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A Simulation Study on Specifying a Regression

Model for Spatial Data: Choosing between

Autocorrelation and Heterogeneity Effects

Paul Harris

Rothamsted Research, SSGS, North Wyke, Okehampton EX20 2SB, United Kingdom of

Great Britain and Northern Ireland

In this simulation study, regressions specified with autocorrelation effects are compared

against those with relationship heterogeneity effects, and in doing so, provides guidance

on their use. Regressions investigated are: (1) multiple linear regression, (2) a simulta-

neous autoregressive error model, and (3) geographically weighted regression. The first

is nonspatial and acts as a control, the second accounts for stationary spatial autocorre-

lation via the error term, while the third captures spatial heterogeneity through the

modeling of nonstationary relationships between the response and predictor variables.

The geostatistical-based simulation experiment generates data and coefficients with

known multivariate spatial properties, all within an area-unit spatial setting. Spatial

autocorrelation and spatial heterogeneity effects are varied and accounted for. On fitting

the regressions, that each have different assumptions and objectives, to very different

geographical processes, valuable insights to their likely performance are uncovered.

Results objectively confirm an inherent interrelationship between autocorrelation and

heterogeneity, that results in an identification problem when choosing one regression

over another. Given this, recommendations on the use and implementation of these spatial

regressions are suggested, where knowledge of the properties of real study data and the

analytical questions being posed are paramount.

Introduction

As outlined in Anselin (1988), and reviewed in Goodchild (2004); Anselin (2010), two core

effects need to be considered when fitting a regression to spatial data, one of spatial autocorre-

lation (e.g., Cressie 1993; LeSage and Pace 2009) and one of spatial heterogeneity with respect

to data relationships (e.g., Fotheringham, Brunsdon, and Charlton 2002; LeSage and Pace

2009). Furthermore, McMillen (1996, 2001); Basile et al. (2014) argue for a third effect in non-

linearity. The question then arises on which effect(s) should we focus on for a given analysis—
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that of autocorrelation, heterogeneity, or nonlinearity? For example, apply a model designed to

capture both autocorrelation and heterogeneity (e.g., Besag, York, and Molli�e 1991; Fischer

and Stumpner 2010; Mur, L�opez, and Angelo 2010), or both autocorrelation and nonlinearity

(e.g., Christensen, Diggle, and Ribeiro 2001; Opsomer, Wang, and Yang 2001; Lambert, Xu,

and Florax 2014), or both heterogeneity and nonlinearity (e.g., Wang, Mei, and Yan 2008; Yu,

Peterson, and Reid 2009; Shen, Mei, and Zhang 2011). Alternatively, choose a geo-additive

model, whose inherent flexibility allows all three effects to be catered for simultaneously (e.g.,

Basile and Gress 2005; Su and Jin 2010; Montero, M�ınguez, and Durb�an 2012; Basile et al.

2014). Models also exist that indirectly use autocorrelation effects, but with the aim of captur-

ing heterogeneity effects (Assunç~ao 2003; Gelfand et al. 2003; Griffith 2003, 2008).

All three effects are subject to issues of scale, whether this concerns the effects of the scale

(or support) of the observation units (e.g., Gotway and Young 2002; Zhang, Atkinson, and

Goodchild 2014; Murakami and Tsutsumi 2015), or whether the modeling objective itself is to

capture processes that operate across scales (e.g., Finley 2011; Harris, Dong, and Zhang 2013a;

Dong and Harris 2014; Dong et al. 2015; Osland, Thorsen, and Thorsen 2016; Bivand et al.

2017; Fotheringham, Yang, and Kang forthcoming; Leong and Yue 2017; Murakami et al.

2017; Lu et al. forthcoming). Predictor variables also play a role. It is sometimes pragmatic to

ignore all such effects, and instead focus on a nonspatial model that is calibrated with key spa-

tial predictors, such as the sample coordinates. Similarly, key predictors may be missing and

that any observed spatial effects are attributable to this omission (e.g., Cressie and Chan 1989;

McMillen 2003)—attention is then focused on capturing these missing variables.

Unfortunately, all such model specification issues are almost always difficult to address

with any objectively, and commonly involve analytical impasses and confounders (Anselin

1990, 204; Pace and LeSage 2004, 31; Mur, L�opez, and Angelo 2008). Analytical issues are

particularly pertinent for spatial data, as their collection are rarely part of a statistically

designed experiment—that by definition should negate confounders (e.g., Stefanova, Smith,

and Cullis 2009). For example, it is difficult to identify first- from second-order effects (Arm-

strong 1984), where relationship heterogeneity is commonly modeled as the former, whist auto-

correlation is modeled as the latter effect. And observe here, capturing relationship

heterogeneity (e.g., Casetti 1972; Brunsdon, Fotheringham, and Charlton 1996) is only one of

many nonstationary decisions that can be considered (Atkinson 2001; Lloyd 2010), including

that for autocorrelation itself (e.g., Anselin 1995; Sampson, Damian, and Guttorp 2001; Harris,

Charlton, and Fotheringham 2010a; Fuglstad et al. 2015; Fouedjio forthcoming), and for non-

linearity (e.g., Harris, Brunsdon, and Charlton 2013b), and those that capture both relationship

and autocorrelation heterogeneity (Haas 1996; Brunsdon, Fotheringham, and Charlton 1998;

Geniaux and Martinetti forthcoming). Furthermore, spatial data commonly represent a single

realization, whereas model assumptions are usually based on knowledge of the full multidi-

mensional spatial distribution that can never be fully determined, as there are no replicate sam-

ples (Myers 1989). Thus, distributional inference can only be determined under some decision

of stationarity. For nonstationary models, these decisions can be locally defined with associated

bias-variance trade-offs (Brunsdon, Fotheringham, and Charlton 1996; Haas 1996), or globally

defined to provide greater statistical coherency (Sampson, Damian, and Guttorp 2001; Gelfand

et al. 2003; Griffith 2008).

Given such variety of interrelated model and data issues, it is useful to provide guidance

when selecting a regression to model spatial data. It is not viable to study all issues here, so

instead, the study aim is focused on the comparison of a regression specified with stationary
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autocorrelation effects against that with relationship heterogeneity effects. This is achieved via

a simulation experiment, where regressions are assessed for overall fit, coefficient accuracy,

and outcomes from related tests. So as not to dilute this study’s message (with a barrage of

regression forms), only three core models are studied: (1) multiple linear regression (MLR)1;

(2) a simultaneous autoregressive error model (SAR) (Anselin 1988); and (3) geographically

weighted regression (GWR) (Brunsdon, Fotheringham, and Charlton 1996). The first regression

is nonspatial and acts as a control, the second captures autocorrelation via the error term, while

the third captures heterogeneity through the modeling of nonstationary relationships between

the response and predictor variables.

This study provides a bridge between simulation studies such as Kissling and Carl (2007);

Dormann (2007); Beale et al. (2010) for regressions with autocorrelation effects only, and sim-

ulation studies such as Finlay (2011); P�aez, Farber, and Wheeler (2011); Mellin et al. (2014)

for regressions with heterogeneity effects only. Studies using simulation to investigate both

effects are rare, but include that of Harris et al. (2010b) from a prediction viewpoint and

Geniaux and Martinetti (forthcoming) from an inference viewpoint, neither of which investi-

gate the inherent identification problem in as much detail as that given here.2 This study’s sim-

ulation experiment generates data with known multivariate spatial properties (Pebesma 2004),

where the design of the experiment itself is considered an advance, providing a template for

future work. The spatial processes that are generated should strongly favor only one from

MLR, SAR, or GWR as appropriate choices. This article is structured as follows. First, the

regressions are formally stated and the simulation experiment is described. Second, the out-

comes of the simulation experiment are reported and critiqued. Third, a set of discussions are

given, together with an empirical case study illustrating the issues described and a possible

solution.

Regression models

For the case where there are several predictor variables xn1; xn2; . . . ; xnm and observations

indexed by i51 ; . . . ; n, MLR has this form for response variable yi:

yi5b01
Xm

j51

bj xij1Ei; (1)

where the coefficients bj, are commonly estimated by ordinary least squares (OLS). MLR only

models fixed relationships between the response and predictors. Where these relationships are

expected to vary across space, MLR can be adapted to form GWR as follows:

yi5b0 ui; við Þ1
Xm

j51

bj ui; við Þ xij1Ei; (2)

where ui; við Þ is the spatial location of the ith observation and bj ui; við Þ is a realization of the

continuous function bj u; vð Þ at point i. As with (OLS) MLR, the Ei’s in GWR are random error

terms which are independently normally distributed with zero mean and common variance r2.

For GWR, a local regression is calibrated at any location i with observations near to i given

more influence than observations further away by weighting them according to some distance-

decay, kernel weighting function. There are also models in which the error term exhibits spatial
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autocorrelation, although the regression coefficients remain fixed over space. Among these

models is the SAR model:

yi5b01
Xm

j51

bj xij1gi

where gi5k
Xn

j51

cijgj1Ei

)
; (3)

where cij is specified as the ijth element of a row-normalized connectivity matrix with “queen”

contiguity (i.e., a single common point is used to define two polygons as neighbors). The

parameter k controls the degree of autocorrelation in the error term gi.

For MLR, OLS estimation is used to estimate the fixed coefficients bj, that is

b̂5 XTX
� �21

XTy, while for SAR, maximum likelihood is used to estimate both the fixed coeffi-

cients bj and the fixed autocorrelation parameter k (Anselin 1988). For GWR, weighted least

squares estimation is used, where if a point has coordinates, uk; vkð Þ then the standard GWR

estimate of b uk; vkð Þ is given by solving:

XTW uk ;vkð ÞX b̂ uk; vkð Þ5XTW uk ;vkð Þy (4)

where W uk ;vkð Þ is a diagonal matrix whose diagonal entries are the geographical weighting of

each observation for the regression point k. In this study, an adaptive bi-square kernel function

is specified, so that the ith elements of the diagonal of W uk ;vkð Þ is:

wii5 12 dik=rkð Þ2
� �

2 if dik � rk wii50 otherwise; (5)

where dik is the distance between the location of observation i and uk; vkð Þ; and rk is a band-

width parameter controlling the size of the local window used to calibrate b uk; vkð Þ. Typically,

rk is chosen�automatically’ from the data set, and in this study, a corrected AIC approach is

adopted for this purpose (Fotheringham, Brunsdon, and Charlton 2002).

The simulation experiment

The experiment generates data realizations to exhibit one of four spatial process (SP) scenarios:

(1) stationary data relationships (fixed coefficients) with random error effects (call this SP1),

(2) stationary relationships with spatially autocorrelated error effects (SP2), and (3) nonstation-

ary relationships (varying coefficients) with random error effects (where SP3 and SP4 are for

low and high coefficient variability, respectively), as detailed in Table 1. The study objective is

to assess to what degree is each regression-type able to accurately model its designated process

(i.e., MLR for SP1, SAR for SP2, and GWR for SP3-4).

As an overview, the experiment generates four regression coefficients, b0;b1;b2;b3 with

three levels of nonstationarity; and then independently, the predictor data, x1; x2; x3, are generated.

The coefficient and predictor realizations are then directly used to generate the response variable

yi, and the error data Ei, where 90% or 99.9% of the variation in the response is explained by the

mean component of the spatial process. Thus, respective ratios of 90 : 10 and 99.9 : 0.01 are speci-

fied for the mean to error components. The error itself, is specified as either a random or spatially

autocorrelated process. For each of the four processes (SP1-4), 100 data realizations are generated

and the three study regressions are fitted and their model fit diagnostics reported. Realizations are
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generated to the (n 5 159) centroids of the “counties of Georgia for the United States”; an educa-

tional attainment data set routinely used to demonstrate GWR (Fotheringham, Brunsdon, and

Charlton 2002; Griffith 2008).3 The geostatistical-based experiment is such, that many useful sub-

categories can be defined, where this design flexibility is key to why a second-order effects simu-

lation approach is taken, in preference to other, more deterministic approaches (e.g., Wang, Mei,

and Yan 2008). The approach is novel and provides useful stochasticity, enabling nuanced differ-

ences to each realization, generated from the same initial specifications.

Regression coefficient co-simulation

Nonstationary coefficient surfaces for b0;b1;b2;b3 are generated using an unconditional

sequential Gaussian co-simulation (e.g., Wackernagel 2003), where un-conditional means that

the realizations are not conditioned to any data. This procedure simultaneously generates coef-

ficients that are spatially dependent and spatially co-dependent with each other, which is to be

expected. A linear model of co-regionalisation (LMC) is specified with Mat�ern models (Mat�ern

1986), where relatively short and relatively long correlation range parameters are specified to

generate surfaces with high and low levels of coefficient nonstationarity, respectively.4 The

smoothing parameter of the Mat�ern model is also varied and similarly influences coefficient

nonstationarity, where a value of 0.75 produces a coefficient surface with a low level of

smoothing, while a value of 1.5 produces a high level of smoothing. Coefficient variability (or

nonstationarity) increases in this order: (1) coefficients generated with a long range coupled

with high smoothness (for SP3); and (2) coefficients generated with a short range coupled with

low smoothness (for SP4). The remaining parameters of the LMC, such as the nugget varian-

ces/cross-variances, the structural variances/cross-variances, and the (simple cokriging) means

of each realization, are chosen with care, so to reduce unnecessary confounders in our under-

standing of the outcomes (Table 2). Example stationary and nonstationary coefficient realiza-

tions are given in Fig. 1.

Predictor variable co-simulation

The three predictor variables, x1; x2; x3 are also generated using an unconditional sequential

Gaussian co-simulation, where again, a LMC is specified with Mat�ern models. Again, spatially

dependent/co-dependent predictors are entirely expected, as they themselves are spatial varia-

bles. The co-simulation parameters are given in Table 2, chosen to provide neutral levels of

collinearity. Example realizations for the three predictors are given in Fig. 2a. The generated

predictors together with their corresponding coefficients should ensure a broadly similar

Table 1. Summary of the Four Spatial Processes Generated, Each with Their Different Spa-

tial Characteristics

Spatial

process no.

Intercept and coefficients

b0, b1, b2, b3 Error term Ei

Mean to error

ratio (%)

SP1 Stationary Random 99.9:0.01

SP2 Stationary Autocorrelated 90:10

SP3 Non-stationary (low variability) Random 99.9:0.01

SP4 Non-stationary (high variability) Random 99.9:0.01
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influence on the response variable (i.e., multiply the respective (cokriging) means in Table 2,

where the intercept b0 can be taken to correspond to predictor x0 with a mean of 1).

Error simulation: mean to error ratio

The mean to error ratio strongly controls the outcomes of the experiment, where as it tends to 0

: 100, worthwhile insights on model behavior reduce (as all models will essentially tend to their

intercept). The chosen ratios reflect this tendency. A 99.9 : 0.01 ratio is used for processes gen-

erated with nonstationary relationships (SP3-4), as a nonstationary intercept term is also repre-

sentative of the errors. This commonality leads to a difficult identification problem,5 which is

further complicated in that a nonstationary intercept tends to reflect autocorrelated errors. With

these issues in mind, the random errors generated for these processes are relatively small; and

clearly, the consideration of spatially autocorrelated error effects would only further compli-

cate. The same ratio of 99.9 : 0.01 is also used for stationary relationship processes with ran-

dom errors (SP1), whilst for stationary relationship processes with autocorrelated errors (SP2),

the narrower 90 : 10 ratio is used.

Error simulation: error term

Thus with the constraints set in place for the ratio of the mean to error component for variation

in the response, for each of the four spatial processes, either: (1) a random error term (for SP1,

Table 2. LMC Parameters Specified for the Co-Simulation of: (1) The Four Regression

Coefficients and (2) the Three Predictor Variables. ME is the Maximum Extent of the Study

Area

Cokriging

mean

Nugget

variances

and cross-

variances

Structural

variances

and cross-

variances

Correlation range Smoothing

parameter

(1) Regression coefficient

b0 2 0 7.0 0.95 3 ME (long) or

0.15 3 ME (short)

0.75 (low) or

1.5 (high)

b1 5 0 9.0 0.95 3 ME (long) or

0.15 3 ME (short)

0.75 (low) or

1.5 (high)

b2 5 0 9.5 0.95 3 ME (long) or

0.15 3 ME (short)

0.75 (low) or

1.5 (high)

b3 3 0 7.5 0.95 3 ME (long) or

0.15 3 ME (short)

0.75 (low) or

1.5 (high)

All six cross pairs – 0 0 0.95 3 ME (long) or

0.15 3 ME (short)

0.75 (low) or

1.5 (high)

(2) Predictor variable

x1 0.45 0 0.91 0.40 3 ME 0.5

x2 0.55 0 0.95 0.40 3 ME 0.5

x3 0.50 0 0.93 0.40 3 ME 0.5

x1; x2 – 0 0.20 0.40 3 ME 0.5

x1; x3 – 0 0.30 0.40 3 ME 0.5

x2; x3 – 0 0.10 0.40 3 ME 0.5
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SP3-4) is generated via independent draws from a normal distribution, or (2) a spatially auto-

correlated error term (for SP2) is generated via an un-conditional sequential Gaussian simula-

tion, specified with an exponential variogram model, with a nugget variance of 0.2 and a

correlation range set at three fifths of the maximum extent of the study area (such settings

ensure a highly autocorrelated error term). All error terms are generated with a mean of zero.

Fig. 2b,c present example realizations for the response and error terms, for SP1-4. On applica-

tion of the simulation experiment, moderate to strong response to predictor relationships were

generated, as would be hoped for.

Further points of interest

The steps of the simulation algorithm are such, that many of the (4 x 100 5 400) realizations

will have common elements. For example, the first realizations for processes SP1 and SP2 will

share the same regression coefficients and predictor data but differ in their error and response

data; and this type of commonality pervades for all realizations. An area-based simulation is

Figure 1. Example realizations for nonstationary regression coefficients: (a) zero variability;

(b) low variability; and (c) high variability.
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preferred to grid-based approaches (e.g., Wang, Mei, and Yan 2008; Beale et al. 2010), as the

latter are a poor reflection of geographical reality. The Georgia counties geographical system is

similarly used in the GWR simulation study of P�aez, Farber, and Wheeler (2011). Clearly, the

simulation experiment has the potential to be highly involved, and only a few of the many

(regression model and simulation) specifications are varied. In this respect, the outcomes are

dependent on those specifications chosen. It is stressed that all specification decisions are made

with the view that process SP1 should favor MLR, SP2 should favor SAR, and SP3-4 should

favor GWR. Conversely, MLR should be a poor choice for SP2-4, SAR a poor choice for SP1,

SP3-4, and GWR a poor choice for SP1-2.

Diagnostics reported

For each realization, Moran’s I spatial autocorrelation tests are conducted on both the response

and the residual from a MLR fit (Cliff and Ord 1981), using the same weights matrix as that

defined for the SAR model, above. Hence for each test statistic, a sequence of P-value

Figure 2. Example realizations for: (a) the predictors, (b) the errors for SP1–4, and (c) the

responses for SP1–4.
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distributions is found (each of size 100) and these are presented using boxplots. For a guide to

spatial heterogeneity effects, the automatically found GWR bandwidths are reported (as per-

centage of sample data), for each realization. For model fit, (corrected) AIC values are found

for MLR, SAR, and GWR fits, to each realization. AIC rankings are then found based on the

ordering of the AIC results, where an AIC ranking of one, indicates the ‘best fitting’ regression,

for that particular realization. Boxplots are again used to present the resultant bandwidth and

ranked AIC distributions, for each of the four processes.

Statistics that reflect each regression’s accuracy in estimating the simulated (actual) coeffi-

cients are also found. Due to the nature of the simulation experiment, a relative accuracy statis-

tic is calculated for each of the study regressions, as this enables an objective comparison

across all realizations. In particular, a relative root mean squared error (RMSE) is found,

defined as relRMSE5RMSEModel=RMSEMean. The further this ratio falls below unity, the

greater the improvement in the accuracy of the model coefficient estimations to that found

using the mean of the simulated coefficients, as the estimator. Coefficient estimation confi-

dence interval (ECI) accuracy is assessed using coverage probabilities (Goovaerts 2001). For

example, if symmetric 95% ECIs were found at each simulation point for a given coefficient,

say the intercept, that is, b̂061:96 SE b̂0

� �
, then a correct modeling of local uncertainty would

entail that there is a 0.95 (expected coverage) probability that the actual (simulated) value b0,

falls within the interval. If a coverage probability is found for a range of symmetric ECIs (say

from a 1% to a 99% ECI in increments of 1%) and the results plotted against the probability

interval p, then an accuracy plot is found which should follow the 458, x5y line. In a simulation

study, it is unrealistic to present accuracy plots, so instead they are summarized via the G-sta-

tistic, defined as:

G2STAT512

ð1

0

3a pð Þ22½ � �n pð Þ2p
� �

dp (6)

where �n is the fraction of actual values falling in the ECI; and G-STAT 5 1, is ideal. The indi-

cator function a pð Þ is defined as a pð Þ5
1 if �n pð Þ � p

0 otherwise

(
, which implies that twice the

importance is given to deviations when �n pð Þ < p. For cases where two regressions provide sim-

ilar G-STAT values for a given coefficient, one can be preferred if its ECI widths containing

the actual coefficient are narrower. Here, corresponding ECI width plots can be constructed,

but to act as a rough summary of this plot, a mean ECI width (M-ECI-W) for all p is found,

which should be as small as possible. Thus, a regression model’s G-STAT and M-ECI-W val-

ues for a given coefficient, should always be viewed in conjunction, as a strong G-STAT value

is of little use if it is coupled with a poor M-ECI-W value (and vice versa).6

The relRMSE, G-STAT and M-ECI-W values are reported for the coefficient set, b0;b1;

b2;b3 considered as a whole, and not individually. This decision to aggregate the results is not

ideal as b0;b1;b2;b3 are not independent (and can be strongly dependent due to collinearity)

but is taken so as not to be over-burdened when reporting the results. For each of the four pro-

cesses, the relRMSE values are summarized using boxplots, whilst the paired G-STAT and M-

ECI-W values are presented using scatterplots that are spatially smoothed via kernel density

estimation. Here, the M-ECI-W values are also re-scaled to lie between zero and one. Observe

that in many instances of the experiment, an estimated coefficient is set the same at all loca-

tions (i.e., for MLR and SAR), as is a simulated coefficient (i.e., for SP1-2).
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Finally, it is worthwhile to test for significant coefficient nonstationarity in a GWR fit. In this

respect: (A) permutation tests are conducted for coefficient nonstationarity against a null hypothesis

of stationary coefficients of a MLR model (Brunsdon, Fotheringham, and Charlton 1996); and (B)

parametric bootstrap tests are conducted for coefficient nonstationarity, where GWR is an alterna-

tive to two null hypotheses, MLR and SAR models (Harris et al. 2017). For the bootstrap test, the

SAR null allows an investigation as to whether the spatial variation in the coefficients obtained

using GWR could be attributed to some other spatial process (i.e., some autocorrelated process),

rather than one depicting nonstationary relationships. Bootstrap tests differ to permutation tests in

that they do not condition on the exact values of the variables observed (Good 2005). Tests are

applied with R 5 99 randomizations or random samples, to each of the 100 data realizations, stem-

ming from each of the four processes. A preferred setting of R 5 999 was not followed as it would

entail considerable computational burden within the simulation experiment.7 The permutation test

will result in a P-value distribution of size 100 for each coefficient, whilst the bootstrap test will

consist of two P-value distributions (each of size 100) for each coefficient, and for each null. All

such distributions are summarized with boxplots, where instances of P � 0:05 (as all one-tailed

tests) would indicate significant coefficient nonstationarity (or variation) at the 95% level.

Results

Tests for autocorrelation

Significant spatial autocorrelation is found in the response variable (with P � 0), for all four

processes for all 400 realizations (Fig. 3a). This is expected and considered a consequence of

generating predictor data that are spatially autocorrelated, regardless of how the regression

coefficients or error terms are generated. Significant autocorrelation is also found for the resid-

ual data sets (Fig. 3a), but this time, for only three of the four processes (with P� 0). Process

SP1, does not tend to provide significant autocorrelated residuals from an MLR fit, as the error

term was specified as such. Thus, for processes SP3-4, an inappropriate MLR fit will produce

autocorrelated residuals. This behavior is not unexpected and confirms an inherent interrela-

tionship between autocorrelation and heterogeneity. Essentially, it creates an identification

issue that has a key bearing on many outcomes to follow.

GWR bandwidths

GWR bandwidth distributions are given in Fig. 3b. For process SP1, bandwidths tend to the

maximum of 100%, strongly indicating GWR to be an inappropriate model choice, as would

be expected. However, there are a few instances when much smaller bandwidths are found (as

low as 46.5%), indicating that GWR will sometimes suggest spatial pattern in data relation-

ships when no spatial effects are present. Bandwidths with an average size of 43.4%, result for

process SP2, indicating that GWR will nearly always (and inappropriately) suggest a moderate

spatial pattern in data relationships, when the response and residual data exhibit autocorrela-

tion. This behavior is the reversal of that found above, with MLR fits to processes SP3-4, and

is therefore, the same identification issue.

Bandwidths with an average size of 18.5%, result for all processes SP3-4, and thus provide

the strongest evidence for choosing GWR, which would be expected. Coefficient processes that

have a high variability (SP4) tend to provide larger bandwidths than those with low variability

(SP3). This is somewhat counter-intuitive, but suggests that GWR will under-fit the former,

whilst over-fit the latter. Over-fitting is a known consequence of applying a minimum AIC
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criterion (Loader 2004), resulting in smaller bandwidths than required (Jetz, Rahbek, and

Lichstein 2005). Assuming the generation of different levels of coefficient nonstationarity is

reasonable, results reflect a direct limitation of GWR itself, and lend weight against the practice

of automatic (“black-box”) bandwidth selection (see Lu et al. 2014). Results also reflect that

AIC-based bandwidth selection is based on prediction accuracy of the response, rather than

coefficient estimation accuracy (which is not possible, of course).

Ranked AIC-based model fits

From Fig. 3c, MLR tends to provide the best fits to process SP1, which is expected, while

GWR provides the poorest fits. On average, GWR provides the best fits to process SP2, which

is contrary to what is expected. Here, SAR tends to provide the next best fits. GWR also

Figure 3. Boxplots for (a) Moran’s I P-values (response and MLR residuals); (b) GWR

bandwidths; (c) AIC rankings for MLR, SAR, and GWR model fit; and (d) relRMSE data

for coefficient estimation accuracy.
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provides the best fits to process SP3 (low coefficient variability), whilst SAR provides the best

fits to process SP4 (high coefficient variability). Given the roots of GWR lie in local regression

smoothing (Loader 2004), this suggests that GWR is most suited to processes with a low coeffi-

cient variability. In summary, a regression with nonstationary coefficients can fit an autocorre-

lated error and stationary coefficient process, better than a regression designed to do so.

Conversely, a stationary coefficient regression with autocorrelation effects can fit a nonstation-

ary coefficient process, better than a regression designed to do so. Given this, model fit (at least

via AIC) is not a particularly good discriminator across the process groups.

Coefficient accuracy

Boxplots of relRMSE values reflecting each regression’s accuracy in estimating the actual

coefficients are shown in Fig. 3d. All three models provide similar levels of coefficient estima-

tion accuracy for process SP1, which is expected, as SAR and GWR will tend (or default) to

the MLR calibration in these instances. Similarly, all models provide similar levels of coeffi-

cient estimation accuracy for process SP2, with SAR marginally the most accurate. This

reflects that (stationary) coefficient estimation tends to not be adversely effected by whether or

not autocorrelation is accounted for, whereas coefficient estimation uncertainty commonly is

(see below). Coefficient estimation accuracy diverges when considering processes SP3-4. For

low coefficient variability (SP3), model performance is broadly similar, but where SAR per-

forms the best, while MLR performs the poorest. However, for high coefficient variability

(SP4), GWR clearly performs the poorest, with SAR the best-performing. Thus, GWR’s perfor-

mance depends on the nature of coefficient variation, where relatively accurate estimates result

only for coefficients with low levels of variability. Again, this reflects GWR’s smoothing roots,

and again, SAR can out-perform GWR when not expected to.

Although results suggest little value in applying GWR, it is stressed that the results are “on

average.” It is not unexpected for GWR to perform poorly in this respect and is a direct conse-

quence of a bias-variance trade-off that is employed in these nonstationary models. Here, the

size of the local data subset used to estimate each local coefficient needs to be small enough to

be representative of the locality (i.e., minimize bias), but at the same time large enough so the

coefficient is estimated reliably (i.e., minimise variance). Similarly, the “on average” results do

not relay whether the GWR coefficient surfaces broadly reflect the actual coefficient patterns

generated. This is the key remit of GWR after all—the spatial exploration of relationship het-

erogeneity via the mapping of the coefficients (see below).

Coefficient ECI accuracy

Coefficient ECI accuracy is assessed using paired G-STAT and M-ECI-W statistics in Fig. 4.

As a promising G-STAT value takes preference to a promising M-ECI-W value, ideal results

should cluster in the lower right quadrant of each plot, with the next best clustering in the upper

right quadrant, while the poorest results are considered those that cluster in the bottom left

quadrant. Results are not entirely as expected, where GWR performs relatively well for all four

processes (SP1-4), and not just SP3-4.

For process SP1, MLR and SAR perform similarly, but GWR clearly performs best, as its

results cluster in the lower right quadrant (although there are many anomalies). As before,

MLR, SAR, and GWR would be expected to perform similarly for SP1 (as SAR and GWR

should default to MLR). Of the four processes, the results for SP2 display the greatest scatter,

where MLR is the poorest choice, whilst GWR outperforms SAR. For SP3 and SP4, MLR is
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again the poorest model, whilst GWR marginally out-performs SAR (as GWR’s outputs tend

more to the two right-hand side quadrants). Thus, GWR outperforms SAR for autocorrelated

error and stationary coefficient processes, whilst SAR can, on occasion, outperform GWR for

nonstationary coefficient processes. These contrary results are now not so surprising.

Promising results indicate that uncertainties in a model’s coefficient estimation are, in gen-

eral, accurately accounted for in their coefficient standard errors. Thus, for GWR its relatively

poor coefficient estimation accuracy performance (from above) is largely off-set by its rela-

tively strong performance here. Maps depicting localized ECI accuracy may ascertain further

worth of GWR in this respect (Harris, Brunsdon, and Charlton 2013b). Given these results, it is

recommended that any GWR analysis should include an assessment of local coefficient estima-

tion uncertainty, just as that routinely done in any stationary coefficient analysis. This is not so

commonplace with GWR, often due to multiple hypothesis testing issues (da Silva and Fother-

ingham 2016) and limited inferential properties (e.g., Finlay 2011). Thus, reporting such uncer-

tainties still requires caveats. Fotheringham and Oshan (2016) similarly argue for such

assessments in relation to poor GWR coefficient estimation due to collinearity.

Tests for coefficient nonstationarity

On viewing the P-value boxplots in Fig. 5a, for process SP1, all tests (permutation and boot-

strap) perform as they should do. There is little evidence for coefficient nonstationarity for all

Figure 4. Scatterplots with spatial kernel densities for coefficient ECI accuracy via G-STAT

and M-ECI-W data.
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nulls, and all response to predictor data relationships are correctly viewed as fixed across space.

For process SP2 (Fig. 5b), the permutation tests rarely perform as expected. These tests consis-

tently and erroneously indicate significant coefficient nonstationarity, for its MLR null, for all

four coefficients. This is a direct reflection of GWR incorrectly finding spatial pattern to these

autocorrelated processes, as observed before; and that a SAR null is not considered. For the

bootstrap tests for SP2, the results depend on the null hypothesis, where MLR nulls, errone-

ously indicate coefficient nonstationarity, when none is present. Again, this is a consequence of

GWR erroneously finding pattern to these processes, but now coupled with relatively small var-

iability in the bootstrapped response variable with MLR nulls (as random errors are incorrectly

assumed). This has the joint effect that the (false) variability seen in the GWR coefficients is

viewed as significant. For SAR nulls, this is not the case, and these models tend to provide

bootstrapped response variables that have sufficiently large enough variability, for the same

false levels of variability seen in the GWR coefficients to be perfectly acceptable considering a

process that is spatially autocorrelated with stationary relationships. Thus, SAR nulls are

accepted and data relationships are correctly viewed as fixed across space.

For processes SP3-4 (Fig. 5c,d), the test outcomes depend on the variability of the coefficients

generated. If the tests are working as expected, they would tend to provide low P-values, indicat-

ing coefficient nonstationarity, for all nulls, and for all coefficients. Permutation tests, only tend to

work as they should for coefficients generated with high variability (SP4), whereas they appear

inefficient as coefficient variation decreases. This behavior is expected, given the premise for this

test. The bootstrap tests often perform in reverse to the permutation tests for the SAR null, but not

the MLR null. Bootstrap tests only tend to work as they should for coefficients generated with low

variability (SP3). Of the four coefficients, the intercept appears the most enigmatic, and most

likely to be incorrectly viewed as stationary. This behavior is not surprising, given this term will

reflect poor estimation in any of the three predictor coefficients. For a MLR null, the bootstrap test

always correctly indicates that data relationships vary across space, regardless.

Overall, the permutation test has little value, whilst the bootstrap test has merit, but with

limitations (see Harris et al. 2017). Confounding results are in part, a consequence of GWR’s

tendency to under- and over-fit giving rise to false levels of coefficient variability; and in part,

a consequence of an MLR fit to a nonstationary coefficient process producing autocorrelated

residuals. The SAR model specifications may also provide confounding issues but is not

directly assessed here.

Spatial patterns from single realizations

For GWR, it is important that its outputs are interrogated spatially, but only example outputs

from a single realization in turn can be presented, which is limiting given the stochastic nature of

the experiment. That said, spatial patterns of actual and estimated coefficients are now compared

and contextualized by an associated measure of coefficient uncertainty. For the latter, one

approach is to map the local pseudo t-values from a GWR output, noting that values in the range

[21.96, 11.96] correspond to coefficients that do not significantly differ from zero, or some

other quantity, at the 95% level (e.g., Harris, Fotheringham, and Juggins 2010c). Alternatively, a

related approach is adopted, but now under any of the two null models, MLR or SAR, together

with bootstrapping to determine significance levels, rather than a t-approximation. Here, R 5 99

bootstrap samples are created, based on each null hypothesis, and local bootstrap P-values are

mapped to identify where the varying GWR estimated coefficients significantly differ from the

single, fixed one, estimated by the chosen null (for details, see Harris et al. 2017).

Geographical Analysis

14164



Example paired sets of surfaces are given for processes SP2 (Fig. 6) and for SP3-4 (Fig.

7). Surfaces are given for actual coefficients, estimated coefficients, and bootstrap P-values for

MLR and SAR nulls, for b1;b2 only. As demonstration, localized coefficients that significantly

differ from the corresponding global coefficient of the given null are those with P-val-

ues> 0.975 or P-values< 0.025 (respectively colored “dark blue” or “dark red” in the maps).8

For context, P-values> 0.95 and P-values< 0.05 are also mapped. Surfaces for SP1 are not

shown as in practise GWR would usually be dismissed from the outset, given the (mostly) large

bandwidth results from before (Fig. 3b).

From Fig. 6a for SP2, it is clear that GWR will find spatial pattern in data relationships

when none are present, with a proviso that spatial autocorrelation is present (which of course,

is commonly the case). As a result, the bootstrap P-values (Fig. 6b) for a MLR null falsely indi-

cate regions of significant coefficient nonstationarity (i.e., those colored “dark blue” or “dark

Figure 5. Boxplots of permutation test and bootstrap test P-values for coefficient nonstatio-

narity, for SP1 to SP4. Plots are shown with P-value thresholds at 0.05, 0.10, and 0.50.
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red” for respectively, much smaller or much larger coefficients than that estimated globally).

Reassuringly however, the bootstrap P-values (Fig. 6b) for a SAR null gives no evidence for

significant areas of coefficient nonstationarity, implying that the underlying spatial process is

suited to a SAR-type model, as is expected.

From Fig. 7a for SP3, GWR will correctly find spatial pattern in data relationships when

they are indeed present. However, for coefficient processes that are relatively low in variability,

as is the case here, GWR will tend to over-fit, giving a heightened sense of relationship nonsta-

tionarity. As a result of the over-fit, the bootstrap P-values for the MLR null (Fig. 7b), indicates

much larger regions of significant coefficient nonstationarity than is likely. Conversely, the

SAR null (Fig. 7b) appears more conservative, indicating much smaller regions of significant

coefficient nonstationarity. As an example, the estimated b2 coefficients in the extreme south

east (colored “blue” in far right map of Fig. 7a) are strongly considered to result from a nonsta-

tionary relationship between the response and predictor x2, as the corresponding bootstrap

P-values are significant (colored “dark blue” in both b2 maps of Fig. 7b), indicating these coef-

ficients to be significantly smaller than the MLR and SAR estimates of b2.

From Fig. 7c for SP4 (high coefficient variability), GWR will again find spatial pattern in

data relationships when they are present. However, GWR will now tend to under-fit, giving a

reduced sense of relationship nonstationarity than that which exists; and unlike the low coeffi-

cient variability case, spatial patterns between actual, and estimated coefficients can be mark-

edly dissimilar. The significant bootstrap P-values for the MLR null (Fig. 7d) simply reflect the

patterns of the poorly estimated coefficients, and as such, suggest false regions of coefficient

nonstationarity. There are very few significant bootstrap P-values for the SAR null (Fig. 7d),

entailing that regions of true coefficient nonstationarity are unidentified.

Figure 6. Example realizations for SP2 with (a) actual versus GWR estimated coefficients;

and (b) significant local bootstrap P-values at 95% (and 90%) level for MLR and SAR null

hypotheses. Given for b1;b2 only.
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Discussion

In summary, three routinely applied regressions to geographical data were assessed when

applied to simulated data with known spatial characteristics. Given the specified characteristics

are reasonable, results objectively confirm a strong interrelationship between autocorrelation

and relationship heterogeneity (as extensively discussed in texts such as Anselin 1988, 2010).

This can result in an identification problem when choosing one regression over another. An

Figure 7. Example realizations for SP3 and SP4 with (a, c) actual versus GWR estimated

coefficients; and (b, d) significant local bootstrap P-values at 95% (and 90%) level for MLR

and SAR null hypotheses. Given for b1;b2 only.
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MLR fit to a nonstationary coefficient process will tend to produce autocorrelated residuals,

thus ensuring a SAR fit to be a reasonable, but incorrect model choice. Conversely, GWR will

often find spatial pattern in the coefficients when none exists, provided the error is autocorre-

lated. On occasion, GWR will also find pattern in the coefficients when none exists, when the

error is random—but in most cases, the bandwidth is large enough to strongly suggest a station-

ary coefficient process (this concurs with P�aez, Farber, and Wheeler 2011). Furthermore,

GWR’s performance depends on the coefficient process itself, where it can both over- and

under-fit depending on the nature of coefficient variability. It is well-known for GWR to over-

fit (e.g., Jetz, Rahbek, and Lichstein 2005; P�aez, Farber, and Wheeler 2011), but it is not so

well-known that GWR also has the capacity to under-fit. All such identification problems can

result in ineffectual model fit comparisons together with ineffectual tests for significant spatial

effects. To provide valuable context to this simulation study, a discussion on its sensitivity to:

(1) the chosen regression specifications and (2) the simulation design itself is given in the

Appendix. For the latter, a sensitivity analysis is provided in respect of: (1) predictor collinear-

ity, and (2) the mean to error ratio. Much of this additional work has a certain resonance for

future study.

Empirical case study

To illustrate the issues described and provide a possible solution, a case study is given that uses

the actual educational attainment data for the 159 counties of Georgia, USA. The response is

the percentage of the adult population with a Bachelor’s degree or higher qualification

(PctBach), whose variance, is in part, explained by: (1) the total population in 1990 (Tot-

Pop90); (2) percentage of total population deemed to be living in a rural area (PctRural); (3)

percentage of total population aged 65 or above (PctEld); (4) percentage of total population

born outside of the US (PctFB); (5) percentage of total population living on or below the pov-

erty level (PctPov); and (6) percentage of total population who are African Americans

(PctBlack). A fourth-root transform was applied to TotPop90, entailing that nonlinear effects

were immediately included. Initial regressions were again limited to that of MLR, SAR, and

GWR only, together with a similar set of diagnostics to that used above. SAR and GWR use

the same weight specifications as that defined above.

All predictors, aside from PctBlack, correlate well with PctBach. Both the response and

the MLR residual term exhibit significant spatial autocorrelation, with Moran’s I P-values

of< 0.000 and< 0.001, respectively. The predictors provide similarly significant Moran’s I P-

values of< 0.000,< 0.020,< 0.000,< 0.000,< 0.000, and< 0.000, for TotPop90, PctRural,

PctEld, PctFB, PctPov, and PctBlack, respectively.9 Summaries of the MLR and SAR fits are

given in Table 3, where in both cases, Totpop90 and PctFB are the only significant predictors

of PctBach. There is little difference between the MLR and SAR results, although, the SAR

autocorrelation parameter (estimated at k 5 0.34) is significant with P< 0.006. For GWR, an

AIC-defined optimum bandwidth at 88% (n 5 141) suggests moderate relationship nonstatio-

narity. Model AIC values decreased by 6.4 units from MLR to SAR and by 15.7 units from

MLR to GWR. Model residual sum of squares (RSS) decreased by 125.1 units from MLR to

SAR and by 375.4 units from MLR to GWR. Thus, GWR provides the best fit.

Bootstrap tests for GWR were run with respect to coefficient nonstationarity for MLR and

SAR nulls (now with R 5 999). In each case, the 95% points of the bootstrap samples were

computed, and significance levels were found for upper one-tailed hypothesis tests. Results are

given in Table 4, where, PctFB yields significant bootstrap P-values for both nulls. Thus, its
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coefficient is viewed as nonstationary, whose spatial variation exceeds that expected due to

spatial effects such as that caused by autocorrelation. Weaker evidence of coefficient nonstatio-

narity is shown for Totpop90 and PctBlack, as each only provide significant bootstrap P-values

for the MLR null at the 95% level. All other predictors appear to have stationary relationships

with PctBach, including the intercept. For all predictors, the 95% point of the distribution of

the test statistic, is always lower for MLR compared with SAR. Thus, the degree to which one

might expect local coefficients to vary when a regression with fixed coefficients holds, is stron-

gest with the SAR model.

Local bootstrap P-values for each coefficient are mapped for a SAR null only (Fig. 8a),

with the same levels of significance as that used in the simulation experiment. The maps con-

firm the findings from Table 4 but provide spatial detail. For example, the coefficient for PctFB

is clearly nonstationary, it being much larger than the fixed SAR estimate in the north of Geor-

gia, whilst much smaller in the south. The higher PctFB coefficients in the north could be

linked to the international make-up of the population living near to a number of universities in

the region. The coefficient for PctBlack also appears nonstationary, as it is much larger than

the SAR estimate in the south-west, while it is much smaller in the north-east. The coefficient

for Totpop90 is smaller than the SAR estimate in the north. The remaining coefficients are

broadly stationary, but never entirely so. This completes the initial analysis.

Likely identification issues aside, it appears that the main outcome of the initial analysis is

that both heterogeneity and autocorrelation effects are present but weak, as depicted by the rel-

atively large bandwidth for GWR and the strong similarity between the MLR/SAR coefficients

(and standard errors), respectively. Only TotPop90 and PctFB are significant predictors glob-

ally, but where the relationship between PctFB to PctBach is likely to be nonstationary. The

relationships between TotPop90 and PctBach and between PctBlack and PctBach also appear

nonstationary, but weakly so.

Given these findings, it is possible that the single bandwidth of basic GWR is effectively

set too large for the nonstationary processes, as it was compromised (diluted) by the stationary

processes. Thus, an obvious next step would be to replace basic GWR with: (1) a mixed GWR

(Brunsdon, Fotheringham, and Charlton 1999), specified with the local relationships identified,

while all others are fixed globally; or better still, (2) a flexible bandwidth GWR (FBGWR)

(Leong and Yue 2017; Fotheringham, Yang, and Kang forthcoming; Lu et al. forthcoming).

FBGWR relaxes the unrealistic assumption of the same degree of spatial smoothness for each

coefficient in basic GWR (or those that are set as local, in mixed GWR). That is, FBGWR

allows each relationship to vary at its own spatial scale, by finding coefficient-specific

bandwidths.

Table 4. Georgia Data Analysis: Results of Bootstrap Tests for MLR and SAR nulls. Actual

SD is the Standard Deviation of the GWR Coefficients Divided by Their Standard Errors,

Resulting from the GWR Fit to the Data

Intercept TotPop90 PctRural PctEld PctFB PctPov PctBlack

Actual SD 0.568 0.774 0.588 0.389 2.135 0.717 1.184

MLR 95% 0.741 0.733 0.789 0.922 0.932 0.742 0.832

MLR P-value 0.153 0.041 0.154 0.569 0.000 0.061 0.003

SAR 95% 0.884 1.087 0.891 1.145 1.269 1.028 1.215

SAR P-value 0.252 0.133 0.231 0.702 0.001 0.180 0.057
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Thus, FBGWR was run using the algorithm of Lu et al. (forthcoming), where all seven

bandwidths were found automatically via a corrected AIC-based back-fitting procedure. The

results are in good agreement of that suggested above, where the bandwidths for the intercept,

TotPop90, PctRural, PctEld, and PctPov were all set as global, while the bandwidths for PctFB

and PctBlack were locally set at 34% (n 5 54) and 92% (n 5 146), respectively. Thus, the coef-

ficients for PctFB are re-affirmed as nonstationary while the coefficients for PctBlack are re-

affirmed as weakly nonstationary. All other coefficients are stationary or fixed, including that

for TotPop90. Interestingly, the intercept is estimated as being fixed. Thus, autocorrelation

effects10 have been entirely dispensed with, since any GWR model with a locally varying inter-

cept term is likely to indirectly account for residual autocorrelation.

The model AIC values decreased by 20.8 units from GWR to FBGWR, whilst the model

RSS decreased by 208.8 units from GWR to FBGWR. FBGWR clearly improves model fit.

Figure 8. Georgia data analysis: (a) significant local bootstrap P-values at 95% (and 90%)

level for SAR null hypothesis, and (b) coefficient and pseudo t-values for PctFB from GWR

and FBGWR fits.
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Summaries of the GWR and FBGWR fits are given in Table 3. As examples, coefficient and

pseudo t-value surfaces for PctFB found from GWR and FBGWR are given in Fig. 8b, where

the nature of PctFB coefficient nonstationarity clearly differs between the two models. Space

precludes a more detailed assessment. Thus, in summary, the case study has demonstrated a

roadmap to an entirely plausible final regression in FBGWR, through careful investigations of

both autocorrelation and relationship heterogeneity effects.11

Final thoughts

Based on the results from a simulation experiment, this study has objectively confirmed an

inherent interrelationship between spatial autocorrelation and spatial heterogeneity (with

respect to data relationships), that results in an identification problem when choosing one

regression over another. Although it should never be expected to entirely remove or solve the

identification problem, useful guidelines on the implementation of regressions to spatial data

have been provided both via the simulation experiment and via an empirical case study, so to

reduce the chances of regression misspecification due to this clearly insidious issue. Intrigu-

ingly, as a method for dealing simultaneously with autocorrelation and heterogeneity, FBGWR

appears a reasonable choice at least empirically. In this respect, future work could objectively

assess FBGWR via a simulation experiment, benchmarking its performance with alternatives

such as the hybrid mixed GWR-SAR models of Geniaux and Martinetti (forthcoming), and by

natural extension, hybrids of both.
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Notes

1 MLR is commonly referred to as “OLS” in the literature in respect of its OLS estimation procedure.

2 Unlike this study, Geniaux and Martinetti (forthcoming) has a core remit of introducing a new class of

models (termed MGWR-SAR), where each regression coefficient together with an autocorrelation

parameter can be specified as either fixed or locally varying—essentially a hybridization of mixed

GWR (Brunsdon, Fotheringham, and Charlton 1999) with a GWR-SAR hybrid (Brunsdon, Fothering-

ham, and Charlton 1998). In this respect, their simulation experiment, although assessing MGWR-SAR

to MLR, SAR, and GWR, is not as detailed as that presented here. In particular, their study does not

investigate global and local coefficient uncertainty, say with confidence interval assessments and boot-

strap tests, nor does it investigate the impacts and reasons of over- and under-fitting with GWR-based

models.

3 In the simulation study of P�aez, Farber, and Wheeler (2011), a sample size of around n 5 160 is consid-

ered too small to reliably apply GWR. This is not viewed as a concern here, and if anything, presents a

critical challenge to the value of this study’s results. Furthermore, this recommendation should not be

viewed as authoritative, as P�aez, Farber, and Wheeler (2011) acknowledge with this statement:

“However, an important step would be to determine whether an appropriate minimum sample size for

the use of GWR exists, and what this value would be under various conditions.” Fotheringham and

Oshan (2016) also call for understanding on this issue with this statement: “Finally, a clearer under-

standing of the relationship between the sample size, the bandwidth, and the robustness of GWR would

be useful.” It is considered that a minimum sample size for GWR depends on the characteristics of the

coefficient process, where small samples will suffice if this process is considered well-behaved (i.e., is
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generated from a relatively large bandwidth, has no collinearity issues, has no outliers, etc.). Con-

versely, studies with (perceived) large samples may suffer from insufficient information if the coeffi-

cient process is not well-behaved (i.e., is generated from a relatively small bandwidth, has collinearity

issues, has outliers, etc.).

4 Observe that coefficient nonstationary is simulated according to a fixed distance parameter (i.e., the cor-

relation range), but an adaptive distance kernel is specified for GWR. Further work could investigate

the use of both fixed and adaptive distance kernels.

5 The interpretation of a locally varying intercept together with locally varying errors is a subject beyond

the scope of this study. Geo-additive models (Kammann and Wand 2003) may provide some direction

in this respect.

6 Ultimately the coverage probabilities depend on the variance estimated for the corresponding estima-

tors and that M-ECI-W depends directly on the variance.

7 On a medium specs laptop (IntelVR coreTM i7–4600U CPU @ 2.10–2.70 GHz with 16.0 GB using a 64-bit

OS), the simulation experiment (including that reported in the Appendix) took nine days, three hours to

run. This study primarily relied on functions provided by GWmodel (Lu et al. 2014; Gollini et al. 2015),

gstat (Pebesma 2004), spgwr (Bivand and Yu 2014), and spdep (Bivand and Piras 2015) R packages.

8 Observe that the local bootstrap tests are two-tailed, whilst the global bootstrap test is one-tailed (Harris

et al. 2017).

9 This empirical result of autocorrelated predictors lends weight to the likewise predictor specifications

used in the simulation experiment, and suggested consequences thereafter. Murakami et al. (2017) and

Geniaux and Martinetti (forthcoming) also acknowledge the influence of autocorrelated predictors and

the identification difficulties that may result.

10 In practice, it would be prudent to re-investigate with further Moran’s I tests with different weights

structures, together with more informative measures such as variograms. In this respect, the Georgia

data MLR residual variogram depicted no spatial structure.

11 Observe there is evidence of global and local collinearity between PctPov and PctBlack, which may

result in regions of spurious negative estimates in PctBlack on applying GWR. However, the applica-

tion of FBGWR alleviates this concern. Geniaux and Martinetti (forthcoming) similarly promote the

use of mixed GWR forms, as a way of addressing collinearity.

Appendix

Sensitivity to regression specifications

A refinement to this research would be to conduct a sensitivity analysis for regression speci-

fication choices, while keeping the simulation design the same. Only basic MLR, SAR, and

GWR models were specified, where SAR used a standard spatial weights structure, while

GWR used a standard calibration procedure for its weights. Alternative specifications (i.e.,

with different weighting structures) exist for SAR (e.g., Kissling and Carl 2007; LeSage and

Pace 2014) and similarly for GWR (Fotheringham, Brunsdon, and Charlton 2002; Gollini

et al. 2015). For GWR this can be quite involved, with many kernels to choose from (Box-

car, Gaussian, Exponential, etc.), the choice of fixed or adaptive bandwidths and different

bandwidth selection procedures (AIC or leave-one-out cross-validation, say). Related models

could also have been chosen, such as a SAR lagged model where autocorrelation is modeled

through the response rather than the error (Cressie 1993) or a locally linear GWR (Wang,

Mei, and Yan 2008). There are also alternative models that have the same aims. For exam-

ple, a geostatistical regression, where autocorrelation in the error term is measured continu-

ously for all distances via a variogram function (e.g., Lark, Cullis, and Welham 2006),

provides an alternative to SAR (see also Wall 2004). For example, a Bayesian spatially

varying coefficient model (Gelfand et al. 2003) provides an alternative to GWR. In this

respect, this study’s outcomes must be placed in context of these rudimentary model choices
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and specification decisions therein. Expanding the simulation experiment to include: (1) dif-

ferent specification forms, (2) model variants, and (3) model alternatives would swamp study

objectives. That said, a few experiments were conducted. GWR was trialed with an expo-

nential kernel function (a continuous function) but provided similar results to the (discontin-

uous) bi-square kernel. A SAR lagged model and a spatial moving average error model

were trialed but gave similar results to the SAR error model.

Sensitivity to simulation design

Similarly, the simulation design could be extended to generate a more varied set of pro-

cesses. For example, simulate processes with: (1) varying levels of predictor collinearity, (2)

varying number of predictors, (3) varying levels of response to predictor correlations, (4)

varying mean to error ratios, (5) varying levels of coefficient nonstationarity (i.e., not just

low and high), (6) different scales of coefficient nonstationarity per relationship, (7) aniso-

tropic coefficient nonstationarity, (8) varying strengths of residual autocorrelation, (9) differ-

ent sample configurations (or areal units), (10) different sample sizes, (11) the introduction

of global and local anomalies—all of which, would in turn, allow a full spectrum of related

or alternative regressions to be assessed (e.g., ridge regressions for collinearity, robust

Figure A1. Boxplots of relRMSE data for coefficient estimation accuracy for weak versus

strong levels of collinearity.
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regressions for anomalies). Again, this is not viable in a single presentation, as the experi-

ment becomes highly factorial with many interaction levels (e.g., the interaction between the

level of coefficient nonstationarity and sample size). However, two (noninteractive) experi-

ments were conducted and presented below: (1) sensitivity to predictor collinearity, and (2)

sensitivity to the set mean to error ratios. Finally, there are also sensitivities associated with

Figure A2. Example realizations for SP3 and SP4 with (a, c) actual versus GWR estimated

coefficients; and (b, d) significant local bootstrap P-values at 95% (and 90%) level for MLR

and SAR null hypotheses. Given for b1;b2 only. Both SP3-4 (main text with weak collinear-

ity) and SP3–4 (here with strong collinearity) use exactly the same coefficient process.
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the diagnostics used. For example, the choice of weights matrix in the Moran’s I tests, the

choice of corrected AIC rather than some alternative measure of fit, setting R 5 99 in the

permutation and bootstrap tests rather than R 5 999.

Sensitivity to simulation design: predictor variable collinearity

One issue when considering the estimation of coefficients in GWR is that of local collinearity

among the predictors (Wheeler and Tiefelsdorf 2005; Wheeler 2007). For the global case (i.e.,

MLR and SAR), if there is a high degree of correlation between the predictors, then problems

calibrating the model can follow (e.g., Dormann, Elith, and Bacher 2013). This issue can be

particularly important in GWR, since a near-linear relationship between predictors need only

Figure A3. Boxplots for (a) Moran’s I P-values (response); (b) Moran’s I P-values (MLR

residuals), (c) GWR bandwidths, and (d) AIC rankings for model fit—all for different mean

to error ratios.
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hold in a particular geographical region, rather than in the data set as a whole. Considering

this, the simulation experiment was run with two levels of collinearity (weak and strong)

between x2; x3 only. Here, the LMC cross-variances between x2 and x3 were specified to pro-

duce: (1) weak levels of collinearity between this predictor pair resulting in correlation coeffi-

cients of around r 5 0.1 (i.e., as reported in the main text in Table 2), and (2) strong levels of

collinearity resulting in correlations of around r 5 0.9 (i.e., a cross-covariance of 0.9 is speci-

fied). On application of the simulation experiment, response to predictor relationships were

slightly stronger with the strong levels of collinearity, as would be expected.

Results are reported in the same order as that found in the main text. First, collinearity

was found to have little to no effect on: (1) the outcomes of the autocorrelation tests; (2) the

determination of the GWR bandwidths; and (3) the AIC-based ranking of model fits. Such

results are expected, as collinearity is primarily expected to influence coefficient accuracy

and coefficient uncertainty accuracy. In this respect, boxplots of relRMSE values reflecting

each regression’s accuracy in estimating the actual coefficients are shown in Fig. A1. MLR,

SAR, and GWR all under-perform due to strong collinearity, for the processes they are

designed to suit. GWR can be the most effected, especially for process SP4. For coefficient

ECI accuracy, strong collinearity tended to heighten coefficient estimation uncertainty, as it

produced more scattered outputs throughout, although general patterns remained unchanged.

For the tests for coefficient nonstationarity, strong collinearity had a similar effect in that the

P-value distributions often displayed a wider interquartile range, but not to the extent of a

different interpretation of the overall results. For spatial patterns, example surfaces are given

for processes SP3-4 in Fig. A2, for comparison with Fig. 7 for corresponding weak collin-

earity surfaces. Given GWR is expected to perform relatively well for the low variability

coefficient process (SP3) (Fig. 7a,b), its behavior is clearly compromised when fitted to

exactly the same coefficient realization, but now with strong levels of predictor collinearity

(Fig. A2a,b). GWR’s poor behavior for the high coefficient variability case (SP4) with weak

collinearity (Fig. 7c,d), is simply exasperated in the presence of strong collinearity (Fig.

A2c,d).

Sensitivity to simulation design: the mean to error ratio

A second sensitivity analysis was conducted to highlight issues raised with respect to the

mean to error ratio, where now: (1) SP1 and SP3-4 were generated with the 90 : 10 ratio,

while SP2 was generated with an 80 : 20 ratio (call this “Ratio set B”); and (2) SP1 and

SP3-4 were generated with the 80 : 20 ratio, while SP2 was generated with a 70 : 30 ratio

(call this “Ratio set C”). The results presented in Fig. 3a-c (call this, “Ratio set A”) are thus

twice repeated in Fig. A3 using these extra realizations. Comparing Fig. 3a,c with Fig. A3,

it is clear and entirely expected, that the outcomes of the simulation experiment become less

distinct and less interpretable as this ratio narrows. This endorses the insidious nature of pro-

cess identification.
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