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Suppose that you apply analysis of variance (ANOVA)
for a designed experiment. The F-test rejects the general
hypothesis that the treatment means are the same. You
check the model by graphing residuals; perhaps you need
to transform the data, but eventually everything seems all
right. What do you do now?

Many researchers will apply a multiple comparison
procedure, such as Bonferroni’s, Duncan’s, Tukey’s,
Student–Newman–Keuls’, Sidak’s, Dunnett’s, Scheffé’s,
or their simpler alternative, the least significant differ-
ence (LSD). However, before deciding to use any of these
procedures, you should first ask the following question:
Should I make all pairwise comparisons of treatments at all?
Or, even better: Why would I want to compare all pairs of

treatments?
We hope that, after reading this editorial, you will

answer the questions like this: No, I do not have to compare

all pairs of treatments, and so I do not have to make all pairwise

comparisons. And then, instead of comparing all pairs of
treatments, you will compare only those treatments you
indeed wish to compare.

Multiple testing in pairwise comparisons and how
to deal with it

Here is what we are often told about comparing treat-
ments: when making multiple comparisons, remember
that you are doing many pairwise statistical tests at the
same time. Forgetting about this, you inflate the chance
of rejecting a null hypothesis that is true (such rejec-
tion is called the type I error). To solve this problem,
you should adjust the significance level for the individual
tests. Such adjustment guards against being overly opti-
mistic about the results of the many tests done: in other

words, when a 5% (𝛼 = 0.05) significance level is used
for many tests, then this 5% level should not be kept
for each of them independently. If it is kept – that is, if
you use the 5% significance level for each test – then you
should expect 5% of these tests to give significance just by
chance.

To illustrate this problem of multiple testing, Carter
(2010) escapes from statistics to a commonplace context.
He considers manufacturing bicycles in which a corporate
goal is to ensure that no more than 1 in 20 (5%) of the
bicycles can be defective, defective meaning here that
at least one component of a bicycle is not functioning
properly. And now Carter asks: ‘Is it reasonable to expect
that no more than 1 in 20 bicycles will be defective if all of
the components have a 1/20 chance of being defective?’
This illustration indeed explains why one should adjust
the significance level for multiple testing when all tests are

important.
When all tests are important, different multiple compar-

ison procedures adjust the significance level for the indi-
vidual tests in different ways, but they all aim to assure
that the overall significance level is still 5%. In the Bon-
ferroni procedure, the individual tests are at level:

0.05
c (c − 1) ∕2

,

where c is the number of means to compare; thus,
the overall denominator is the number of pairwise tests
between all means. For example, if c =10, there are 45
tests, and the level for each test is 0.0011 (0.11%). Yes,
as low as that! So, imagine that you are especially inter-
ested in comparing one pair of means among these 45.
If you use the Bonferroni procedure, you use the 0.0011
significance level to compare these two means at the 0.05
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significance level. Clearly, you should not be happy about
doing this!

Working with small significance levels for individual
tests, the Bonferroni procedure gives conservative testing.
Thus, many other procedures have been invented for
pairwise comparison of many means. Although they try to
be less severe than the Bonferroni approach in decreasing
the significance level for the individual tests, they all share
the aim, which is to control the overall significance level.

Now the question is: Should we always compare all pairs
of means? A simple answer is: no, not always. In fact,
almost never should we compare all pairs of means.
Instead, we should focus only on those pairs which we are
interested in comparing. For example, consider a two-way
experiment in which every level of one factor occurs
with every level of the other, and we use ANOVA to test
their main effects and interaction (such an experiment
uses a fully crossed two-way design). If the interaction is
significant, it makes no biological sense to compare some
treatments in a two-way table of means. To illustrate,
let us suppose that the two crossed factors are cultivar
with three levels (C1, C2 and C3) and growth promoter
with three levels (GP1, GP2 and GP3), and that we aim
to find the combination giving the greatest yield. Why,
therefore, would we wish to test the difference between
the mean for cultivar C1 using growth promoter GP1 and
the mean for cultivar C2 using growth promoter GP2
when neither of these combinations gives the greatest
yield, which happens to be provided by cultivar C3 with
growth promoter GP3?

Here is the point, then: in most situations in which
ANOVA is applied to data from designed experiments,
multiple pairwise comparisons should not be made whatso-
ever! Although some of you might find this recommen-
dation restrictive, we show below that it is rational from
both statistical and biological points of view.

Any known structure among the treatments can and
should be assessed as part of ANOVA, using nested or
crossed treatment factors and/or contrasts. Here, ‘nested’
means that levels of one factor occur within levels of
another: for example, potato cultivars can be nested in
cooking type (Muttucumaru et al., 2017). Contrasts com-
bine particular levels of factors to give further compar-
isons of interest. For example, in a field trial of wheat
varieties, we can use contrasts to compare groups of vari-
eties with high and low disease resistance. Any treatment
structure is known before (a priori) the analysis and may
already represent all the relevant hypotheses (tested using
the F-test) required to answer biological questions posed.
So, whenever possible, we should formulate ANOVA to
give the answers to these a priori biological questions.

A special group of contrasts is orthogonal contrasts (see,
e.g. Quinn & Keough, 2002). They are independent to

one another, which means that they account for sepa-
rate portions of the variance due to treatments in ANOVA.
In other words, if you add the sums of squares for such
contrasts, you will obtain the overall sum of squares for
treatments. Hence, orthogonal contrasts offer an alterna-
tive representation or a further partitioning of an already
known treatment structure.

Whether using orthogonal contrasts or, more broadly,
linear contrasts, such a clear-cut formulation of a full
set of treatments is not always possible. What is more,
even when it is possible, quite often after the analysis
we get interested in comparing means we did not plan to
compare before the analysis. Such comparisons of means
that we come up with after the general ANOVA are called
post hoc comparisons of means. It might be tempting to
make these comparisons with the multiple comparison
procedures we discussed before. But here is the point
again: Why should we compare all pairs of means when we
are not interested in comparing some, or even most, of them
whatsoever?

We can make post hoc comparisons of most interest
using the LSD value, calculated from the relevant stan-
dard error of the difference (SED) from ANOVA. In biol-
ogy, we normally use the 5% significance level; a lower
level (e.g. 1%) can allay fears about the type I error.
Admittedly, in a study with a single treatment factor com-
prising a small number of treatments (typically three or
four), all pairwise comparisons may be acceptable. How-
ever, note that even if there are only three treatments in
an experiment, comparing just two of them may suffice
for post hoc statistical assessment. Also, note that if the
treatments are levels of a factor on a quantitative scale,
then, more often than not, we should use regression mod-
elling. We might then want to model how the dependent
trait responds to the changing quantitative level of the fac-
tor. If after careful attempts to model the relationship we
fail to explain its shape in any sensible form, we can still
choose to treat the quantitative factor as a qualitative one
using ANOVA. Do not, however, treat this approach as a
regular one but as a last resort.

What about unbalanced experiments, in which treat-
ments have unequal numbers of replications? Each
comparison may then have a different SED value. In this
case, we still should make only post hoc comparisons of
most interest, but we should provide SEDs and LSDs for
each of them.

Good practice: example

Let us consider an example of how to avoid all pairwise
comparisons. Muttucumaru et al. (2017) combined data
from identical potato trials at two different sites. At each
site, 20 varieties were grown in a randomised block design
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with three blocks. Tubers from each plot were analysed
for content of the contaminant acrylamide, amino acids
and sugars at 2 months or 6 months after harvest. What
is more, each variety was a member of (nested in) one
of three types (boiling, crisping or French fry), giving an
a priori treatment structure of interest. So, for ANOVA,
Muttucumaru et al. (2017) used the following treatment
structure:

Site (2 levels) ×
[
variety (20 levels) nested in type (3 levels)

]
×

storage (2 levels) .

When the full interaction between these factors was sig-
nificant (P< 0.05 for the F-test), there were as many as
80C2 (80 choose 2)= 3160 possible pairwise comparisons
of means that could have been made. Can you imagine a
table representing all these comparisons? Do not: clearly,
most of them were unimportant. So why make them?
Instead, the authors used the LSD at the 5% significance
level to compare pairs of means of interest. Because the
most important response of interest in the study was
acrylamide – a probable carcinogenic processing contam-
inant (Halford et al., 2011) – the authors were interested
in (a) varieties with the highest or lowest means of this
chemical, at either site, and (b) in the effect of storage
for these varieties. So, instead of comparing 3160 pairs of
means, the authors conducted a few (10, to be precise)
post hoc comparisons of means without adjusting for multiple
testing, a sensible approach to interpret so complex a
treatment structure.

What do others say?

If you review applied biology literature, you will find
that this approach of making only comparisons of interest
instead of all of them has rarely been followed. Readers
have to struggle through tables with means supported by
letters ‘abcdefg… ’. Seeing such a long chain of letters,
does anyone feel like interpreting them? Would such
interpretation lead to anything constructive? Let us see
what other statisticians say about the issue.

The eminent statistician John Nelder FRS was nicely
blunt about the matter: ‘In my view, multiple compar-
ison methods have no place at all in the interpretation
of data’ (Nelder, 1971). Webster (2006) is also clear in
his opinion: ‘Do not use experiment-wise multiple com-
parison tests’. He refers to an argument between those
who advise using LSDs and those who criticise LSDs
in favour of multiple comparison procedures. ‘Investi-
gators who compare every pair of means by one of the
above-mentioned tests’, he says, ‘seem not to appreciate
the difference between a whole experiment, for which
these techniques have been developed, and individual

comparisons of interest… But in applying such stringent
tests they fail to detect differences that they should iden-
tify and penalize themselves for the efficiency of their
experimental designs. The experiment per se has not been
the object of study, and so they should not apply an
experiment-wise test’.

Welham & Clark (2006) refer to authors who criticise
multiple comparison procedures for obscuring conclu-
sions of experiments and producing contradictory results.
‘These authors all agree’, they state, ‘that multiple com-
parison tests are inappropriate for analysis of experiments
with a factorial treatment structure, and that interpreta-
tion of the patterns in the main effects/interactions found
to be significant is more informative’. Of the authors ref-
erenced by Welham and Clark, Perry (1986) argues that
even when the structure among the treatments cannot be
accounted for in ANOVA, multiple comparison tests are
still unhelpful. Instead, he says, it is better to compare all
means by graphical methods to make biologically sensible
groups of them.

More on comparisons of means: P-values and the
effect size

Above, we focused more on statistics than biology. So let
us turn to biology and ask how we can use statistics to
assess the biological effect of a treatment.

When we compare two means (not all pairs of means),
we should beware of mixing up statistical and biological
significance. Instead of focusing on a P-value for the
difference, we should rather focus on the importance
of the size of the difference, the so-called effect size. To
judge treatment effects, more important than hypothesis
testing is estimation of means for treatments and of the
differences between these means. When interpreting the
size of a difference between means, one can use the
confidence interval around that difference. Readers will
often find the lower (upper) limit of such a confidence
interval for a positive (negative) difference useful: How far
away from zero is it? is the question relevant to concluding
about the treatment effect. Is this metalled road not better
than the stony track of making many unrequired pairwise
comparisons without biological meaning? Webster (2006)
would agree with us that it is: he said, ‘… remember
that the mean values are the most important outcomes
of almost all investigations. Emphasize them and draw
readers’ attention to the magnitude of their differences.
Statistical significance is of secondary importance’.

Annals of Applied Biology and multiple comparisons

Annals of Applied Biology does not accept multiple
comparison procedures. Instead, the authors are advised
to present the SED or LSD, calculated directly from the
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appropriate stratum of ANOVA. In this journal, McNicol
(2013) already explained these requirements. He also
suggested that, in some scenarios, ranking treatments by
their means would suffice to find the best treatments (i.e.
the ones with the highest or lowest means) or to group
treatments with similar means of the analysed trait.

What about more complex designs than those with
only one treatment factor? ‘The process of uncovering the
nature of the differences among the levels of a treatment
[factor]’, McNicol says, ‘is more interesting in the case
of significant interaction among two or more treatments
[factors]. The principles are the same but the use of
simple two-way plots of means, trellis plots or biplots
greatly assists in the detection of any patterns. And it is
general patterns or trends rather than specific pairwise
comparisons, or worse all possible pairwise comparisons,
which should be the focus’.

We are not going to claim that multiple comparisons
should never be made. Instead, we wish to emphasise
that, when making pairwise comparisons using the LSD,
adjusting the significance level to account for multiple
testing makes sense only when the analyst is certain that
more than just a few biologically meaningful post hoc com-
parisons are required. And such a situation is, frankly, very

rare. But what do we mean by ‘a few’? The answer is
simply the number of ‘biologically meaningful compar-
isons’. Our experience suggests that multiple comparisons
in agricultural sciences seldom call for adjustment for
multiple testing.
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