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  ABSTRACT 

  Genetic parameters were estimated using relation-
ships between animals that were based either on 
pedigree, 43,011 single nucleotide polymorphisms, or a 
combination of these, considering genotyped and non-
genotyped animals. The standard error of the estimates 
and a parametric bootstrapping procedure was used to 
investigate sampling properties of the estimated vari-
ance components. The data set contained milk yield, dry 
matter intake and body weight for 517 first-lactation 
heifers with genotypes and phenotypes, and another 112 
heifers with phenotypes only. Multivariate models were 
fitted using the different relationships in ASReml soft-
ware. Estimates of genetic variance were lower based on 
genomic relationships than using pedigree relationships. 
Genetic variances from genomic and pedigree relation-
ships were, however, not directly comparable because 
they apply to different base populations. Standard 
errors indicated that using the genomic relationships 
gave more accurate estimates of heritability but equally 
accurate estimates of genetic correlation. However, the 
estimates of standard errors were affected by the dif-
ferences in scale between the 2 relationship matrices, 
causing differences in values of the genetic parameters. 
The bootstrapping results (with genetic parameters at 
the same level), confirmed that both heritability and 
genetic correlations were estimated more accurately 
with genomic relationships in comparison with using 
the pedigree relationships. Animals without genotype 
were included in the analysis by merging genomic and 
pedigree relationships. This allowed all phenotypes to 
be used, including those from non-genotyped animals. 
This combination of genomic and pedigree relationships 
gave the most accurate estimates of genetic variance. 
When a small data set is available it might be more 
advantageous for the estimation of genetic parameters 

to genotype existing animals, rather than collecting 
more phenotypes. 
  Key words:    genomic selection ,  heritability ,  genetic 
correlation ,  feed intake 

  INTRODUCTION 

  Genotyping animals with dense SNP information 
across the genome is becoming cheaper every year and a 
lot of attention has focused on using high-density SNP 
information for breeding value estimation (Hayes et 
al., 2009). Models have been developed to estimate the 
variation explained by identical-by-descent haplotypes 
or individual SNP (Calus et al., 2008). Other models 
for breeding value estimation have been suggested using 
the high-density SNP information to form a genomic 
relationship matrix (GRM), with the advantage that 
the GRM can replace the numerator relationship ma-
trix based on pedigree information (ARM) in routine 
BLUP evaluations (VanRaden, 2008). Compared with 
the ARM, the advantage of the GRM is that the rela-
tionship between relatives are described more precisely, 
because it reflects that actual relationships may deviate 
from their expectation because of Mendelian sampling. 
Because the GRM reflects relationships between animals 
more precisely than the ARM, it can be hypothesized 
that, compared with estimates with the ARM, genetic 
variance components can be estimated more accurately 
with the GRM. If so, genotyping animals might become 
especially appealing when small data sets are available 
for genetic studies, for example for scarcely recorded 
traits that are so difficult or expensive to record that 
only few phenotypes are available (e.g., feed intake and 
BW of dairy cows). 

  When GRM models are used on scarcely recorded 
traits, a drawback might be that not all animals with 
phenotypes have DNA available. Therefore, using the 
GRM results in a loss of phenotypic records (i.e., records 
of those animals that have no DNA available). This is a 
common scenario where historical phenotypes are used 
to estimate genetic parameters. For BLUP evaluations, 
a unified method was developed to combine the ARM 
and GRM for genotyped and non-genotyped animals 
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(Aguilar et al., 2010; Legarra and Misztal, 2008). This 
method might also be appealing for variance compo-
nent estimation, because data of the genotyped and 
non-genotyped animals can be combined.

The objective of this study was to estimate variance 
components for milk yield, feed intake, and BW in a 
small data set using genetic relationships based on 
SNP, pedigree information, or combining both, and to 
compare the accuracy of the estimated genetic parame-
ters across methods. A parametric bootstrap procedure 
was developed to obtain the sampling variance of the 
estimated values.

MATERIALS AND METHODS

Phenotypes and Genotypes

Data on 639 Holstein-Friesian heifers born between 
1990 and 1997 were collected during the first 15 wk 
of lactation. All cows were fed ad libitum. Milk yield 
(MY) and BW were recorded weekly, and DMI was 
recorded daily using automated feed intake units. Com-
prehensive details on the data used can be found in 
Veerkamp et al. (2000). A subset of these animals (603) 
had blood samples available for DNA extraction, and 
these were genotyped using the Illumina 50K SNP pan-
el (54,001 SNP in total; Illumina Inc., San Diego, CA). 
Quality control checks included a call rate for each SNP 
of over 90%, a GenCall score >0.2, a GenTrain score 
>0.55, a minor allele frequency of >2.5%, and a lack of 
deviation from Hardy-Weinberg equilibrium (Verbyla 
et al., 2010). After all editing steps, in total, 43,011 
SNP and 517 animals were retained that had genotypes 
and phenotypes for all traits considered here.

Genetic Relationship Matrices

Pedigree Relationships. Assuming the infinitesi-
mal model, the pedigree relationships were used to cal-
culate the numerator relationship matrices (Meuwissen 
and Luo, 1992) for the 517 animals that had genotypes 
plus phenotypes available and the 639 that had phe-
notypes available, hereafter referred to as A517 and 
A639, respectively. Pedigree was traced back for as 
many generations as available in the Dutch herd book 
(more than 4 for most animals). The 517 animals that 
were genotyped had 93 sires and 381 dams, and the 
complete set of 639 animals with phenotypes had 105 
sires and 455 dams. In the full data set, one sire had 
at maximum 36 offspring with data, and 27 sires had 
one offspring only. More than 124 dams had 2 or more 
offspring with data available (14 dams had between 4 
and 8 offspring) and 135 dams had also phenotypes 
themselves. Furthermore, 65 full-sibling groups had 2 

to 5 siblings. These sibling groups occurred because of 
the use of embryo transfer in the herd.

Genomic Relationship. Assuming a genetic model 
in which all 43,011 SNP affect a trait with equal vari-
ance per SNP, a relationship matrix can be calculated 
based on SNP genotypes. This genomic relationship 
matrix (G517) was set up for the 517 genotyped ani-
mals following VanRaden (2008):

 G
ZZ

=
−∑

′
2 1p pi i( )

, 

where pi was the frequency of the second allele at locus 
i, and the elements of Z were derived by subtracting 2 
times the allele frequency expressed as a difference of 
0.5, that is 2(pi – 0.5), from matrix M that specifies the 
3 marker genotypes for each individual as −1, 0, or 1 
(VanRaden, 2008). This G estimates the relationships 
between animals based on SNP information, and allows 
the relationship to deviate from the average pedigree 
relationship. However, the complete genome sequence is 
not available and the estimated genomic relationships 
are, therefore, subject to sampling error (Powell et al., 
2010). Therefore, the properties of G were adjusted, 
considering that G is estimated with some error, fol-
lowing the procedure suggested by Yang et al. (2010):

 = G + E = A + (G – A) + E,

where E is a matrix with estimation errors for  and A 
is the matrix with the pedigree relationships.

Further, consider that the variances of those matrices 
are

V(  – A) + V (G – A) + V(E),

where V(E) = 1/N, and N is the number of SNP used 
to calculate G.

The difference between G and A (  – A) was then 
regressed back toward A, to account for the sampling 
variance in . The adjusted G (�G) was calculated as 
follows:

 
�G A G A G A G A E
A G A G A
= + − × − − +

= + − × − −

(ˆ ) ( ) / [ ( ) ( )]
(ˆ ) [ (ˆ ) / ]/ (
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To account for the fact that the sampling error in 
relationships in  depends on the value of the relation-
ship, regression coefficients were separately calculated 
for bins of the relationships in A, being 0 to 0.10, 0.11 
to 0.25, 0.26 to 0.50, and >0.50. In the last bin, parent-
offspring pairs were not included, because the expecta-
tion of all those relationships is 0.5. Self-relationships 
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(i.e., diagonals of ), were not regressed. The regression 
coefficients for the 4 bins were 0.978, 0.981, 0.990, and 
0.993, respectively. The final relationship matrix �G 
(G517) was used in the analysis.

Combined Genetic and Genomic Relation-
ships. To be able to use phenotypic records on geno-
typed and non-genotyped animals, the pedigree and 
genomic relationships needed to be combined in one 
relationship matrix. This combined inverse relationship 
matrix for the 639 (H639−1) animals was created using 
the inverses of G517, A517, and A639 (Legarra and 
Misztal, 2008; Aguilar et al., 2010):

 H639 A639
G517 A517

-1 -1
-1 -1= +

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0
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Statistical Model

Assuming the underlying genetic models, variance 
components were estimated with ASReml software 
(Gilmour et al., 2000) using the general model:

yij + μ + fixed_effectsj + ai + eij,

where yij was the phenotype of animal i; fixed_effects 
were year-quarter (25 levels) and age at calving (3 lev-
els); ai was the random additive genetic effect of the 
ith animal; Var(a) = A517σ

2a or A639σ
2a, or G517σ

2a, or 
H639σ

2a; and eij were the random residuals. This general 
model was used to analyze MY, DMI, and BW together 
with separate fixed effects for each trait, and including 
covariances between the residuals for the 3 traits, and 
the estimated genetic effects. Standard errors of the 
estimated heritabilities and genetic correlations were 
approximated with ASReml using the (co-)variances of 
the estimated (co-)variances.

Parametric Bootstrapping

The accuracy of the estimated variance components 
can be inferred from the standard errors approximated 
by ASReml. However, the approximation might be less 
precise for small data sets and affected by the level 
of the estimated variances. Therefore, the sampling 
variance and standard errors of the genetic parameters 
were also obtained with a parametric bootstrapping 
procedure, using the same values to simulate data with 
all 4 relationship matrices (A517, G517, A639, and 
H639). Second, to investigate the effect of G and A 
on the values of the variances, data simulated with 
A517 were analyzed with G517 and vice versa. The 
first step was to create 250 replicated data sets for the 
517 and 639 animals, respectively. These phenotypes 

for each replicate were created by sampling (and add-
ing) the genetic and residual effect for each animal from 
a multivariate normal distribution using the rmvnorm 
procedure in R (Genz et al., 2010). The (co-)variances 
between the genetic effects across traits and across re-
lationships were calculated as the Kronecker product 
between the genetic covariances for the 3 traits and 
the relevant relationship matrix (A517, A639, G517, 
or H639). For the residual covariances, estimates were 
based on the Kronecker product between an identity 
matrix and the residual covariances between the traits. 
The phenotypes in each replicate where sampled from 
the respective matrices: 
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where Yi...n are the sampled phenotypes for the traits 
MY, DMI, and BW for n = 517 or 639 animals; MVN(V) 
samples from the multivariate normal distribution with 
mean zero and (co-)variance between the effects V; 
A1...3,1...3 and R1...3,1...3 are the genetic and residual 
covariance matrix for MY, DMI, and BW, respectively 
(Table 1); a1...n,1...n are the genetic relationships be-
tween n animals coming from A517, A639, G517, or 
H639); the values taken for A and R were estimates 
from the H639-matrix analysis; and I is an identity 
matrix of size 517 (or 639). Variance components were 
estimated for each replicate with ASReml, using the 
model described earlier. Fixed effects were not simu-
lated, although they have an effect on the stratification 
of the data and, therefore, the sampling properties of 
the genetic correlations. For this reason, fixed effects 
were included in the estimation model, albeit the ex-
pectation for each effect was zero. Standard errors for 
the heritability and genetic correlations were obtained 
by taking the standard deviation of the 250 replicates.

RESULTS

Variance Components for Milk, DMI, and BW

Genetic and phenotypic variances were estimated 
using numerator (A517 and A639), genomic (G517) 
and combined (H639) relationship matrix (Table 2). 
The models with the SNP-based relationships gave 
lower genetic variances and heritability in comparison 
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with the models that included the pedigree-based re-
lationships. Although these deviations were within the 
standard errors of the estimates, the same data were 
used (e.g., A517 and G517) and differences were larger 
than expected, especially for DMI. The models with the 
GRM gave a better likelihood (log-likelihood of A517 
and G517 analyses were −3,392.4 and −3,382.7, re-
spectively, and for A639 and H639 they were −4,206.4 
and −4,196.2, respectively), suggesting a better fit of 
the data in comparison with the models with ARM.

For all models, standard errors of the heritability es-
timates were large (between 0.08 and 0.12), as expected 
for such a small data set. When the pedigree was used 
with phenotypes from the genotyped animals only 
(A517) standard errors were highest (0.12 for milk 
yield). The additional 122 phenotypes did improve the 
standard error to 0.11 (A639), but not as much as when 
using the GRM on the smaller data set (G517). This 
model gave for milk a standard error of 0.10, despite 
using 122 records fewer than the model A639. The 
combined analysis (H639) used all phenotypes and the 
more precise genomic relationships for the genotyped 
animals, and therefore, gave the most precise estimate 
of the heritability for all traits (standard error of 0.09 
for milk).

Genetic correlations were closer to zero using the 
SNP-based relationships in the model, compared with 
using the pedigree-based relationship model (Table 3). 
However, little advantage appeared in terms of preci-
sion of the estimated genetic correlations, as standard 

errors were similar between models with pedigree or 
SNP-based relationships. Using the additional 122 re-
cords decreased the standard errors for genetic correla-
tions between all pairs of traits, as expected.

Bootstrapping

Across the replicates, mean estimates of the genetic 
parameters and variances (Table 4) were equivalent be-
tween the 4 models compared with the simulated values 
(Table 1). This is not surprising, because the data were 
simulated with the same model used in the analysis and 
the same simulated values were used in all 4 models. 
When the data simulated with A517 were analyzed 
with G517, a considerable decrease (e.g., from 7.3 
to 4.9 for milk) was observed for the genetic variance 
(Table 5). The reason may be that a considerable part 
of the genetic covariances between animals (based on 
GRM) does not correspond to covariances in the data 
simulated with ARM; for example, animals unrelated 
by pedigree might still be related through the GRM. 
Also, the average Mendelian sampling when simulated 
with A517 is different than the Mendelian sampling 
in G517. When the data simulated with G517 were 
analyzed with A517, estimates for the genetic vari-
ance were closer but slightly higher than the simulated 
values.

The distribution of the variance component values 
can be used to evaluate the accuracy of the different 
procedures, as demonstrated for the genetic correla-

Table 1. Heritability, genetic and phenotypic covariances (below diagonal), genetic and phenotypic variances 
(underlined on diagonal), and genetic and phenotypic correlations (above diagonal) used in the simulations 

Genetic

h2

Phenotypic

Milk DMI BW Milk DMI BW

Milk (kg/d) 7.3 0.36 0.09 0.42 17.4 0.36 −0.03
DMI (kg/d) 1.3 1.8 0.70 0.65 2.5 2.8 0.52
BW (kg) 6.7 25.7 743 0.51 −5.1 33.0 1,466

Table 2. Estimates of genetic variance σa
2( ), phenotypic variance σp

2( ), and heritability (h2) with their approximate standard errors obtained 
from ASReml software, using numerator (A517 and A639), genomic (G517), and combined (H639) relationship matrices 

A517 G517

σa
2 SE σp

2 SE h2 SE σa
2 SE σp

2 SE h2 SE

Milk (kg/d) 9.3 2.7 18.3 1.4 0.50 0.12 7.8 2.0 17.7 1.3 0.44 0.10
DMI (kg/d) 2.5 0.5 3.0 0.2 0.82 0.11 1.8 0.4 2.8 0.2 0.65 0.09
BW (kg) 844 224 1,527 116 0.55 0.12 688 169 1,468 106 0.47 0.10

A639 H639

Milk (kg/d) 8.4 2.2 17.9 1.2 0.47 0.11 7.3 1.8 17.4 1.1 0.42 0.09
DMI (kg/d) 2.3 0.4 2.9 0.2 0.78 0.10 1.8 0.3 2.8 0.2 0.65 0.08
BW (kg) 893 197 1,520 105 0.59 0.10 730 155 1,463 96 0.50 0.09
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tion between BW and milk yield (Figure 1). For all 
traits, standard deviations of the 250 estimates of the 
heritability (Table 6) were very close to the estimates 
of the standard error that ASReml gave (Table 2). For 
the models with the numerator relationship matrix, 
the sampling procedure gave 0.01 higher estimates for 
the standard deviation of the heritability than the esti-
mates for the standard error given by ASReml. For the 
2 models that include SNP relationships, hardly any 
difference existed between these estimates. Although 
not found for the standard error of the genetic correla-
tions from ASReml, with the bootstrapping procedure 
a clear improvement of the accuracy of the estimated 
genetic correlation occurred when SNP were used com-
pared with using pedigree. For example, in the small 
data set, the standard deviation decreased from 0.22 to 
0.18 for the correlation between BW and milk. There-
fore, it can be concluded that using genomic relation-
ships improved the accuracy of the estimated genetic 
correlations.

DISCUSSION

The objective of this study was to estimate variance 
components for milk yield, DMI, and BW in a small 
data set using genetic relationships based on SNP or 
pedigree information, and compare the precision of 
the estimated genetic parameters. For this purpose, 
standard errors from ASReml were compared with the 
sampling standard deviation from a parametric boot-
strap procedure developed in this study. The estimated 
heritabilities reported here are generally higher than 
those found elsewhere (Veerkamp, 1998), especially 
those estimated with the pedigree relationships. Tight 
management and relatively homogeneous groups of 
animals might be an explanation for a low residual vari-
ance and, therefore, a higher heritability. In addition, 
the typical structure with full siblings and daughter-
dam relationships might have inflated the heritability, 
as environmental covariances might have existed be-
tween relatives, and these were not modeled explicitly 

Table 3. Estimates of genetic correlations (below diagonal) and their approximate standard errors obtained 
from ASReml software (above diagonal) between milk, DMI, and BW using numerator (A517 and A639), 
genomic (G517), and combined (H639) relationship matrices 

A517 G517

Milk DMI BW Milk DMI BW

Milk 0.14 0.19 0.14 0.18
DMI 0.44 0.09 0.40 0.09
BW 0.37 0.78 0.25 0.75

A639 H639

Milk 0.13 0.17 0.13 0.16
DMI 0.44  0.08 0.35 0.09
BW 0.19 0.75 0.10 0.72

Table 4. Mean of the 250 replicates for the heritability, genetic covariances (below diagonal), variances 
(underlined on diagonal), and genetic correlations (above diagonal), using numerator (A517 and A639), 
genomic (G517), and combined (H639) relationship matrices when the same model was used in simulation 
and analysis1 

A517 G517

Milk DMI BW Milk DMI BW

Milk (kg/d) 7.3 0.36 0.10 7.5 0.35 0.09
DMI (kg/d) 1.3 1.8 0.70 1.3 1.8 0.70
BW (kg) 7.0 25.7 746 5.9 25.0 727

h2 0.42 0.65 0.50 0.43 0.64 0.49
A639 H639

Milk (kg/d) 7.3 0.35 0.11 7.5 0.36 0.09
DMI (kg/d) 1.3 1.8 0.71 1.3 1.8 0.71
BW (kg) 7.5 25.9 744 6.7 26.1 752

h2 0.41 0.65 0.50 0.43 0.65 0.51
1Simulated parameters are in Table 1.
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(Meyer, 1992). Also, some of the animals were part of 
the CRV breeding program and in the analysis here, no 
adjustments were made for this genetic group effect as 
was previously done by Veerkamp et al. (2000). All of 
these factors might have inflated the estimates of all 
heritabilities in the present study.

When using the genomic relationships, heritability 
estimates decreased. Ideally, this is because some of 
the environmental effects confounded with the pedigree 
relationships are not included in the genetic variances 
anymore, as was observed in mice data (Lee et al., 
2010). However, several reasons exist why estimated 
genetic variances differ between the models using 
pedigree and genomic relationships. First of all, the 2 
relationship matrices are different. For example, when 
comparing the diagonal elements of the 2 matrices 
for the 517 animals (Figure 2), a clear difference in 
scale was observed. Also, the sum of the eigenvalues 
for A517 and G517 was 537 and 512, respectively. 
Simply rescaling matrix G517 to A517 based on the 
eigenvalues moved the genetic variances marginally 
and did not bring the results from A517 and G517 
closer together [e.g., genetic variances moved from 7.8 
to 7.5 for G517, where A517 gave 9.3 (full results 
not shown)]. This is because fundamental differences 
exist in the genetic models underlying the ARM and 
GRM matrices (Powell et al., 2010). The relationships 
in the pedigree matrix are based on identity by de-
scent (i.e., the probability that 2 alleles come from a 
common ancestor). The relationships in the genomic 
matrix reflect the identity by state probabilities (i.e., 
the probability that 2 alleles are the same). Powell et 
al. (2010) demonstrated that variance components es-
timated using the genomic matrix are for an arbitrary 
and undefined base population. This is in contrast with 
a model using the pedigree relationships, where the 

variance components are estimated in the defined base 
population of the pedigree. These different bases and 
scales of the ARM and GRM are, together with the in-
formation on the Mendelian sampling component in the 
GRM, possible explanations for the different variance 
components. This also poses the question what is the 
most relevant base for combining the ARM and GRM 
in an H matrix. Variance components estimated with 
H (i.e., the combined G and A, are therefore, also for 
an arbitrary base population. Although, in the present 
study, results look promising and it appears worthwhile 
combining the data of genotyped and non-genotyped 
animals, more proper scaling methods are required for 
combining G and A to estimate variance components; 
for example, a rescaling based on observed allele fre-
quencies was suggested by Forni et al. (2011).

Using SNP-based relationships improved the preci-
sion of the heritability estimate clearly. The bootstrap 
information suggested that this was not because of the 
different level of the estimated heritability, as the dif-
ferent models gave the same values for the heritability. 
The increase in the precision was such that, in our situ-
ation, it was more advantageous to genotype 517 ani-
mals, rather than add 122 new phenotypes. Therefore, 
in some scenarios it might be worthwhile genotyping 
animals, rather than collecting more data. As expected, 
genotyping the animals and collecting additional data 
(H639) gave the most precise estimates. Surprisingly, 
no advantage for the estimation of genetic correlations 
was observed when using the SNP-based relationships 
compared with the pedigree relationships when using 
the standard errors from ASReml. Generally speaking, 
experiments that improve the estimation of the herita-
bility also improve the estimation of the genetic correla-
tion (Falconer and Mackay, 1996) because the standard 
error of the genetic correlation is approximated by 

Table 5. Mean and standard deviation of the 250 replicates for the heritability, genetic covariances (below 
diagonal), variances (underlined on diagonal), and genetic correlations (above diagonal), using the numerator 
(A517) relationship matrix when different models were used in simulation and analysis1 

Simulation: A517; analysis: G517 Simulation: G517; analysis: A517

Milk DMI BW Milk DMI BW

Mean
 Milk (kg/d) 4.9 0.34 0.09 7.8 0.37 0.11
 DMI (kg/d) 0.8 1.2 0.69 1.4 1.9 0.70
 BW (kg) 4.2 17.2 508 8.0 26.8 775

 h2 0.29 0.45 0.35 0.43 0.66 0.51
SD
 Milk (kg/d) 1.6 0.21 0.24 2.3 0.17 0.23
 DMI (kg/d) 0.5 0.3 0.14 0.8 0.4 0.12
 BW (kg) 11.2 6.1 165 17.3 7.6 206

 h2 0.09 0.10 0.10 0.11 0.11 0.12
1Simulated parameters are in Table 1.
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where rg is the genetic correlation between traits 1 and 
2, and h1

2 and h2
2 are the heritability for traits 1 and 2, 

with the respective standard errors seh1 and seh2. This 

formula also shows that for genetic correlations close to 
unity, a small decrease in the estimate causes a large 
increase in the standard error. Using the estimates of 
model A517 and this equation to predict the expected 
value for the standard error of the genetic correlation 
between milk and BW, a value of 0.139 was predicted. 
When the values of model G517 were used, the pre-

Figure 1. Sampling distribution of the genetic correlation between milk yield (MY) and BW across the 250 replicates, using numerator 
(A517 and A639), genomic (G517), and combined (H639) relationship matrix. 
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dicted standard error was 0.145, implying an increase 
of 0.006. For the genetic correlation between milk and 
DMI, and between DMI and BW, increases in the stan-
dard error were predicted to be from 0.003 and 0.005 
when replacing pedigree relationships by genomic rela-
tionships. This general effect of the level of the genetic 
correlation on its standard error explains why, in our 
results, an increase in the standard error occurred when 
using the GRM. This is because the scale differences 
resulted in a lower level of the genetic correlations (i.e., 
closer to zero) estimated with the GRM compared with 
those estimated with the ARM. This also explains why 
the bootstrapping standard deviation did improve with 

SNP-based relationships. Therefore, when compared at 
the same level of the genetic correlations, the GRM 
gave also more accurate estimates of the genetic cor-
relations than the ARM.

The parametric bootstrapping procedure was use-
ful in this small data set to investigate the sampling 
properties of the models, and results were close to the 
estimates of the standard error of ASReml. Because 
the data was simulated using equivalent relationship 
matrices and the same variance components, the esti-
mated sampling variance was purely due to informa-
tion content of the model fitted. Differences between 
the traits that might exist in the underlying genetic 

Table 6. Standard deviation of the 250 replicates for the heritability, genetic covariances (below diagonal), 
variances (underlined on diagonal), and genetic correlations (above diagonal), using numerator (A517 and 
A639), genomic (G517), and combined (H639) relationship matrices 

A517 G517

Milk DMI BW Milk DMI BW

Milk 2.2 0.17 0.22 2.1 0.15 0.18
DMI 0.7 0.4 0.13 0.7 0.4 0.09
BW 14.7 7.9 220 12.9 6.2 173
h2 0.11 0.12 0.13 0.10 0.09 0.10

A639 H639

Milk 2.1 0.15 0.19 1.8 0.13 0.17
DMI 0.6 0.4 0.09 0.6 0.3 0.09
BW 13.5 6.1 174 12.0 5.9 160
h2 0.10 0.09 0.10 0.09 0.09 0.09

Figure 2. Comparison of the diagonal elements of the genomic relationships matrix (G517) with the diagonal elements of the same animals 
in the pedigree relationship matrix (A517).
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model, or how each model fits the data are ignored 
in the bootstrapping procedure. For example, for some 
traits, single genes with a large effect might be present, 
but in all 4 models used here, an underlying genetic 
model of many genes with a small effect on each trait 
was assumed. Hence, SNP information was not used to 
identify QTL with a large effect, or to take into account 
different genes affecting each trait. Hence, it is a typical 
infinitesimal model approach, with equal weight to each 
SNP in determining the relationships between animals. 
One step further could be to expand the model with ge-
nomic relationships to a model where a different weight 
is given to each SNP (VanRaden, 2008; Goddard, 2009; 
Veerkamp et al., 2010). The genomic relationship can 
then be weighted based on the estimated effect of each 
SNP on a trait.

CONCLUSIONS

Using genomic relationships improved the precision 
of the estimated genetic parameters (heritability and 
genetic correlations between traits). In the present 
study, it was more advantageous to genotype 517 ani-
mals, rather than use 122 more phenotypes. Animals 
without genotype could be included in the analysis by 
merging genomic and pedigree relationships. The para-
metric bootstrapping procedure was a useful tool in the 
small data set to investigate the sampling properties.
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