutant

populations of tetraploid wheat (Krasileva et al., 2017) and many

other polyploid crops such oilseed rape (Brassica napus) and false

flax (Camelina sativa) might also be amenable to burden tests.
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Supporting information

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

Figure S1 Complete repeat of the burden test experiment shown

in Figure 1b,c.
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