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RESEARCH ARTICLE                       

Multiscale spatially varying coefficient modelling using a 
Geographical Gaussian Process GAM

Alexis Combera , Paul Harrisb and Chris Brunsdonc 

aSchool of Geography, University of Leeds, Leeds, UK; bSustainable Agriculture Sciences, 
Rothamsted Research, North Wyke, UK; cNational Centre for Geocomputation, Maynooth University, 
Maynooth, Ireland 

ABSTRACT 
This paper proposes a novel spatially varying coefficient (SVC) 
regression through a Geographical Gaussian Process GAM (GGP- 
GAM): a Generalized Additive Model (GAM) with Gaussian Process 
(GP) splines parameterised at observation locations. A GGP-GAM 
was applied to multiple simulated coefficient datasets exhibiting 
varying degrees of spatial heterogeneity and out-performed the 
SVC brand-leader, Multiscale Geographically Weighted Regression 
(MGWR), under a range of fit metrics. Both were then applied to a 
Brexit case study and compared, with MGWR marginally out-per
forming GGP-GAM. The theoretical frameworks and implementation 
of both approaches are discussed: GWR models calibrate multiple 
models whereas GAMs provide a full single model; GAMs can auto
matically penalise local collinearity; GWR-based approaches are 
computationally more demanding; MGWR is still only for Gaussian 
responses; MGWR bandwidths are intuitive indicators of spatial het
erogeneity. GGP-GAM calibration and tuning are also discussed and 
areas of future work are identified, including the creation of a 
user-friendly package to support model creation and coefficient 
mapping, and to facilitate ease of comparison with alternate SVC 
models. A final observation that GGP-GAMs have the potential to 
overcome some of the long-standing reservations about GWR- 
based regression methods and to elevate the perception of SVCs 
amongst the broader community.
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1. Introduction

A standard linear regression seeks to model the relationship between a response vari
able and a series of predictor variables. Via ordinary least squares (OLS), it estimates a 
single set of unknown regression coefficients for each predictor (and intercept) 
together with errors that are assumed independent and identically distributed with 
mean zero and a uniform variance (usually denoted r2). A standard OLS regression 
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assumes that the errors have a Gaussian distribution. For non-Gaussian response varia
bles (such as integer count data), the OLS regression can be replaced with a 
Generalized Linear Model (GLM) (Nelder and Wedderburn 1972; McCullagh and Nelder 
2019) whose coefficients are typically estimated via maximum likelihood (ML). For 
greater flexibility in capturing non-linear relationships between the response and pre
dictors, a GLM can be extended by a Generalized Additive Model (GAM) (Hastie and 
Pregibon 2017) where each regression relationship can be modelled non-linearly, as 
an arbitrary function, say through splines or some other smoothing tool.

OLS regression and classic forms of GLM assume fixed (constant) coefficient 
processes. However, in reality, the relationship between the response and predictor 
variables in a geographical context may change with observation location, potentially 
due to unaccounted-for local factors or due to spatial heterogeneity in the process 
being examined. In this context, spatially varying coefficient (SVC) models provide an 
alternative to ‘whole map’ or global regressions that may incorrectly assume spatial 
stationarity in regression coefficients (Openshaw 1996). GAM smoothing functions 
allow for varying (non-constant) coefficient processes in attribute-space. In geographic 
space, spatial settings for the GAM smoothing functions are possible leading to the 
characterisation of response-to-predictor relationships changing across space, i.e. a 
SVC model.

The most popular SVC model is Geographically Weighted Regression (GWR) 
(Brunsdon et al. 2010) which has been subject to a number of developments including 
Multiscale GWR (MGWR) (Yang 2014; Fotheringham et al. 2017) which is now recom
mended as the default GWR (Comber et al. 2023). Interestingly these can be viewed in 
terms of a GAM (Brunsdon et al. 1999; Yu et al. 2020), where coefficients are estimated 
from data subsets falling under distance-weighted kernels around any spatial location 
via a weighted least squares algorithm for GWR and an iterative back-fitting algorithm 
for MGWR.

The focus of this study is only for multiscale SVC models, that allow each predictor-to- 
response relationship to operate at its own spatial scale. MGWR is the most popular SVC 
model (Comber et al. 2021, 2023). Other widely applied multiscale SVC models include 
Bayesian Gaussian Process (GP) models that use co-kriging (via a linear Model of Co- 
regionalisation (LMC)) (Bayes-GP) to generate unknown coefficients that are assumed spa
tially co-dependent stochastic processes (Gelfand et al. 2003; Finley 2011; Kim and Lee 
2017; Finley and Banerjee 2020) and Eigenvector Spatial Filtering (ESF) with Moran coeffi
cients (ESF-MC) (Murakami and Griffith 2015; Murakami et al. 2017) that extends the deter
ministic ESF model (Griffith 2008) with random effects to model stochastic spatial 
processes. These SVC constructs can be shown to have a direct relationship to each other 
(Murakami et al. 2017), where comparisons with MGWR can be found in the simulated 
studies of Wolf et al. (2018) and Murakami et al. (2019) for Bayes-GP and ESF-MC, respect
ively. Such comparative studies concluded that no-one multiscale SVC model could be 
considered significantly better than another, when jointly considering model accuracy and 
precision, computational overheads, and ease of application for the novice user. More 
recently, multiscale SVC models include a model that uses triangulation with bivariate 
spline estimators (Mu et al. 2018), a GP-based model that uses a frequentist approach 
with ML estimation (Dambon et al. 2021), and a GLM-based model that uses a reduced- 
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rank spline methodology (Fan and Huang 2022), but at the time of writing community 
take up for these models has been limited.

For this study, a novel SVC model is proposed as an alternative, not only to MGWR, 
but also to Bayes-GP, ESF-MC and the more recent SVC models listed above: a 
Geographical Gaussian Process GAM (GGP-GAM), in which GP splines are parameter
ised at observation locations. The combination of a GAM with GP splines constitutes 
the key advance. The main theoretical limitation with MGWR (and GWR) is that its 
rudimentary kernel-based parameterisation means that only a collection of local mod
els is used to capture and quantify the non-stationary processes (re-using data each 
time), whereas Bayes-GP, ESF-MC and GGP-GAM each provide a single, global model 
formulation that is still non-stationary in nature (e.g. Finley (2011); Wolf et al. (2018)). 
This has led some to argue that MGWR (and GWR) is best suited to exploratory rather 
than inferential analyses (Wheeler and Calder 2007; Finley 2011; Dambon et al. 2021). 
However, the practical consequences of this theoretical limitation can in part, be quan
tified and are often marginal (Li et al. 2020; Yu et al. 2020). The GGP-GAM is evaluated 
through a simulation experiment with MGWR as comparison, and also through an 
empirical case study with UK Brexit vote data.

Common challenges across all multiscale SVC models, include: (i) sensitivity to the 
parameterisation of the spatial smoothing function (e.g. sensitivity to the location and 
number of knots in GGP-GAM, sensitivity to kernel and bandwidth form in MGWR, 
ensuring a positive-definite fit for the LMC in Bayes-GP), (ii) collinearity in the predic
tors (e.g. for instances of local collinearity when not present globally), (iii) use as a spa
tial predictor, (iv) computational burden, and (v) ease of application for the novice 
user together with intuitive understandings of process spatial heterogeneity from 
model outputs. Each of these challenges are discussed for the proposed GGP-GAM 
model in relation to MGWR only.

Comparison with MGWR is important as currently such studies exist only for basic 
GWR, where all non-stationary relationships are naively assumed to operate at the 
same spatial scale. For example, P�aez et al. (2011) and Fotheringham and Oshan 
(2016) examined GWR’s sensitivity to local collinearity; Harris et al. (2010) and Harris 
et al. (2011) for GWR’s use as a spatial predictor, including hybrids with kriging; Li 
et al. (2019) and Lu et al. (2022) describe computational solutions to implementations 
of GWR. Whilst MGWR has some benefits to dealing with local collinearity (Harris 
2019), its value as a spatial predictor is unclear (Lu et al. 2019) and its underlying 
back-fitting algorithm is computationally expensive (Fan and Huang 2022). Both GWR 
and MGWR also suffer from an absence of a generic framework for any form of 
Geographically Weighted model (Comber et al. 2022), whereas frameworks for GAMs 
are relatively mature meaning that issues such as those for collinearity are more easily 
resolved through various penalised model options in GAM R packages.

2. GAMs with Gaussian Process splines

2.1. GAMs

Generalized Additive Models (GAMs) are general in that they can handle outputs with 
many types of distributions and not just linear relationships, polynomial or not (Wood 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



2006; Fahrmeir et al. 2022). They are additive and because they generate multiple 
model terms which are added together to generate predictions. Methodologically, 
GAMs offer a middle ground between simple but interpretable linear models and com
plex but opaque machine learning approaches, where it is difficult to understand how 
one variable relates to an outcome. Thus GAMs provide an intuitive approach to fit 
relatively complex relationships in data with complex interactions and non-linearities, 
and the outputs provide easily understood measures of the relationship between pre
dictor and response variables and how the outcome is modelled. They are able to pre
dict well from complex systems, to quantify relationships and to make inferences 
about these relationships, for example about what variables are important and at 
what range of values are they most influential. GAMS can perform as well or better 
than most machine learning models and they are relatively fast.

GAMs typically model non-linear relationships using splines. Other approaches to 
modelling can also fit into a GAM framework, but in many situations splines are the 
building blocks of GAMs. A spline can be represented as a linear combination of func
tions called �basis functions�. Each of these is assigned a coefficient and these are lin
early combined to generate the predictions of outcome (ŷ). Basis functions can be 
single or multi-dimensional in terms of predictor variables. Thus, the form of a GAM is 
composed of linear sums of multi-dimensional basis functions and this is what allows 
complex relationships to be modelled.

Splines can be of different forms depending on the problem and data (see below) 
and need to include an appropriate degree of ‘wiggliness’ to model non-linear rela
tionships. This is determined by the spline smoothing parameter. If this is too small 
then the model will overfit the data, resulting in too many bases and too much noise 
in the function. If it is too large then the functions will be overly simple and fail to 
represent the complexity of the relationship. Thus a core problem to resolve in GAMs 
is to determine the smoothing parameters and balance overfitting versus capturing 
the complex in the relationship. This is done automatically in the GAM functions of 
the ‘mgcv’ R package (Wood 2015) used in this work.

Some earlier work has combined GAMs with location. Kelsall and Diggle (1998) 
used GAMs to estimate covariates with a discrete smooth (spline) for location. 
However they did not look at the interactions of individual covariates over space as 
was done by Kammann and Wand (2003), who combined geostatistical approaches 
with a GAM by merging kriging, cast as a linear mixed model, with an additive model 
in order to account for non-linearity. However, this was only done for the intercept 
and for prediction rather than process understanding. In recent work, Fan and Huang 
(2022) proposed a SVC model via a GLM with reduced-rank thin-plate splines. In these, 
the rotations of the covariates are not changed and the splines are fitted with fewer 
coefficients than there are data to smooth using an Eigen-decomposition for 
coefficient (rank) reduction. An alternative approach to SVC modelling is to consider 
the predictor-to-response relationship over space as a GP. Here a GP is a random 
process over functions whose terms can be modelled using GP splines within a GAM. 
In this work, a low rank GP spline, parameterised with location was used rather 
than the more standard thin-plate spline. This is because GPs are good for 
specifying autocorrelation in spatially-varying random functions and GP-based 
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smoothing using observations at specific locations should detect any spatial trends in 
the data.

2.2. A Geographical Gaussian Process GAM for SVC modelling

GAMs provide a method for calibrating regression models with unspecified functions 
of the predictor variables, of the form:

y ¼ aþ f1ðz1Þ þ f2ðz2Þ þ � � � þ fmðzmÞ þ � (1) 

where zj may be a scalar or a vector.
These can be extended such that each fjðzjÞ is a linear regression coefficient on 

another scalar predictor xj:

y ¼ aðz0Þ þ x1f1ðz1Þ þ x2f2ðz2Þ þ � � � þ xmfmðzmÞ þ � (2) 

Finally, if z0 ¼ z1 ¼ � � � zm ¼ z say, and z is a vector of locations then this specifies a 
SVC model:

y ¼ aðzÞ þ x1f1ðzÞ þ x2f2ðzÞ þ � � � þ xmfmðzÞ þ � (3) 

One way of specifying aðzÞ � � � fmðzÞ is that each function is generated from a GP 
and each function estimate is an a posteriori estimate of a GP with a zero mean.

Importantly in the context of this work, GPs also have a covariance function:

jmðdÞ ¼ CovðfmðdÞ, fmðz þ dÞÞ (4) 

These control the smoothness of fmðzÞ, such that the more jmðdÞ decreases as d 

increases, the smoother fmðzÞ tends to be. In this sense, these are similar to models 
based on kriging (that similarly use covariance functions via semivariograms) and simi
lar to MGWR, as the covariance function for each fmðzÞ is individually calibrated to 
optimise model fit. Thus a key task in the GAM, in the context of SVCs, is to estimate 
parameters in each jmðdÞ and so estimate fmðzÞ:

A GAM uses smooth functions of the predictor variables in which the values of y 
are assumed to have an exponential family distribution:

fðyjhÞ ¼ hðyÞ exp �ðhÞTðxÞ − AðhÞð Þ (5) 

where hð:Þ, �ð:Þ, Tð:Þ and Að:Þ are known functions, and h is a vector of parameters. 
This very flexible form can represent a wide range of commonly used distributions 
such as Gaussian, Poisson, Gamma, or Binomial with a known number of trials. If

y ¼ fðxÞ þ � (6) 

where f is the function being modelled, then in GAMs a space of functions, or basis, is 
chosen of which f is some element, rather than more specifically assuming y to be 
some linear function of x. This allows the basic formula above to be expanded:

y ¼ fðxÞ þ � ¼
Xd

j¼1

jjðxÞcj þ � (7) 

where each jj is a basis function of the transformed x and the c are the corre
sponding regression coefficient estimates. One example of a basis is a GP basis. If 
there are n distinct geographical locations in the data set, knowing the locations 
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and the covariance function j allows the variance-covariance function of the values 
of bj in each location to be found, giving a variance-covariance matrix R. This can 
be translated into a set of n basis vectors jjðxÞ (Hefley et al. 2017), and the GAM 
can be calibrated in this way. Thus, in contrast to standard linear models, the pre
dictors in a GAM include smooth non-linear functions of some or all of the covari
ates, which allows for non-linear relationships between the predictors and the 
target variable.

It is this local fitting that starts to hint at how GAMs can be used with geographic 
data, if the non-linear relationships are constructed over geographical space. This can 
be done by constructing splines that represent the GP parameterised by location as 
well as attribute space. Specifically a GP spline with location can be specified for each 
covariate j, although because the GP has a mean zero, a further constant aj is added 
as an offset, creating a spatially varying coefficient bjðzÞ: In the standard 2D case, zi ¼

ðui, viÞ: This is the Geographical Gaussian Process GAM (GGP-GAM) described in this 
paper.

3. A simulation case study

Simulated spatial data sets with varying degrees of regression relationship heterogen
eity were used to examine the performance of the GGP-GAM and to compare that 
with the performance of a standard MGWR. The simulated data were created in a simi
lar way to Fotheringham et al. (2017) and used subsequently by others (e.g. Fan and 
Huang (2022)), with the aim of simulating the coefficient estimates (bjðzÞ’s) for 
Equation (8):

yi ¼ a0 þ b0ðui, viÞ þ b1ðui, viÞxi1 þ b2ðui, viÞxi2 þ �i (8) 

Three coefficient surfaces were created over a 25� 25 regular square grid. Each of 
the surfaces was assigned to the coefficients of the three predictor variables as fol
lows:

bzero ¼ b0ðu, vÞ ¼ 3 (9) 

blow ¼ b1ðu, vÞ ¼ 1þ
1

12
ðuþ vÞ (10) 

bhigh ¼ b2ðu, vÞ ¼ 1þ
1

324
36 − ð6 −

u
2
Þ

2
� �

36 − ð6 −
v
2
Þ

2
� �

(11) 

The values for predictors x1 and x2 were generated from a normal distribution in 
the range [0, 1] (i.e Nð0:50, 0:17Þ) and � from normal distribution in the range [0, 0.25] 
(i.e. � � Nð0:04, 0:11Þ), and 100 surfaces were generated. The values of the response y 
can be found directly from the simulated coefficients, the simulated predictor variables 
and the simulated error term. The simulated true regression coefficient surfaces are 
shown in Figure 1, which the analysis will seek to estimate using GGP-GAM and 
MGWR.

As discussed above, GP splines can be used within a GAM model. The mgcv R 
package (Wood 2015) was used to construct the GAM with GP splines with a GP 
smooth and for the simulation data, the spatial locations were extracted from (u, v) 
respectively. In this package, a parameter which controls the degree of smoothing of 
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the data (via the GP’s correlation function) is optimised and as such potentially indi
cates the locally varying nature of the coefficient estimate in a similar way to MGWR 
bandwidths. The GPs modelled in the GAM function all have a mean of zero, so for 
each covariate an extra fixed offset term is added along with the spatially smoothed 
terms. All of the MGWR models were fitted using the GWmodel R package (Lu et al. 
2014; Gollini et al. 2015).

The simulated coefficient surfaces for b0, b1, b2 in Figure 1 and the 100 simulated 
values of x1, x2 and � were used to create a 100 sets of predictor variables over the 
625 surface points, y. These values of true y, x0, x1 and x2 were then used as inputs to 
the GGP-GAM model (i.e at 625 located observations with 4 fields) to generate coeffi
cient estimates. For comparison, a MGWR was also undertaken with the same data. 
The spatially located coefficient estimates for both models were retained and used to 
generate measures of coefficient accuracy by comparing the model estimated coeffi
cients with true ones in Figure 1, generating R2 for b1 and b2 (as b0 is stationary R2 

cannot be computed) and RMSE and MAE for b0, b1, b2. An assessment of model fit 
for predicted y (ŷ) and true y for GGP-GAM and MGWR is found using AIC. This was 
done for each of the 100 sets of simulated y, x0, x1 and x2.

The results are shown in Figure 2. Under each fit measure, (AIC, RMSE, MAE, R2) 
the GPP-GAM generates more accurate estimates of the true coefficients than 
MGWR, with the difference in fit measures increasing with increasing degrees of spa
tial heterogeneity. The distributions of AIC values indicate the GGP-GAM to have 
consistently lowered AIC to that found with MGWR, indicating improved model parsi
mony and fit with GGP-GAM. This is also shown visually using an example set of b 

values from the 100 sets of coefficients estimated by the GGP-GAM and by the 
MGWR to recreate the surfaces for b0, b1, b2. Figure 3 shows the coefficient surfaces 
estimated from the 4th set of simulations, with the same shading breaks as Figure 1. 
The better performance of the GGP-GAM in estimating the true bs is clearly 
demonstrated.

A final comparison concerns the estimated scale of process spatial heterogeneity. In 
a MGWR model this is indicated by the optimised parameter-specific bandwidths that 

Figure 1. The simulated regression coefficient surfaces with zero, low and high spatial heterogeneity.
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explicitly describe the scale of the predictor-to-response relationship. In a GGP-GAM, 
this is indicated through the smoothing parameters (SPs) for each spline. Table 1 sum
marises the MGWR adaptive bandwidths and the GGP-GAM spline SPs for the 100 
models using simulated data. What is interesting is the homogeneity of the band
widths identified under the MGWR models and heterogeneity of the spline SPs values 
identified under the GGP-GAMs. However, this is related to the nature of the GAM SPs 
which are parameters in a covariance function, and thus not equivalent to a band
width. Here the GGP-GAM models were constructed using the mgcv package defaults. 
The result was that the number of knots, k, which defines the basis dimension in a 
spline, was automatically set at 33 in each GGP-GAM. Normally, k is iteratively deter
mined (S. Wood 2015), as done in the empirical analysis below. Thus, the heterogen
eity of the spline SPs in Table 1 is probably a result of under-fitting. This point is 
returned in the Discussion section.

Figure 2. Evaluation of the accuracy of the GGP-GAM and MGWR regression coefficient estimates, 
when compared to the true coefficients, and with the distribution of AIC values for model fit.
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4. An empirical case study: the UK Brexit

4.1. Data

A spatial analysis of the factors associated with the 2016 referendum on EU member
ship (Brexit) was used to empirically illustrate the proposed GGP-GAM approach and 
to compare it with MGWR. Census and voting data were obtained from the parli
tools R package (Odell 2020). This includes data on voting for the 632 Westminster 
parliamentary constituencies in Great Britain (i.e. excluding those in Northern Ireland, 
for which some data is missing). Information on the data and the package can be 
found at https://docs.evanodell.com/parlitools/. The voting data were linked to socio- 

Figure 3. The estimated regression coefficients from a single fit of the GGP-GAM and MGWR 
models, shaded using the same range as Figure 1.

Table 1. Summaries of MGWR bandwidths (BW) and GGP-GAM spline smoothing parameters (SP).
Min. Q1 Median Q3 Max.

GGP-GAM SP x0 9.2e-05 2.0e-02 2.3e-01 1.9eþ 04 4.3eþ 05
GGP-GAM SP x1 3.8e-05 1.3e-02 1.9eþ 02 1.3eþ 03 1.1eþ 05
GGP-GAM SP x2 2.3e-07 2.5e-06 9.1e-06 1.7e-05 2.5e-05
MGWR BW x0 10 10 10 10 13
MGWR BW x1 22 25 30 46 73
MGWR BW x2 10 13 13 25 26
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economic factors that were associated with the Leave vote as described in Beecham 
et al. (2020) and contained in the parlitools R package. A number of variables 
were chosen to illustrate the SVC model using a GGP-GAM relating to structural eco
nomic variables, age, and employment sector. These are summarised in Table 2. The 
constituency areas with an OSGM projection (https://epsg.io/27700) are available from 
the UK Office of National Statistics1 and the hexagonal cartograms are contained in 
the parlitools R package (Odell 2020). The response variable and the UK regions 
for reference are shown over both spatial structures in Figure 4. The predictor varia
bles over the hexagonal cartograms (hex-bins) are shown in Figures 4 and 5. The 
GGP-GAM and MGWR spatial analyses used the original untransformed data and the coor
dinates from the OSGB projected data, with the results displayed using the hex-bins.

4.2. A GGP-GAM analysis

Spatially varying coefficient models with the GGP-GAM were undertaken using the OSGB 
projected parliamentary constituency in Figure 4. The geometric centroids of each parlia
mentary constituency were extracted to generate X and Y (Easting and Northing) varia
bles in kilometres. A GGP-GAM was specified. Recall that the splines optimise a parameter 
which controls the degree of smoothing and that the GPs modelled in the GAM function 
all have a mean of zero, so for each covariate an extra fixed offset term was added along 
with the spatially smoothed terms. In this case the GGP-GAM was fully tuned by specify
ing a sufficiently high number of knots through the k parameter, in contrast to the GGP- 
GAMs applied to the simulated data above for which the defaults were used (k¼ 33). The 
value of k sets an upper limit on effective degrees of freedom associated with GP spline 
smooth and thus the splines bases. Higher values of k also increase computation time. 
However the choice of k is difficult to determine algorithmically or to optimise and a typ
ical approach is to investigate different values of k and adjust up or down as need. As 
Simon Wood notes in the mgcv R package manual under the choose.k help page, 
‘[the] exact choice of k is not generally critical: it should be chosen to be large enough 
that you are reasonably sure of having enough degrees of freedom to represent the 
underlying ‘truth’ reasonably well, but small enough to maintain reasonable computa
tional efficiency’ (Wood 2015). Here, the GGP-GAM was specified with a k¼ 60. This was 
large enough to accommodate the GGP-GAM parametric and spline parameters, and to 
ensure sufficient degrees of freedom. A summary of the fixed parametric coefficient 

Table 2. The variables used to construct the GGP-GAM of leave voting rates, for each parliamen
tary constituency.
Variable Description

Leave Leave vote (%)
to15 Turn out in the 2015 general election (%)
over65 Over 65s (%)
ttu Transport trade and utilities employment (%)
lhosp Leisure & hospitality employment (%)
manu Manufacturing employment (%)
Degree Degree (level 4) qualification (%)
badhealth Bad health (%)
bornuk UK born (%)
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estimates, the smooth terms of the GGP splines for the GGP-GAM model and the distribu
tion of the spatial varying coefficient estimates are shown in Tables 3–5, respectively.

The GGP-GAM fixed (parametric) coefficient estimates in Table 3 can be interpreted 
as linear terms in the model, in a similar way as the results of a standard linear regres
sion model. Here, only the Intercept and the covariate for the election 2015 turn out 
(Turn out (2015)) are globally significant.

Table 4 summarises the GGP-GAM smooth terms (GP splines) and the spline SPs. 
The SPs determine the ‘wiggliness’ of the SVCs and are controlled by the number of 
knots (k). Together these control the characterisation of the response-to-predictor 
relationships over space. The spline SPs are parameters in a covariance function that 
penalise the complexity of the model and k defines the basis dimension in a spline 
(also referred to as a smooth), and are generally indicative of the degree of variation 
in the predictor to response spatial relationship. Table 4 indicates that the SP is 

Figure 4. The Brexit leave vote majority over parliamentary constituencies with the UK regions, 
under an OSGB projection (left) and recast into hexagons (right).
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Figure 5. The predictor variables over parliamentary constituencies, recast into hexagons.

Table 3. The fixed (parametric) coefficients for the GGP-GAM.
Estimate Std. error t Value Pr(>jtj)

Intercept 63.566 6.087 10.443 0.000
Turn out (2015) −0.096 0.026 −3.732 0.000
Over 65s (%) 0.192 0.869 0.221 0.825
Transport & utilities employment (%) 0.085 0.920 0.092 0.927
Leisure & hospitality employment (%) 3.067 8.552 0.359 0.720
Manufacturing employment (%) 0.861 3.974 0.217 0.829
Degree qualification (%) −1.583 2.591 −0.611 0.542
Bad health (%) −0.858 2.276 −0.377 0.706
UK born (%) −0.029 1.233 −0.024 0.981

Table 4. The smooth terms of the GGP-GAM model, with the Spline smoothing parameters.
Spline SPs edf Ref.df F p-Value

s(X,Y):Intercept 3.24e-13 4.108 4.121 4.367 0.002
s(X,Y):Turn out (2015) 8.71eþ 01 2.500 2.500 6.351 0.051
s(X,Y):Over 65s (%) 1.59e-03 4.386 5.327 0.354 0.851
s(X,Y):Transport & utilities employment (%) 1.41e-03 6.572 7.982 0.746 0.653
s(X,Y):Leisure & hospitality employment (%) 1.48e-05 11.607 13.499 1.584 0.073
s(X,Y):Manufacturing employment (%) 7.13e-05 9.966 12.155 1.109 0.351
s(X,Y):Degree qualification (%) 1.62e-04 16.926 20.090 1.679 0.033
s(X,Y):Bad health (%) 2.35e-04 3.810 4.436 1.176 0.271
s(X,Y):UK born (%) 7.21e-04 31.584 37.638 1.444 0.050
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relatively small for the Intercept (10−13), relatively large for Turn out (2015) (101) and 
between 10−3 and 10−5 for the other covariates. The effective degrees of freedom 
(edf in the table) can be interpreted as an indicator of the non-linearity of the rela
tionship of the response (leave vote) with the predictor variables - i.e. the effective 
degrees of freedom would have a value of ~1 if the model penalized the smooth 
term to a near linear relationship. Higher edf values indicate increasing non-linearity 
in the relationship over a 2-dimensional space defined by (X, Y). All edf values are 
less than k indicating that it is adequately specified. The p-values relate to the 
splines defined over geographic space and their significance can be interpreted as 
indicating whether they vary locally. The p-values indicate that the Intercept, Degree 
qualification (%) and UK born (%) are significant locally. The insignificant p-values 
can be interpreted as indicating that although there are effects, these do not vary 
locally.

Table 5 summarises the distribution of the GGP-GAM SVCs. Most flip between being 
positive in some constituencies and negative in others, except for the Intercept, Over 
65s (%) and Transport & utilities employment (%), which are consistently positively 
associated with the leave vote. However the interpretation of these should be along
side the interpretation of the fixed parameters and the spline smooth terms: the 
Intercept is significant globally and locally; Turn out (2015) is globally significant with 
Degree qualification (%) and UK born (%) significant locally.

It also possible to map the spatial variation in the coefficient estimates generated 
by the GGP-GAM as in Figure 6. The spatial trends in the coefficients show a number 
of spatial patterns associated with different population characteristics and the leave 
vote share. The 2015 Turn out is positive associated in the East; Over 65s is positively 
associated except in the South West; Transport and utilities employment is positively 
associated except in the South East and London; Leisure and hospitality is negatively 
associated except in Scotland and the South West; Manufacturing is positively associ
ated except on the East, East Midlands and North East; Degree and Bad Health are 
negatively associated nearly everywhere; and Born UK is positively associated except 
in the South East, London and Scotland. So overall, for some covariates, there are 
some distinct differences between Scotland, the East, South East (including London) 
and the parts of the South West with the rest of the country, but in different direc
tions for different covariates, suggesting how individual factors were interacting in dif
ferent ways in these areas in relation to the leave vote.

Table 5. The distributions of the GGP-GAM spatially varying coefficient estimates (MAE ¼ 1.794 
Adjusted R2 ¼ 0.945; AIC ¼ 3131.3).

Min. 1st Qu. Median 3rd Qu. Max.

Intercept 12.80 48.65 56.99 82.64 114.52
Turn out (2015) −0.51 −0.27 −0.19 −0.10 0.05
Over 65s (%) 0.46 0.73 0.76 0.81 0.82
Transport & utilities employment (%) 0.13 0.24 0.38 0.47 0.54
Leisure & hospitality employment (%) −1.17 −0.91 −0.61 −0.19 1.39
Manufacturing employment (%) −0.41 0.07 0.20 0.35 2.04
Degree qualification (%) −1.65 −0.99 −0.82 −0.68 0.16
Bad health (%) −3.01 −2.04 −1.72 −1.25 0.58
UK born (%) −0.28 −0.03 0.11 0.23 0.51
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Figure 6. The spatially varying coefficient (SVC) estimates from GGP-GAM.
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4.3. A MGWR analysis

Finally it also is possible to compare the GGP-GAM results with those from a MGWR. 
Summaries of model fit and accuracy are shown in Table 6. Comparing the diagnostics 
of AIC, adjusted R2, and MAE for the GGP-GAM and MGWR models indicates that the 
MGWR model exhibits marginally better metrics: broadly they seem to be performing 
as well as each other. Table 7 summarises the MGWR SVCs and the parameter-specific 
adaptive bandwidths. It is instructive to examine the variation in these and to com
pare with the GGP-GAM SVCs in Table 5. Comparing the SVC inter-quartile ranges indi
cates that both models exhibit similar levels of variation for many of the covariates, in 
terms of their sign and range, except for the following:

� Transport & utilities employment (%): negative in MGWR, positive in GGP-GAM.
� Leisure & hospitality employment (%): flips sign in MGWER, negative in GGP-GAM.
� Bad Health (%): flips sign in MGWER, negative in GGP-GAM.
� UK born (%): positive in MGWR, flips sign in GGP-GAM.

This suggest that in general the inference (understanding) supported by each model 
is largely similar when the associations between the target variable and individual 
covariates are considered, but with some potentially important differences as described 
above.

5. Discussion and conclusion

Spatially varying coefficient (SVC) models explicitly accommodate process spatial non- 
stationarity, where statistical relationships expressed using regression coefficient esti
mates are allowed to vary with location. SVCs provide an explicit representation of 
process spatial heterogeneity and can be mapped to describe how and where statis
tical relationships vary. These in turn provide insights into variations in the underlying 
socio-economic, environmental or other kind of geographical process, and support the 
spatial ‘detective work’ that is core activity in much spatial and geographical analysis.

Table 6. Comparison of the model fit diagnostics for the GGP-GAM and MGWR models.
R-squared MAE AIC

GGP-GAM 0.953 1.794 3131.3
MGWR 0.966 1.582 2927.1

Table 7. The distributions of the MGWR spatially varying coefficient estimates and the adaptive 
bandwidths.

Min. 1st Qu. Median 3rd Qu. Max. Bandwidths

Intercept 27.202 48.550 63.901 106.228 130.530 18
Turn out (2015) −0.078 −0.077 −0.075 −0.073 −0.070 630
Over 65s (%) 0.398 0.401 0.406 0.415 0.445 630
Transport & utilities employment (%) −1.448 −1.167 −0.342 −0.224 0.088 88
Leisure & hospitality employment (%) −2.433 −0.681 0.022 0.609 2.704 22
Manufacturing employment (%) −0.291 0.278 0.425 1.415 2.012 65
Degree qualification (%) −1.681 −1.669 −1.345 −1.209 −1.090 313
Bad health (%) −0.710 −0.462 −0.178 0.365 0.398 295
UK born (%) 0.107 0.116 0.374 0.416 0.468 192
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This paper proposes an alternative SVC based on GAMs with Gaussian Process 
splines parameterised with location - a Geographical GP GAM (GGP-GAM). It was 
applied to 100 simulated data generated from coefficients with known spatial hetero
geneities and was shown to out-perform Multiscale Geographically Weighted 
Regression (MGWR) under a range of fit metrics. Then both models were applied to an 
empirical case study of the UK Brexit referendum. Here the MGWR model was shown 
to (marginally) outperform the GGP-GAM. Comparisons of the SVCs arising from both 
models indicated similar levels of variation for many of the covariates, with few differ
ences in the predictor-to-response relationships. The correlations between the GGP- 
GAM and MGWR coefficients are summarised in Table 8 with two covariates indicating 
different relationships. In general, however, this reinforces an emerging theme from 
the SVC literature that alternative SVC approaches generate results that are much 
more similar than they are different, indicating a general coherence across this family 
of models and supporting SVC modelling overall. The GGP-GAM covariates were 
mapped and these indicated some strong regional differences in their relationship 
with the leave vote, for specific variables in different parts of the study area, when 
compared to the rest of the country (Figure 6). These are reflected the spatial variation 
in the associations between socio-economic factors the process and the Brexit leave 
vote.

In terms of historic frequency of use, the SVC model ‘brand leader’ is 
Geographically Weighted Regression. One could say that SVC modelling is to ‘vacuum 
cleaner’ as GWR is to ‘Hoover’. More specifically Multiscale GWR is becoming the 
approach of choice. The increase in GWR and MGWR applications over recent years (as 
documented in Comber et al. (2022)) has in part been driven by the conceptual simpli
city of GWR and MGWR: they generate a collection of local regression models, which 
are readily understood by both expert and non-expert users. However there are num
ber of conceptual limitations to GWR-based approaches. Coefficients are estimated as 
though calibrating multiple models rather than a single one, whereas, for example, 
GP-based and ESF-based approaches within GLM or GAM frameworks provide a full 
single data model. Additionally, GW-based regressions may be sensitive to local collin
earity even when this is not a problem across the whole dataset (Wheeler and P�aez 
2010; P�aez et al. 2011), although tools for GWR have been developed to compensate 
for this (see Gollini et al. (2015)). Finally, kernel based approaches like GWR and par
ticularly MGWR are computationally demanding, as they require a series of 

Table 8. The correlations between the GGP-GAM and MGWR spatially varying coefficient 
estimates.
Covariate Correlation

Intercept 0.877
Turn out (2015) −0.661
Over 65s (%) 0.230
Transport & utilities employment (%) 0.871
Leisure & hospitality employment (%) 0.314
Manufacturing employment (%) 0.437
Degree qualification (%) 0.754
Bad health (%) −0.675
UK born (%) 0.798
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optimisation problems to be solved to determine the individual scales of predictor-to- 
response relationships (Fan and Huang 2022).

In contrast, the proposed GGP-GAM has a rich and more comprehensive theoret
ical underpinning through its use of GP splines set within a GAM framework that has 
much greater flexibility than MGWR (especially as many GWR extensions have not 
been developed for MGWR). For example, GAM frameworks are relatively mature, 
and GAM functions commonly provide options for penalized terms for handling col
linearity, robust options for treating outliers, and options for heteroskedastic or auto
correlated error terms. Further, MGWR is still only for Gaussian responses, despite 
being developed in 2014, whereas GGP-GAM can be used for a variety of response- 
types and has much stronger theoretical background to support such ‘within frame
work’ extensions than GWR/MGWR. The one area where MGWR has an inferential 
advantage is in the way that the scales of predictor-to-response variable relation
ships are reported. In MGWR, the parameter specific bandwidths provide an explicit 
and intuitively understood indication of process spatial heterogeneity, which GGP- 
GAM outputs currently lack. The nearest similar measure is the GGP-GAM spline SPs 
as in Table 1 but these describe parameters in a covariance function whose stability 
is linked to the specification of the knots parameter, k, and are not equivalent to a 
bandwidth. They do however provide a measure of the spatial complexity of the pre
dictor to response relationship. Wolf et al. (2018) compared MGWR and multiscale 
Bayesian SVC (BSVC) models and sought to unpick the conceptual differences 
between the bandwidths reported by the two approaches. Specifically, they were 
interested in expounding how the different bandwidth distances indicated process 
‘scale’ and identifying some important ontological differences between them. Their 
summary was that the MGWR bandwidths describe the local heterogeneity of pre
dictor to response relationships and BSVC bandwidths (ranges) provided a composite 
measure of predictor to response relationships heterogeneity combined with local 
variation. Understanding the scale of spatial variation in this way is a key geographic 
consideration. However, as with BSVC, weights in GGP-GAM will not decay uniformly 
from a calibration point as in MGWR, since accounting for spatial correlation in a 
BSVC or a GGP-GAM leads to desirable weighting effects related to the data’s spatial 
configuration (Chiles and Delfiner 1999). In this respect, the spatial configuration of a 
dataset will directly affect any comparison between a GGP-GAM and MGWR (see also 
Harris et al. (2011) in the context of GWR versus kriging). Future work will explore 
these issues in depth and how to characterise the link between the spline SPs 
through the GP covariance function in order to increase the interpretability of pro
cess scale through the GGP-GAM. Specifically, it will seek to connect the spline SPs 
to an inference of geographic scale. A final observation is the potential for SVCs via 
a GGP-GAM to overcome some of the long-standing reservations about GWR-based 
regression methods and to elevate the perception of SVCs amongst the broader 
community. Typically, GWR studies are presented as informal, exploratory analyses, 
and thus of implicitly lower status, supporting informal inferences of observed spa
tial processes. The mature GAM framework offers a potential opportunity to elevate 
this class of work and maybe incentivise greater mainstream use of SVCs. Future 
work will provide a more thorough demonstration of how GGP-GAMs and their 
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outputs can be explored, tuned and reported, potentially using the diagnostic tools 
proposed in Sachdeva et al. (2022).

There are a number of other areas of further work that will be undertaken. The 
immediate next steps are to explore how the GGP-GAM handles highly complex spa
tial heterogeneities and apply it to larger datasets. Then a wrapper package for under
taking GGP-GAMs and extracting the coefficients at each locations will be constructed 
to sit above the mcgv package. Currently, a number of operations are needed to set 
up the GGP-GAMs and to extract the outputs in a form useful to a person interpreting 
a SVC model. Although R code can be written to do this, providing a simpler interface 
for frequent use would greatly increase accessibility. It is anticipated that there will be 
a number of further methodological developments. First, investigations will be under
taken to determine optimal spline smoothing parameters, which control the smooth
ing of the data and as such indicates the locally varying nature of the coefficient, and 
the number of knots used to ensure sufficient degrees of freedom across the data and 
the splines. In this paper, defaults were used, and the results are encouraging. 
However this suggests that potentially even better results could be achieved if the 
rubrics for tuning the GGP-GAP could be established. Second, further work will investi
gate how to provide explicit descriptions of the scale of predictor-to-response variable 
relationships. An approximation of these can be extracted from the semivariograms of 
the GP spline smoothing parameters which can be constructed for each GP spline. 
However, there is some uncertainty in the interpretation of the semivariograms in the 
mcgv package, in which the GGP-GAMs were constructed. Third, GAMs have options 
for penalised terms in order to handle predictor variable collinearity and selection. 
Investigations are needed to determine how and whether this needs to be tested for 
and then specified. Fourth, the wrapper package will include options to deal with out
liers and dependent errors (i.e. heteroskedascity, autocorrelation) will also be investi
gated for GGP-GAMs. There are also a number of areas of SVC model development, 
particularly in the temporal domain. GP splines can be parameterised with time as 
well as as location. This suggests opportunities for methodological entrancement to 
current Geographically and Temporally Weighted Regression (GTWR) approaches 
(Huang et al. 2010; Fotheringham et al. 2015) and multiscale GTWR (Wu et al. 2019), 
which effectively determine parameter (q) to link space and time. These, and other 
methodological opportunities, are possible because of the considerable developments 
that have taken place around GAMs in the temporal, spatial and spatio-temporal 
domains.

In conclusion, this paper demonstrates for the first time, the formulation and appli
cation of a GAM with GP splines calibrated via observation location in a multiscale 
spatially varying coefficient model. The Geographical Gaussian Process GAM (GGP- 
GAM) was applied to 100 simulated datasets with known variations in spatial hetero
geneity, and were shown consistently to perform better than MGWR. GGP-GAM was 
applied to a Brexit case study to demonstrate how process GPP-GAMs could be used 
to understand how and where relationships (and therefore processes) vary spatially. 
The results were compared with MGWR which was shown to perform marginally bet
ter. A number of areas of further work have been identified, including the develop
ment of a user-friendly wrapper to the GGP-GAM functions that will incorporate spline 
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tuning, explicit descriptions of the scale of predictor-to-response variable relationships, 
handling variable collinearity, model selection (penalization), robust regression and 
handling error term dependencies. These are supported by the richer and more com
prehensive theoretical framework of GAMs.

Note 

1. https://geoportal.statistics.gov.uk/datasets/d3650c649bff40768badafdf0518a4af.
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