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Starships are a recently established superfamily of giant cargo-mobilizing transposable elements in the fungal subphylum Pezizomyotina 
(phylum Ascomycota). To date, Starship elements have been identified up to ∼700 kbp in length and carry hundreds of accessory genes, 
which can confer both beneficial and deleterious traits to the host genome. Classification of Starship elements is centered on the tyrosine 
recombinase gene that mobilizes the element, termed the captain. We contribute a new perspective to Starship relatedness by using an 
alignment-free k-mer-based phylogenetic tree-building method, which can infer relationships between elements in their entirety, includ-
ing both active and degraded elements and irrespective of high variability in element length and cargo content. In doing so we found 
that relationships between entire Starships differed from those inferred from captain genes and revealed patterns of element relatedness 
corresponding to host taxonomy. Using Starships from root/soil-dwelling Gaeumannomyces species as a case study, we found that 
k-mer -based relationships correspond with the similarity of cargo gene content. Our results provide insights into the prevalence of 
Starship-mediated horizontal transfer events. This novel application of a k-mer -based phylogenetics approach overcomes the issue 
of how to represent and compare highly variable Starship elements as a whole, and in effect shifts the perspective from a captain to 
a cargo-centered concept of Starship identity.
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Introduction
Transposable elements (TEs), or transposons, are stretches of 
DNA, typically between 100 and 10,000 bp in length, which can in-
dependently move and replicate within the genome (Biémont 
2010; Wells and Feschotte 2020). Thanks to advances in long-read 
sequencing, highly contiguous genome assemblies have revealed 
the existence of TEs hundreds of kilobases in length (Arkhipova 
and Yushenova 2019). Some of these large TEs have been shown 
to harbor both genes necessary for their mobilization as well as 
miscellaneous accessory genes, and are accordingly referred to 
as cargo-mobilizing elements (CMEs; Gluck-Thaler and Vogan 
2024). Recently, giant CMEs have been found in various species 
in the fungal subphylum Pezizomycotina (phylum Ascomycota; 
McDonald et al. 2019; Vogan et al. 2021; Urquhart et al. 2022), and 
have since been determined to belong to a newly established TE 
“superfamily” (sensu Wicker et al. (2007)) or “subclass” (sensu 
Wells and Feschotte (2020)) known as “Starships” (Gluck-Thaler 
et al. 2022). To date, Starship CMEs have been found to range in 
length from 15 Kbp (Gluck-Thaler et al. 2024) to ∼700 kbp 
(Urquhart et al. 2024).

Starship mobilization is mediated by a leading 5′ located gene 
containing the DUF3435 domain (protein family accession 
PF11917), termed the “captain,” which encodes a tyrosine recom-
binase that initiates movement of the TE into a new genomic loca-
tion via a “cut-and-paste” mechanism (Urquhart et al. 2023). This 
is similar to the hypothesized mobilization process of the “Crypton” 
class II DNA transposon superfamily (Wells and Feschotte 2020), 
which was incidentally also first discovered in fungi (Goodwin 
et al. 2003), although this TE superfamily has since been found 
in other eukaryotes (Kojima and Jurka 2011). Tyrosine recombin-
ase domains in Starship captain genes and Cryptons are very dis-
tantly related (Gluck-Thaler et al. 2022) and, unlike Cryptons, 
Starship elements are sometimes flanked by tandem inverted re-
peats (TIRs) in addition to direct repeats (DRs), and can contain 
a highly variable and often sizeable cargo of accessory genes 
(Gluck-Thaler and Vogan 2024). Starship cargos can harbor genes 
that are beneficial to the fungus, for example those associated 
with plant virulence (McDonald et al. 2019), metal tolerance 
(Urquhart et al. 2022), and climate adaptation (Tralamazza et al. 
2024). However, as selfish genetic elements, Starships may also 
mobilize cargo that is neutral or even detrimental to the overall 
fitness of the host genome (Vogan et al. 2021).

Classification within the Starship CME superfamily is focused 
on the captain gene, using both phylogenetic relationships be-
tween captain genes to define “family” and ortholog clustering 
of captain genes to define “navis” (i.e. a ship) (Gluck-Thaler and 
Vogan 2024). Both the captain family and the flanking DRs are 
thought to influence the genomic site that an element is inserted 
into, with Starships of certain captain families preferentially in-
serting into, for instance, other TEs or 5S rDNA (Urquhart et al. 
2023; Gluck-Thaler and Vogan 2024). DUF3435-containing tyro-
sine recombinase genes are more usually found “solo,” rather 
than within a cargo-carrying element, i.e., as a captain; however, 
it is not clear to what extent this is due to the failure to detect the 
boundaries of an element or because pseudogenization of the 
tyrosine recombinase gene has occurred (Gluck-Thaler and 
Vogan 2024). Starship captain genes do not form a single monophy-
letic cluster in the DUF3435 tyrosine recombinase gene tree and 
are instead scattered across the phylogeny amongst other appar-
ently “solo” DUF3435-containing tyrosine recombinase genes 
(Gluck-Thaler et al. 2022; Hill et al. 2025). Due to their highly diver-
gent nature, tyrosine recombinase gene sequences are also 

difficult to align, introducing uncertainty into conventional 
alignment-based phylogenetic analyses. It is not currently pos-
sible to determine whether these relationships described by cap-
tains are preserved or representative of the Starships as a whole, 
considering that elements are highly variable in terms of cargo 
and overall length. This also limits phylogenetic assessment of 
the prevalence of (or boundaries to) horizontal exchange across 
the Pezizomycotina. In an effort to represent distinction in cargo 
content, Gluck-Thaler and Vogan (2024) introduced the additional 
definition of “haplotype,” based on clustering of k-mer similarity 
scores. Here, we have taken this approach 1 step further and 
used a k-mer -based phylogenetic tree-building method to con-
tribute a new perspective to Starship relatedness. In doing so, we 
have revealed previously obscured patterns of Starship related-
ness corresponding to host taxonomy.

To determine whether the relatedness revealed by the k-mer 
trees conformed with similarity in cargo gene content, we explored 
the cargos of Starships previously identified from genomes within 
the genus Gaeumannomyces (Hill et al. 2025). This genus comprises 
soil-dwelling fungi that are also both pathogenic and nonpatho-
genic wheat and wild grass root associates (Palma-Guerrero et al. 
2021; Chancellor et al. 2024). These elements provided an ideal 
case study as they vary greatly in overall size and number of cargo 
genes within their host taxonomy clusters. The genomes were also 
all generated in parallel using the same long-read sequencing tech-
nology and a cross-referent annotation pipeline (Hill et al. 2025). 
Given the impact of assembly and annotation quality on Starship re-
covery (Gluck-Thaler and Vogan 2024), these Gaeumannomyces ele-
ments therefore represent a consistent dataset that is impacted 
to a lesser extent by the technology used to produce them.

Materials and methods
K-mer -based phylogenetic analysis
To compare phylogenetic reconstruction of whole elements vs 
captain genes, we used a curated set of 39 Starships from 
Gluck-Thaler et al. (2022) and Gluck-Thaler and Vogan (2024)
alongside 14 Gaeumannomyces Starships predicted using the tool 
starfish v1.0.0 (Gluck-Thaler and Vogan 2024) in our previous 
study (Hill et al. 2025). Only Gaeumannomyces Starships with pre-
dicted flanking repeats were used. We used entire element se-
quences as input for the k-mer -based method Mashtree v1.4.6 
(Katz et al. 2019) with 1,000 bootstrap replicates and the – 
min-depth 0 parameter to discard very unique k-mers, recom-
mended to improve accuracy. We used the corresponding captain 
genes as input for a maximum likelihood (ML) tree, first aligning 
gene sequences using MAFFT v7.271 (Katoh and Standley 2013), 
trimming using trimAl v1.4.rev15 (Capella-Gutiérrez et al. 2009), 
and finally building the ML tree using RAxML-NG v1.1.0 (Kozlov 
et al. 2019) with bootstrapping until convergence, which occurred 
after 150 bootstrap replicates. We visualized concordance be-
tween the 2 phylogenies via a tanglegram, produced in R v4.3.1 
(R Core Team 2023) using the packages ape v5.7-1 (Paradis and 
Schliep 2019), phytools v2.1-1 (Revell 2024) and ggtree v3.9.1 (Yu 
et al. 2017). We calculated the normalized Robinson–Foulds (RF) 
distance between the element and captain phylogenies using 
the RF.dist function from the phangorn v2.7.0 package (Schliep 
et al. 2017).

We then used a larger dataset of Starships predicted using the 
tool starfish v1.0.0 by Gluck-Thaler and Vogan (2024) to assess 
whether patterns in the curated k-mer tree would persist with 
broader sampling. Comparisons were made using the entire data-
set including elements without predicted flanking repeats 
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(597 elements + 20 Gaeumannomyces elements = 617 total) against 
a filtered dataset of only elements with predicted flanking repeats 
(343 elements + 14 Gaeumannomyces elements = 357 total) to explore 
the impact of uncertain element boundaries on the topology. For 
both cases, entire element sequences were again run with 
Mashtree, but with 100 bootstrap replicates and the default – 
min-depth parameter to accommodate for the much larger dataset. 
Previously determined Starship family classifications, based on cap-
tain phylogenetic relationships (Gluck-Thaler and Vogan 2024), 
were mapped to element k-mer tree tips to visualize the distribution 
of families across clades using the additional R packages ggtreeExtra 
v1.10.0 (Xu et al. 2021) and glottoTrees v0.1.10 (Round 2021).

Mashtree estimates similarity between k-mer sketches using 
the Mash distance, which models mutation rates under a simple 
Poisson process of random site mutation (Ondov et al. 2016). To 
compare this with an alternative evolutionary model we used 
sourmash v4.8.14 (Irber et al. 2024) to calculate a distance matrix 
with the –estimate-ani parameter. Like the Mash distance, aver-
age nucleotide identity (ANI) as implemented in sourmash is com-
puted from the Jaccard index, but unlike Mash it does not make 
the assumption that all k-mers are mutated independently, which 
can result in Mash overestimating mutation rates (Rahman Hera 
et al. 2023). The k-mer sketching algorithm within sourmash, 
FracMinHash, may also outperform Mash’s MinHash algorithm 
when used on very different set sizes (Rahman Hera et al. 2023). 
We should caveat that ANI was developed for use with prokaryote 
data and has not, to our knowledge, been validated with eukaryote 
data, although this may predominantly be due to scalability is-
sues when working with larger eukaryote genomes. We used the 
ape nj command in R to generate a neighbor-joining tree from 
the sourmash ANI distance matrix, which is conceptually the 
same tree-building approach that is integrated into Mashtree.

Exploration of cargo gene content 
in Gaeumannomyces elements
We used the aforementioned larger dataset of 20 Starships pre-
dicted from 7 Gaeumannomyces genomes to assess whether simi-
larities in cargo gene content corresponded with the patterns of 
relatedness described by the k-mer trees. We characterized ortho-
logous genes predicted in our previous study (Hill et al. 2025) as 
being core, accessory, or specific within the set of 20 elements, 
and their sharedness was visualized using the R package 
ComplexUpset v1.3.3 (Krassowski 2022). After normalizing cargo 
orthogroup presence-absence values with the base R scale func-
tion, we produced a Euclidean distance matrix using the R dist 
function and performed hierarchical clustering with the hclust 
function using the “complete” agglomeration method. We then 
compared the topology produced by hierarchical clustering with 
phylogenetic relationships from the larger k-mer -based tree using 
a tanglegram and calculated the normalized RF distance, as de-
scribed above. We also determined the location of cargo 
orthogroups—i.e. whether orthologous genes were only found in-
side elements or also found in the wider genome.

We searched for specific genes or domains previously reported 
to be prevalent in Starships or with assigned functional roles of 
particular note (Gluck-Thaler et al. 2022) using BLAST v2.10 
(Camacho et al. 2009) and also PFAM domain assignment from 
the functional annotation (Hill et al. 2025). Namely: DUF3723, ferric 
reductase (FRE), patatin-like phosphatase (PLP), ToxA effector, 
spore killing (Spok) genes, and associated domains. We additionally 
made BLAST searches against the Pathogen–Host Interactions 
Database v4.17 (PHI-base; (Urban et al. 2025) downloaded on 
August 1, 2024, and considered a positive match when at least 

50% of genes in an orthogroup had the same hit. We assessed 
whether Gene Ontology (GO) terms were enriched amongst 
cargo genes using the R package topGO v2.52.0 (Alexa and 
Rahnenfuhrer 2022) with Fisher’s exact test and the weight01 
algorithm.

In addition to previously mentioned packages, data analysis and 
visualization were performed using the following R packages: cow-
plot v1.1.3 (Wilke 2024), ggforce v0.4.2 (Pedersen 2024), gggenomes 
v1.0.0 (Hackl et al. 2024), ggnewscale v0.4.10 (Campitelli 2024), 
ggpubr v0.6.0 (Kassambara 2023), ggrepel v0.9.5 (Slowikowski 
2024), matrixStats v1.3.0 (Bengtsson 2024), patchwork v1.2.0 
(Pederson 2024), scales v1.3.0 (Wickham and Seidel 2023), tgutil 
v0.1.15 (Chomsky and Lifshitz 2023), and tidyverse v2.0.0 
(Wickham et al. 2019).

Results and discussion
A k-mer -based approach for Starship 
phylogenetics recovers signal corresponding 
to host taxonomy
We used a k-mer -based approach for phylogenetic analysis of 
Starships to produce a phylogenetic tree of 53 entire Starship elem-
ent sequences from Gluck-Thaler et al. (2022) and Hill et al. (2025), 
encompassing 17 host genera across 6 classes in the Pezizomycotina. 
We found elements to broadly cluster by genus, even when differ-
ing greatly in length (Fig. 1a). This contrasted with the captain gene 
tree (Supplementary Fig. 1) and element and captain trees were fre-
quently discordant (RF distance 0.73 = 73% differing bipartitions; 
Fig. 1b), i.e. Starships that were more closely related according to their 
k-mer profiles could have very divergent captain genes. There were 
some exceptions to element/captain discordance; for instance, simi-
lar relationships in both captain and element trees were observed for 
the Alternaria clade (Fig. 1b). Alternaria captains were also closely re-
lated to some Macrophomina captains, in reflection of expected host 
species relationships in the Dothideomycetes; however, dothideomy-
cete captains were not monophyletic as Macrophomina captains 
were also dispersed across other clades in the captain tree 
(Supplementary Fig. 1). Overall, 6/10 host genera with more than 1 
genome represented were monophyletic in the element tree vs 2/ 
10 in the captain tree. Also note the placement of Mpha_Derelict— 
a previously “unclassifiable” deactivated Starship missing the cap-
tain gene—alongside other elements from Macrophomina species 
(Fig. 1a). Two striking disruptions of this host clustering were caused 
by the elements Bdot_Voyager and Pvar_Chrysaor, the latter of 
which has been recently asserted to be horizontally transferred be-
tween various eurotiomycete species (Urquhart et al. 2024).

To determine if these observations of clustering by host tax-
onomy extended more broadly across the Pezizomycotina, we 
used the same k-mer -based phylogenetics method on a larger da-
taset of 597 elements systematically predicted using the tool star-
fish by Gluck-Thaler et al. (2024) alongside 20 Gaeumannomyces 
elements (Hill et al. 2025). This again recovered widescale clus-
tering by host taxonomy, with the additional clear formation 
of clades broadly corresponding to host class level (Fig. 1c; 
Supplementary Fig. 2). We also performed a more conservative 
analysis to minimize the risk of including k-mers from the back-
ground genome, where we filtered the larger dataset to include 
only elements with predicted flanking DRs (343 elements + 14 
Gaeumannomyces elements), which broadly reflected the results 
from the unfiltered dataset (Supplementary Fig. 3). As may be ex-
pected from the observed element/captain tree discordance in 
Fig. 1b, family classifications based on captains were scattered 
across the larger starfish-predicted element k-mer trees 
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(Fig. 1d, Supplementary Figs. 2 and 3). The degree of element/cap-
tain phylogenetic discordance is important because phylogenetic 
relationships of captains have been the predominant factor in 
element classification (Gluck-Thaler and Vogan 2024).

Phylogenetic discordance in comparison to species relation-
ships is frequently used as evidence for horizontal gene transfer 

(HGT) (Ravenhall et al. 2015); however, there are a number of alter-
native biological and/or analytical factors that can also result in a 
similar pattern (Steenwyk et al. 2023). Trans-species polymorph-
isms, where polymorphism originates before speciation and is 
preserved, potentially by balancing selection, can result in genes 
being more similar between species than within. Trans-species 

a b

c d

Fig. 1. K-mer-based phylogenetic analyses of Starship elements. a) An unrooted k-mer-based phylogenetic tree of 53 Starships—39 curated elements from 
33 Pezizomycotina species (Gluck-Thaler et al. 2022; Gluck-Thaler and Vogan 2024) and 14 predicted by starfish from Gaeumannomyces species (Hill et al. 
2025). Gray branches indicate bootstrap support < 70. Tip points are colored by genus and the outer ring indicates total element length. Black stars beside 
tips highlight elements from another genus in an otherwise monophyletic clade. b) A tanglegram comparing the topology of the k-mer-based element tree 
in a) and a maximum likelihood gene tree of the corresponding captain genes (see Supplementary Fig. 1 for the unrooted captain tree). Both trees are 
arbitrarily rooted with the Msp_Enterprise element. Gray branches indicate bootstrap support < 70. c) An unrooted k-mer-based phylogenetic tree of 617 
Starships predicted with starfish (Gluck-Thaler and Vogan 2024; Hill et al. 2025), with gray branches indicating bootstrap support < 70. Genus-level 
monophyletic clades are highlighted and labeled, with the number of elements in each clade shown in brackets. Clades and tips are colored by host 
taxonomic class. See Supplementary Fig. 2 for element tip labels and captain-based family classifications. d) A summary of the k-mer -based tree in c) 
with genus-level monophyletic clades collapsed. The outer grid summarises Starship family classifications based on captain genes for the elements in 
each clade, with a darker grid cell colour indicating a higher proportion of the elements within the clade belonging to that family. Clades with no grid cells 
did not have any classified captain data.
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polymorphisms have been reported in fungal genes associated 
with vegetative incompatibility (Milgroom et al. 2018; Auxier 
et al. 2024), and such genes have been found multiple times in 
Starships (Fig. 2a; Gluck-Thaler et al. 2022, 2024; Urquhart et al. 
2024). Even without natural selection, neutral processes such as 
incomplete lineage sorting, recombination and gene conversion, 
and gene duplication and loss can elevate levels of discordance 
(Bjornson et al. 2024). The latter is a particularly aggravating factor 
for misidentifying HGT as it can result in paralogues being mis-
taken as orthologues (Smith and Hahn 2021).

Another suite of commonly used methods to detect HGT are 
“surrogate” phylogenetics methods, which do not build a tree 

but still assess evolutionary distances, e.g. using sequence simi-
larity (Ravenhall et al. 2015); however, the results of surrogate 
methods can still be confounded by the phenomena described 
above. A sequence similarity approach also comes with the caveat 
that the best BLAST hit is not necessarily the closest related gene 
(Koski and Golding 2001) and requires subjective decisions about 
acceptable similarity thresholds. Distinguishing the cause(s) of 
phylogenetic discordance can be especially difficult for closely re-
lated taxa (Steenwyk et al. 2023), which is relevant here as ele-
ments from different host species were scattered amongst each 
other within genus-level clades in all k-mer -based tree analyses 
(Fig. 1a, Supplementary Fig. 2). Due to semipermeable species 

a

b

Fig. 2. Summary of the Gaeumannomyces Starships predicted using starfish by Hill et al. (2025). a) A schematic of the 20 Starships ordered by phylogenetic 
relationships taken from Supplementary Fig. 2. Synteny between orthologous genes in neighboring elements is indicated with gray lines. A nested 
element (Ga-3aA1_s00047) is highlighted. Common genes are colored with known functions and the presence of flanking DRs or TIRs are indicated with 
an asterisk. Genes of note are labeled in black boxes. b) Ideograms showing the position of the 20 Starships across pseudochromosomes, adapted from Hill 
et al. (2025). ID numbers correspond to the bolded numbers for each element in a). Elements with flanking DRs are indicated with asterisks either side of 
the element ID number.
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boundaries in fungi, interspecific hybridization within the genus 
level has been detected multiple times (Steenkamp et al. 2018; 
Steensels et al. 2021). In such cases, Starships could be inherited 
during sexual reproduction between 2 different species and sub-
sequent backcrossing could leave the element as an introgression, 
which may be mistaken as having been horizontally transferred. 
For all the reasons outlined above, general frequency of HGT 
events may have been overestimated in fungi (Kurland et al. 
2003; Dupont and Cox 2017). The k-mer -based phylogenetics ap-
proach described here may be useful in certain contexts as 1 piece 
of evidence toward identifying (or dismissing) HGT, but the con-
founding factors described above would need to be assessed to 
have confidence that HGT has occurred (e.g. Fijarczyk and Babik 
2015; Knowles et al. 2018). A number of the above factors contrib-
uting to discordant relationships are likely to have a greater im-
pact for more closely related species, and it may be important to 
focus attention on apparent HGT events across greater evolution-
ary distances, which are presumed to be rarer, at least in prokar-
yotes (Popa et al. 2017; Burch et al. 2023; Dmitrijeva et al. 2024).

In the larger k-mer -based tree there were many within genus 
subclades of elements with captains of the same family, but also 
cases where minimally diverged sister elements had different cap-
tains. For example: aspcri2_s00912 and aspcri1_s00891 from dif-
ferent host genomes within the Aspergillus-9 clade had Phoenix 
and Prometheus captains, respectively; and aspnig6_s01954 and 
aspnig6_s01955 from the same host genome within the clade 
Aspergillus-19 had Hephaestus and Phoenix captains, respectively 
(Supplementary Fig. 2). It should be noted that there is some uncer-
tainty as to the boundaries of these elements, as in these cases ele-
ments did not have predicted flanking repeats. A similar 
observation was made by Gluck-Thaler and Vogan (2024) for 
Starship pairs with near-identical cargo “haplotypes” but different 
captain-derived families. Together with the fact that captain genes 
are phylogenetically indistinguishable from “lone” tyrosine re-
combinase genes harboring the DUF3435 domain (Gluck-Thaler 
et al. 2022; Hill et al. 2025), this prompts the question as to whether 
Starships can swap the captain for a different tyrosine recombinase 
gene, which would render the “captain” status as somewhat tran-
sient. A previous study has already reported that Starship elements 
can lose their captain gene to become “degraded” or “derelict” 
(Gluck-Thaler et al. 2022), and in another study a mechanism has 
been suggested wherein different elements partake in cargo swap-
ping (Urquhart et al. 2024). A similar mechanism where the cap-
tain, as opposed to the cargo, is swapped to acquire a captain 
gene from a different family could be a strategy to diversify inser-
tions of virtually identical elements into different target sites. 
Comparing the k-mer profiles of regions surrounding CMEs could 
incidentally be another fruitful avenue for understanding target 
site preference, as many Starships have been found to insert into 
other TEs and AT-rich regions but without clear patterns in, for in-
stance, TE superfamily or domain (Gluck-Thaler and Vogan 2024).

Aside from the major clade in the larger starfish k-mer tree 
overrepresented with elements from eurotiomycete hosts, other 
eurotiomycete elements appeared scattered amongst other 
clades, although there were lower support values for deeper tree 
nodes (Fig. 1c). It is notable that eurotiomycete elements domin-
ate the starfish dataset—of all the genomes explored by 
Gluck-Thaler and Vogan (2024), Eurotiomycetes was the class with 
the highest proportion of genomes returning a Starship (36%; 
Supplementary Fig. 4). This was closely followed by the 
Orbiliomycetes (28%), despite 16 times fewer orbiliomycete gen-
omes having been surveyed compared with the Eurotiomycetes, 
and orbiliomycete element clades were similarly widespread 

across the k-mer tree (Fig. 1c). As one of the earliest diverging 
classes within the Pezizomycotina subphylum, the Orbiliomycetes 
are distantly related to Eurotiomycetes (Li et al. 2021), and they do 
not share ecological distributions more so than other taxonomic 
classes, so the underlying biological explanation is unclear. The 
far larger Eurotiomycetes class comprises diverse lifestyles includ-
ing: rock-inhabiting fungi and other extremophiles; plant and ani-
mal pathogens; lichenized and lichen-associated fungi; 
ectomycorrhizal fungi; ant mutualists; and saprotrophs (Geiser 
et al. 2015). The Orbiliomycetes are primarily thought to be sapro-
trophs but include some soil-dwelling carnivorous fungi that 
trap invertebrates (Pfister 2015). Variation in the rate of Starship re-
covery in the genomes of different taxonomic classes could be a 
result of inconsistencies in assembly quality or bias within the 
starfish tool to recover certain elements from certain classes. 
However, these results do suggest that there may be a relationship 
between the tendency for a taxonomic class to have Starship ele-
ments and greater diversity of element clades.

While we consider this to be a promising application for k-mer 
-based phylogenetics, we must note that such methods were typ-
ically developed for whole-genome data. We are not aware of 
k-mer -based phylogenetic methods having been tested on se-
quences such as fungal CMEs. However, given that such methods 
are considered well-suited to viral genomes due to their high levels 
of mutation, gene duplication, and rearrangement (Zielezinski 
et al. 2017), CMEs would appear to be a similarly appropriate use 
case. Other than circumventing issues with alignment, k-mer 
-based methods also have the advantage of being more computa-
tionally efficient than alignment-based phylogenetic methods, 
which could reduce the carbon footprint of analyses (Grealey 
et al. 2022). There are many different approaches and tools for 
alignment-free sequence comparison which would warrant fur-
ther testing in the context of CME phylogenetics (Luczak et al. 
2019; Zielezinski et al. 2019). For instance, ANI is frequently used 
as a distance metric for prokaryote genomes and, as implemented 
in sourmash, has the benefit of a more realistic evolutionary model 
of mutation than that used by Mash (Rahman Hera et al. 2023), but 
whether it is appropriate for eukaryote data has yet to be validated. 
Nonetheless, we found that trees generated from ANI distance ma-
trices produced using sourmash were broadly consistent with our 
Mashtree results (Supplementary Figs. 5 and 6) and supported our 
conclusion that Starships predominantly cluster according to host 
taxonomy. We were unable to produce a k-mer tree for captain 
genes using Mashtree, presumably due to the much smaller se-
quence length of a single gene. This meant we were not able to direct-
ly compare whole element and captain trees using the same k-mer 
-based method. However, at the genome-scale, previous compari-
sons of alignment and k-mer methods suggest reasonable topologic-
al congruence (VanWallendael and Alvarez 2022; Lo et al. 2022; Van 
Etten et al. 2023), or no greater incongruence than might be expected 
from using different alignment-based methods (e.g. Shen et al. 2021). 
This also demonstrates the capacity for k-mer -based methods to re-
construct evolutionary history and, when they incorporate models of 
evolution, be deemed “phylogenetic”.

There are some limitations to alignment-free phylogenetics 
methods. Unlike conventional alignment-based phylogenetic 
trees, alignment-free trees do not produce branch lengths with a 
scale corresponding to geological time, and so one cannot ex-
trapolate the date of divergences. Alignment-free methods also 
struggle with the reconstruction of deep nodes (Fan et al. 2015), 
which is evident from the k-mer trees we present here, although 
that issue is inherent to all phylogenetics methods (Lanier and 
Knowles 2015). This may limit the ability of these methods to 
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address questions about inter-relatedness of larger CME clades 
but should still allow for assessment of more recent divergences.

Both cargo genes and noncoding cargo content 
contribute to k-mer -based phylogenetic 
relationships between Gaeumannomyces Starships
To explore the extent to which cargo gene content corresponded 
with the k-mer -based phylogenetic relationships, we used twenty 
Starships previously identified from 7 genomes across 3 separate 
lineages within the genus Gaeumannomyces, an understudied 
member of the Magnaporthaceae (Hill et al. 2025). These genomes 
were sequenced from 5 strains of the wheat root pathogen species 
G. tritici (Gt) and 2 of the oat root pathogen G. avenae (Ga). Within 
the Gt strains there is further subdivision of 2 strains belonging 
to “type A” and 3 to “type B,” 2 distinct genetic lineages present 
in the species (Palma-Guerrero et al. 2021). This division is mean-
ingful, as differences between the 2 types in terms of both viru-
lence and genomic signatures may indicate that these 2 types 
actually represent cryptic species (Hill et al. 2025). As well as being 
a consistently amassed set of Starships for controlled comparison, 
these Gaeumannomyces elements also provided major variability, 
ranging from ∼32–688 Kbp in total length and containing between 
1 and 156 genes (Fig. 2a). It should be noted that 6 of the elements, 
including both from the GtA strains, were excluded from the first 
phylogenetic analysis (Fig. 1a) as these elements did not have pre-
dicted flanking DRs and so there is some uncertainty as to their ex-
act boundaries. However, we retained them here so as not to 
exclude potentially biologically meaningful results.

We found that Starships with greater numbers of shared ortho-
logous genes were frequently sister elements or closely related in 
the k-mer tree, for instance, Gt-LH10_s00088, Gt-23d_s00104 and 
Ga-3aA1_s00046 (Fig. 3a). Most cases of more distantly related ele-
ments with high cargo gene sharedness involved the largest and 
most gene-rich element, Gt-23d_s00107, which incidentally also 
had one of the highest proportions (48%) of element-specific 
genes. Hierarchical clustering of cargo orthologous gene content 

supported these results, with reasonable concordance between 
the hierarchical clustering and k-mer element tree (RF distance 
0.47 = 47% differing bipartitions; Fig. 3c) and the most notable de-
viation between the 2 trees was the divergence of element 
Gt-23d_s00107. Pairs of closely related elements with evident 
regions of syntenic cargo genes (Fig. 2a) were often located on 
different chromosomes, suggesting previous mobilization (e.g. 
Gt-23d_s00104 and Ga-3aA1_s00046; Ga-CB1_s00036 and Ga- 
3aA1_s00044; Gt-4e_s00056 and Gt-23d_s00105; Fig. 2b). In contrast, 
there were also apparently static elements, being closely related 
and in the same orientation and position within different genomes 
(e.g. Gt-LH10_s00088 and Ga-3aA1_s00046; Gt-4e_s00058 and 
Gt-23d_s00103). The question of how similar elements must be to 
be considered “the same” is also pertinent, as there was one case 
of closely related elements at different locations within the same 
host genome, although 1 lacking predicted flanking repeats 
(Gt-23d_s00105 and Gt-23d_s00099). Elements becoming multi- 
copy in the genome may arise from mobilization of an ancestral 
element followed by sexual recombination between 2 hosts with 
the element in the original and more recent genomic location, re-
spectively (Urquhart et al. 2023).

While cargo gene content was evidently a contributing factor to 
the patterns of Gaeumannomyces element relatedness recovered 
from the k-mer -based phylogenies, the nature of a k-mer -based 
approach means that intergenic content within Starships must 
also be implicated. Indeed, repetitive DNA, introns, and presum-
ably other noncoding regions can provide important phylogenetic 
signals (Lo et al. 2022). Here, the only 2 GtA elements found, 1 in 
each GtA genome, contained a single cargo gene despite being 
61 and 73 kbp long. In the larger k-mer tree of starfish-predicted 
elements the GtB and Ga elements were closely related to sordar-
iomycete elements from the pathogenic rice blast fungus 
Pyricularia oryzae (syn. Magnaporthe oryzae) and a eurotiomycete 
clade, while the single-gene GtA elements were in a distinct clade 
more closely related to an element from the sordariomycete spe-
cies Sporothrix brasiliensis, albeit without significant branch 

a b c

Fig. 3. Comparison of cargo gene content similarity across Gaeumannomyces Starships. a) An upset plot indicating groups of elements which share at least 5 
orthologous genes (accessory), and elements with at least 5 unique cargo genes (specific). Elements are ordered by phylogenetic relationships taken from 
Supplementary Fig. 2. Total number of cargo orthogroups is shown in the right-hand bar plot with the proportion of accessory and specific cargo genes 
colored per element. Element rows are colored by host lineage. A representation of all shared accessory orthologous genes is given in Supplementary Fig. 7. 
b) An upset plot indicating the ratio of orthologous genes shared across lineage/species boundaries. c) A tanglegram comparing the topology of 
Gaeumannomyces elements taken from Supplementary Fig. 2 and a hierarchical clustering of cargo orthologous gene presence-absence.
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support (Supplementary Fig. 2). S. brasiliensis is found in soils and 
vegetation, but is also an opportunistic mammalian pathogen, 
primarily of humans and cats, due to its temperature-dependent 
dimorphic lifestyle (Téllez et al. 2014). Despite being a similar 
length (57 kbp) to the GtA elements, the S. brasiliensis element con-
tained 19 genes, none of which showed sequence similarity with 
the single gene found in the GtA elements. This suggests that it 
was primarily noncoding cargo content that informed k-mer 
-based relationships between the S. brasiliensis and GtA elements. 
The GtA elements were also previously found to have likely under-
gone repeat-induced point mutation (RIP) (Hill et al. 2025). RIP in-
duces transition mutations in repetitive DNA, with a particular 
bias for C→T mutations targeting CpA dinucleotides, and so 
RIP-like signatures in genomic sequences manifest as biases in 
the relative frequencies of dinucleotides (Lewis et al. 2009; Hane 
et al. 2015). This raises the question of whether or to what extent 
signatures of RIP, such as a higher frequency of TpA dinucleotides, 
influence k-mer -based inference of element relationships, espe-
cially in cases with extensive intergenic cargo content.

The whole-element k-mer trees, captain tree, and the patterns 
of shared cargo genes indicated that there is no apparent species 
boundary for Starship content between GtB and Ga. We found no 
evidence of similarity with GtA elements, although there was 
only 1 gene-poor GtA element with which to compare. We see 2 
possible scenarios: (1) elements were in the common ancestor of 
all 3 lineages and lost in GtA or (2) elements are readily exchanged 
between Ga and GtB strains, whether through HGT or interspecific 
hybridization. Either way, together with the fact that, unlike the 
other Gaeumannomyces elements, the GtA elements were previous-
ly found to be subject to element-wide RIP (Hill et al. 2025), Starship 
prevalence and divergence may be another symptom of cryptic 
speciation between Gt types. Although GtB and Ga elements ap-
pear to be closely related, there was an imbalance in how cargo 
genes were shared, as a higher proportion of Ga cargo genes had 
an orthologue in GtB elements (56%) than GtB cargo genes had 
in Ga elements (38%; Fig. 3b). Additionally, there were differences 
in how cargo genes were distributed in the genome, with more car-
go gene orthogroups only found inside Ga elements that had cop-
ies integrated into the wider genome in Gt strains than the reverse 
(Supplementary Fig. 8a). In a similar vein, Ga Starships broadly had 
a higher proportion of orthogroups that were only inside the elem-
ent compared with GtB Starships (Supplementary Fig. 8b). 
Unpicking the differences in relative levels of duplication, shared-
ness, and location of cargo genes on different Starships may be im-
portant for determining patterns of inheritance or selection.

Gaeumannomyces Starship cargos harbor  
a variety of putative plant–fungal interaction 
genes, but the ToxA gene was notably absent
Most genes previously reported to be common, or notable, 
in Starships (Gluck-Thaler et al. 2022) were absent from 
Gaeumannomyces Starship cargos, namely DUF3723, FRE, PLP, and 
spore-killer (Spok1) genes. There was 1 putative NOD-like receptor 
(NLR) located on element Gt-23d_s00107 (Fig. 2). The NLR con-
tained a central NACHT domain—the most common nucleotide 
binding and oligomerization (NOD) domain in fungal NLRs 
(Daskalov et al. 2020)—a WD40 repeat domain, and a sesA 
N-terminal domain of unknown function (PF17107) that is more 
common in ascomycete NLRs (Daskalov et al. 2020). This 
sesA-NACHT-WD structure is also found in the NWD3 gene of 
the model experimental fungus Podospora anserina (Daskalov et al. 
2012). While the function of sesA is not established, other 
members of the P. anserina NWD gene family are involved 

in heterokaryon/vegetative incompatibility or self/nonself- 
recognition, which has also been hypothesized to contribute to 
an innate fungal immune system (Paoletti and Saupe 2009; 
Uehling et al. 2017).

Of particular note was the absence of the necrosis-inducing 
ToxA effector in the Gaeumannomyces cargos, which is located in 
Starships in 3 other wheat pathogens—Pyrenophora tritici-repentis, 
Parastagonospora nodorum, and Bipolaris sorokiniana (McDonald et al. 
2019; Bucknell et al. 2024). Py. tritici-repentis and Pa. nodorum are 
known to frequently co-infect wheat (Abdullah et al. 2020), and Py. 
tritici-repentis and B. sorokiniana together form a leaf blight disease 
complex (Kumar et al. 2002). While we could not find information 
on the potential co-occurrence of Gaeumannomyces spp. and other 
wheat pathogens in the literature, based on their global distribu-
tions and the global distribution of the wheat crop, it is highly likely 
that Gaeumannomyces spp. also co-occur with 1 or more of these 
wheat pathogens (Větrovský et al. 2020), which would have provided 
the opportunity to exchange Starships. However, all 3 species con-
taining ToxA reside in a different class, Dothideomycetes, in the order 
Pleosporales. At the present time, the lack of ToxA in the 
Gaeumanomyces Starships is consistent with our k-mer tree results in-
dicating a host relatedness boundary to Starship exchange.

Regarding whether the Gaeumannomyces Starship cargos exhib-
ited a core functional role, GO term enrichment analysis of cargo 
genes reflected high variability as there was no significant enrich-
ment in most elements, although ubiquinone biosynthesis and 
regulation of translational fidelity were significantly enriched in 
Ga-3aA1_s00044 and Ga-CB1_s00036, respectively. There were no 
cargo orthogroups that were core to all elements, but 5 orthogroups 
were present in at least 50% of the elements (Supplementary Fig. 7). 
One was predicted to be a carbohydrate-active enzyme (CAZyme) 
belonging to glycosyltransferase family 2 (GT2; Fig. 2). The GT2 fam-
ily includes enzymes necessary for the synthesis of chitin (Lairson 
et al. 2008), which is required for the structural integrity of the fun-
gal cell wall (Bowman and Free 2006). A GT2 enzyme has been de-
monstrated to be required for the disease-causing abilities of the 
wheat pathogens Zymoseptoria tritici and Fusarium graminearum 
(King et al. 2017). Expansion and contraction of GT2 CAZyme genes 
have been shown to be strong predictors of phytopathogenicity and 
saprotrophy, respectively (Dort et al. 2023), but GT2 genes are also 
expanded in mycorrhizal lineages (Rosling et al. 2024), suggesting 
a key role in both pathogenic and mutualistic plant–fungal interac-
tions. In addition to the prevalent GT2 orthogroup, other CAZymes 
and CAZyme families were found in various elements: sterol 
3β-glucosyltransferase (GT1), glycoside hydrolase (GH) family 33, 
α-galactosidase (CBM35 + GH27), and glucose-methanol-choline 
oxidoreductase (AA3_2) in elements Ga-3aA1_s00044 and Ga- 
CB1_s00036; chitinase (GH18) in Gt-LH10_s00085; and another 
GT2 CAZyme in Gt-23d_s00099.

Multiple Gaeumannomyces Starship cargo genes had BLAST hits 
to genes in the PHI-base database, which compiles and curates ex-
perimentally verified genes implicated in pathogen–host interac-
tions (Urban et al. 2025). This included 4 genes in the closely 
related P. oryzae which have been associated with virulence in bar-
ley and rice, 2 of which are implicated in calcium signaling and 2 
transcription factors, and the previously mentioned GT2 CAZyme 
which has been associated with virulence of Zymoseptoria tritici 
and Fusarium graminearum in wheat leaves and floral spikes, re-
spectively (Table 1). Intriguingly, the chitinase CAZyme cargo 
gene in element Gt-LH10_s00085 matched a chitinase gene in 
the mycoparasite Trichoderma virens which is associated with its 
virulence toward the basidiomycete plant pathogen Rhizoctonia sola-
ni. Trichoderma species are known for endophytic colonization of 
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plants, particularly roots, and in some cases can reduce disease via 
both inducing plant resistance and direct antagonism of other fungi 
(Harman et al. 2004). Two further orthogroups had BLAST hits to 
CAZyme genes in PHI-base (Xyp1 and PELB/CcpelA); however, as 
these were not previously flagged during CAZyme annotation (Hill 
et al. 2025) there remains some uncertainty as to their function.

Also of note is that none of the biosynthetic gene clusters 
(BGCs) previously identified in the Gaeumannomyces genomes 
were present in any Starships, but 2 cargo genes had hits to 
PHI-base genes implicated in secondary metabolite synthesis in 
Fusarium species, namely nrps5 and FUG1. The latter is involved 
in fumonisin (FUM) synthesis in Fusarium verticillioides (Ridenour 
and Bluhm 2017), but is located on a separate locus to the FUM 
gene cluster, suggesting that it may play a regulatory role, as bio-
synthesis transcription factors can frequently be located outside 
of contiguous BGCs (Kwon et al. 2021). FUG1 was also previously 
found to have orthologs across Ascomycota, including in Gt 
(Ridenour and Bluhm 2017). The non-ribosomal peptide synthe-
tase nrps5 gene is located alongside nrps9 in an 8-member BGC 
cluster in Fusarium species, which produces fusaoctaxin A and is 
essential to virulence of F. graminearum in wheat (Jia et al. 2019). 
However, none of the genes surrounding the nrps5-like gene in 
the Gaeumannomyces elements showed similarity to the other 
nrps5/9 cluster members. We also found an uncharacterized can-
didate secreted effector protein (CSEP) gene in 1 element (Ga- 
CB1_s00036). Intriguingly, this CSEP was located within a region 
that was highly syntenic with another element (Ga-3aA1_s00044) 
but the CSEP was not present in that second element (Fig. 2), under-
lining the dynamism of Starship cargos.

Conclusions
Here, we provide evidence of a difference in evolutionary history 
between Starship elements in their entirety vs their captain genes. 
This raises the question: is it more important to define Starships by 
their mode of mobilization—i.e. the tyrosine recombinase captain 
gene—or the cargo of genes and noncoding/repetitive content mo-
bilized? The answer to that question will depend on the context in 
which the question is asked, namely, whether the inquiry at hand is 

to understand the mechanism of transposition, or to understand 
how elements and their cargos evolve and impact host fitness. 
Whole-element relationships are easily assessed using k-mer 
-based phylogenetic methods, which have revealed previously hid-
den signals corresponding to host taxonomy. These methods also 
allow us to assess relationships including “degraded” elements 
where captains and/or DRs/TIRs have been lost. By accounting for 
the composition of Starships without being hampered by alignment 
issues caused by repeats, indels, duplications, rearrangements and 
inversions, or lack of available sequences in general, k-mer -based 
phylogenetic methods can help to refine the existing haplotype- 
based classification of CMEs. Beyond informing classification, this 
new approach could also provide context and new insights to ad-
dress fundamental outstanding questions regarding Starships and 
other CMEs, such as the evolutionary origins of elements, the preva-
lence of HGT, and the role of elements in the host genome.
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PHI-base ID Gene Function Species Mutant phenotype Plant–host

PHI:7559 FgGT2 glycosyltransferase Fusarium graminearum Loss of pathogenicity Triticum aestivum
PHI:2057 MoPLC1 modulator of calcium flux Pyricularia oryzaeb Loss of pathogenicity Oryza sativa
PHI:3837 Sre1 iron-sensitive transcription factor Bipolaris maydis Reduced virulence Zea mays
PHI:2476 CcpelAa pectate lyase Colletotrichum coccodes Reduced virulence Solanum lycopersicum
PHI:222 PELBa pectate lyase Colletotrichum gloeosporioides Reduced virulence Persea americana
PHI:9042 nrps5  

(FGSG_13878)
non-ribosomal peptide  

synthetase
Fusarium graminearum Reduced virulence Triticum aestivum

PHI:6262 FUG1 role in pathogenicity and  
fumonisin biosynthesis

Fusarium verticillioides Reduced virulence Zea mays

PHI:3315 conx1 Zn2Cys6 transcription factors Pyricularia oryzaeb Reduced virulence Oryza sativa
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