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To reduce the need for seasonal inputs, crop protection will have to be deliv-

ered via the seed and other planting material. Plant secondary metabolism

can be harnessed for this purpose by new breeding technologies, genetic modi-

fication and companion cropping, the latter already on-farm in sub-Saharan

Africa. Secondary metabolites offer the prospect of pest management as

robust as that provided by current pesticides, for which many lead compounds

were, or are currently deployed as, natural products. Evidence of success and

promise is given for pest management in industrial and developing agricul-

ture. Additionally, opportunities for solving wider problems of sustainable

crop protection, and also production, are discussed.

1. Introduction
As we develop more sustainable food production systems to accommodate dramatic

human population rise and climate change, an integral component of these will be

protection against pests, pathogens and antagonistic plants [1–3]. Current food, and

specifically crop-based, production is heavily dependent on seasonal inputs, which

can involve extremely high costs with regard to carbon footprint, particularly for

nutrient production and delivery, which render dependent production systems

unsustainable. It is often argued that organic agriculture solves this problem, but

it mostly lacks technologies for intensive food production [4], thereby potentially

wasting land [5,6]. Indeed, the use of some organic inputs in arable agriculture

would require, because of intrinsic instability, a high carbon footprint, for example,

the widespread deployment of industrially produced pathogens and botanical pro-

ducts against pests. Local production could alleviate this, but would be dangerous

without strict quality control, and the use of natural inoculation or exotic release of

beneficial insects is mostly ineffective. For the future, crop protection will need to be

even more effective so that the carbon footprint associated with seasonal inputs,

such as nitrogen fertilizers, and the energy expended on delivery and soil prep-

aration is at least directed at food production and not consumed by pests,

diseases or weeds. Thus, the 2009 Royal Society report chaired by Sir David Baul-

combe, FRS, concluded that ‘There is a pressing need for the “sustainable

intensification” of global agriculture in which yields are increased without adverse

environmental impact and without the cultivation of more land’ [7, p. ix]. Certainly,

for crop protection, this will require a much more knowledge-intensive form of tech-

nology already appearing as decision support systems [8], but with delivery of pest

management interventions by the cropping system itself. The obvious route is deliv-

ery by the seed, and new breeding approaches, including introgression of ancestral

or other alien species [9], along with genetic modification (GM), now being seen as

extremely valuable in the landscape context [10], will be essential in bringing much
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Table 1. Current highly effective pesticides are SLMs inspired by natural product leads and, for some, are natural products.

insecticide target natural product lead

pyrethroid sodium channel/activators pyrethrin I

indoxacarb/metaflumizone sodium channel/blockers X

organophosphate/carbamate acetylcholinesterase X

neonicotinoid nAChR nicotine/epibatidine

spinosad nAChR spinosyns

butenolide nAChR stemofoline

cyclodiene/fiproles chloride channel/gaba X

abamectin chloride channel/glutamate avermectins

diamide calcium release channel (muscle) (ryanodine)

tetramic acid acetyl CoA carboxylase/inhibitor X
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more robust and sustainable traits than those presently available

from the narrow genetic variation present in elite crop cultivars

and their breeding lines. Furthermore, harvests delivered by sea-

sonally sown annuals will need, for the longer term, to be

replaced by perennial arable crops taking genetics from a wider

plant diversity, as well as opportunities being developed

employing companion cropping, e.g. push–pull [11]. Increased

numbers of people will need to be engaged with the new agricul-

ture, including the existing high rural population levels in

developing agriculture, and by stabilizing or even increasing

rural populations for industrial agriculture. This will be paid

for partly by drastically increased food prices, but predominantly

by replacement of seasonal inputs. Educational resources will

need to be raised significantly, as also concluded by Baulcombe

et al. [7], to provide training for the new agricultural workforce

capable of managing more information intensive practices. The

advantages of reduced land preparation, i.e. no tillage, have

already been noted [12] and tillage would be obviated seasonally

by the perennialization of arable crops. The greater investment in

root systems will offer other advantages for water and nutrient

utilization. However, more attention must be given to root pro-

tection and wider conservation and exploitation of the

rhizosphere [13]. The stabilization of rural populations in genu-

inely increased intensification of sustainable food production

will remove the persistent and progressive depopulation of

rural regions to towns. This is essential if we are to prevent the

completely unmanageable predictions of 70% of the world’s

population living in towns by 2050 [14], at least for the develop-

ing world, which shows no ability whatsoever for satisfactorily

accommodating such an inundation. Indeed, green revolution

technologies involving fertilizers, seasonally purchased seed

and pesticide use [1–3] lend themselves to having fewer farm-

workers on the land. Together with land grabbing [15,16], this

can be strongly antagonistic to the intensification of food pro-

duction based on currently high rural populations and to the

employment of a stabilized rural population in developed agri-

cultural regions. Both issues are potentially solved by the use

of more knowledge-intensive approaches that lower seasonal

inputs. For development, there are many opportunities for

upgrading value chains [17], but sustainable staple food pro-

duction needs to be established first so as to provide the basis

for on-farm diversification, particularly for the growing numbers

of undernourished farming communities.

A suite of approaches are considered for delivering sustain-

able crop protection with evidence of efficacy from the
laboratory, via field trials to farmer practice, using resources

from plant diversity, new breeding approaches and GM, using

not only constitutive defence processes, but also inducible

systems. In order to produce robust effects, these approaches

exploit small lipophilic molecules (SLMs) for plant protection

and as defence elicitors, which are physically similar to current

pesticides and are now being targeted away from the focus on lar-

gely less robust protein-based pest and pathogen resistance traits.

Following evidence of practical success and laboratory promise,

new opportunities will be raised for alleviating problems of

agricultural production, including the generation of the highly

powerful greenhouse gases methane and nitrous oxide.
2. Basis for strategy
Synthetic eradicant pesticides remain the main intervention

against insect pests, pathogens and weeds in spite of successful

conventional breeding programmes and approaches involving

GM. To provide such robust interventions via seed and other

planting material, plant secondary metabolism becomes the

target because such secondary metabolites, by displaying similar

physical and biochemical properties, can act robustly in plant

defence and have provided the lead compounds for pesticides

or are themselves produced as natural products. For insect con-

trol where the targets are animals, and thereby physiologically

closer to ourselves compared with plant pathogens and weeds,

further considerations of selectivity are needed. In addition, the

eventual deployment would need effective stewardship so the

selection for resistance is minimized. In table 1 are listed some

current insecticides and molecular targets that underpin their

activity. The butenolides, e.g. flupyradifurone, are very recent

introductions [18]. Natural product leads are quoted where

some, for example, pyrethrin I, a major component of the natural

extract of the pyrethrum daisy, Tanacetum cinerariifolium, are

widely used and some, including the spinosyns (from

Saccharopolyspora spinosa) and avermectins (from Streptomyces
avermitilis) are produced by fermentor systems as natural pro-

ducts and are then incorporated as commercial insecticides.

Thus, there are a range of potential targets where natural biosyn-

thetic pathways exist and which could be transferred into crop

plants. For pyrethrin I (figure 1), which provided the lead for

Michael Elliott and colleagues at Rothamsted to invent the syn-

thetic pyrethroids, including permethrin, cypermethrin and

deltamethrin [19], and which are still the main interventions,
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Figure 1. Pyrethrin I.
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via bed-nets, against malaria vectors, e.g. Anopheles gambiae s.s.,
the biosynthetic pathway remains an area of study (Kazuhiko

Matsuda, Kinki University, Japan 2013, personal communi-

cation). This pathway brings together chrysanthemic acid,

generated via the isoprenoid pathway, with an alcohol generated

via the unsaturated fatty acid oxidative cascade. The pathway has

thus far eluded a GM route to exploitation. However, many other

plants, including crop plants, have defence pathways, for

example the cyanogenic glycosides, which are found across

diverse taxa, and the glucosinolates from the order Brassicales,

in particular vegetables and oilseeds in the Brassicaceae. Oppor-

tunities exist for exploiting these by GM [20–22]. In cereals, such

as maize, wheat and rye, there is the hydroxamic (benzoxazi-

noid) pathway. All of these defence systems are held as the

non-phytotoxic glycosides from which the biocidal aglycone

(figure 2) is released on tissue damage, and this release would

need to be taken into account if these pathways are to be

exploited. The benzoxazinoid biosynthetic pathway, and the

related genetics, have been fully elucidated for maize [23] and

wheat [24,25]. After the first committed step of the pathway

that creates indole, a series of cytochromes P450 in the Cyp71C

series take this through to DIBOA and DIMBOA, latter via

the glucoside (figure 2). Localized feeding by aphids, e.g. the

barley yellow dwarf virus vector Rhopalosiphum padi (bird

cherry-oat aphid), on wheat, causes the glucoside stored in vacu-

oles to be hydrolysed to DIMBOA via the upregulation of the

glucosidase [26]. By knocking out the gene for the first committed

step in maize, aphid susceptibility can be raised significantly [27].

Thus, the pathway is potentially useful in crop protection, par-

ticularly for cereals. However, an extensive investigation of elite

wheat varieties and their breeding lines shows that levels are

too low, and tissue expression patterns inappropriate, for exploi-

tation by conventional breeding. The ancestral plant Aegilops
speltoides (goatgrass), associated with the B genome of hexaploid

wheat, can contain high levels of benzoxazinoids and associated

aphid resistance. Thus, with the tools of alien introgression [9],

and particularly as the genetics associated with benzoxazinoid

biosynthesis are co-located even in the hexaploid wheat genomes

[24], the increased expression of the pathway can be targeted for

pest resistance in wheat as well as by the increased expression by

GM technologies, now facilitated by the publication of the shot-

gun sequencing of the bread wheat genome [28]. Once sufficient

levels are secured in the vacuoles of the vegetative tissues, then

pests, including aphids, and also some diseases, could cause

the release of the strongly pesticidal aglycones, e.g. DIMBOA.
3. Semiochemical targets
In planning delivery of pest control for the long term, the

target will be natural metabolites that, acting by non-toxic
modes of action, affect, in more sophisticated ways than cur-

rent pesticides, behavioural and developmental processes in

pest organisms. Such natural products are exemplified as

insect pheromones and other semiochemicals, which comprise

natural chemicals that affect development or behaviour of

organisms [29]. Volatile pheromones and other semiochem-

icals represent tools that can be used before pest or pathogen

development and for insect pests, often before contact with

the host plant. Volatile semiochemical identification is facili-

tated by electrophysiological recordings from entire antennae

or even individual olfactory neurons and has allowed identifi-

cation of processes by which semiochemicals are employed in

the choice and location of hosts [29]. This involves the recog-

nition of either the complex mixture or semiochemicals that

are specific to the host [29–31]. Interfering with this process

by modifying the ratios in the mixture or by adding semio-

chemicals from non-host taxa is feasible to deliver in the

field, simply by changing the amount of one compound,

and could thereby prevent or reduce pest colonization. Stress

of insect colonization can relate to this type of non-host

signalling and can additionally be exploited, in conservation

biological control, for attracting organisms antagonistic to the

insect pests, for example, predators and parasitoids [29].

There are many examples of such approaches. Thus, for inter-

ference with mixture recognition, the orange wheat blossom

midge, Sitodiplosus mosellana, employs a multi-compound

mixture of wheat semiochemicals, including 6-methyl-5-

hepten-2-one which, when increased several-fold from the

natural ratio, interferes with attraction [30]. With host-specific

semiochemistry, although insects specifically adapted to bras-

sicaceous plants employ volatile catabolites of glucosinolates,

particularly alkenyl isothiocyanates, to select hosts, these

same semiochemicals are repellent, or at least mask the host

recognition semiochemicals of non-brassicaceous hosts for

pests feeding on other plants. The biosynthesis and genetics

for the alkenylglucosinolates [20] can be manipulated to affect

host location (Jing-Jiang Zhou 2013, Rothamsted Research,

UK, personal communication).
4. Aphid alarm pheromone
During the development of the above strategies, a more

direct GM approach was suggested [32] in which it was

proposed that aphid pests could be repelled and their parasi-

toids attracted by heterologously expressing genes for the

biosynthesis of the aphid alarm pheromone, which is pro-

duced by aphids and naturally causes these effects. After

widespread advances in genetic engineering in plants so

as to manage secondary metabolism, the model plant

Arabidopsis thaliana was modified to express the gene for

the synthesis of the aphid alarm pheromone, comprising the

sesquiterpene (E)-b-farnesene (EBF) [33]. EBF has to be pro-

duced in very high purity otherwise other sesquiterpenes,

particularly (1R,4E,9S)-caryophyllene, normally produced

together with EBF in plants, are detected by separate olfac-

tory neurons highly sensitive to either EBF or the

caryophyllene in the aphid [34] or their predators [35] and

prevent the intended insect response. Production of pure

EBF was achieved by engineering a gene from the mint

plant, Mentha piperita [36], such that genetically modified

A. thaliana both repelled the peach-potato aphid, Myzus
persicae, and caused increased foraging by the parasitoid
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Figure 2. Benzoxazinoid biosynthesis in cereals.
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wasp Diaeretiella rapae, both insects being adapted to brassi-

caceous plants [33].

After codon optimization for monocotyledons, the syn-

thetic M. piperita EBF synthase has been expressed in an

elite wheat variety, Cadenza, normally sown as a winter or

spring crop, via gene gun technology [37] but without yield-

ing EBF. Thus, the synthetic gene for synthesizing the

precursor, farnesyl diphosphate, was added, again without

success. However, by targeting the two synthetic genes to

the plastid [38–40], EBF could be produced (H. D. Jones

2013, unpublished data). Volatiles from these GM wheats

gave a strong alarm response for cereal aphids in laboratory

assays. Also, parasitoid wasps spent longer foraging on the

GM wheat plants under field simulation.

An application for investigating effects in the field was

made to the independent Government advisory group, the

Advisory Committee on Releases to the Environment and

was approved by the Secretary of State for Environment,

Food and Rural Affairs, in September 2011, and this led

to field trials of spring-sown GM wheat against the unmodi-

fied variety. Although there was opposition to the trial

from elements of the public, a conscientious programme of

engagement achieved support from many members of the
public and official agencies, and the trial went ahead in

2012. Further trials for 2013 are in progress and will deter-

mine the next steps in developing this approach to pest

control. An important issue in maximizing the effects of

aphid alarm pheromone production is the timing of its pro-

duction. Further work is planned to move forward from the

constitutive expression of inserted transgenes, as employed

here, to a more refined pattern of transgene expression. Indu-

cible expression of defence traits could also benefit other

commercial GM-based pest control. If made to work and

deployed widely, resistance may develop in the pest popu-

lation involving a form of habituation. It is unlikely that

aphids could evolve away from using an alarm pheromone

because of ecological selection pressure, but they could cer-

tainly employ, in developing such resistance, a compound

other than EBF. Indeed, there is wide evidence of such evol-

utionary changes in pheromone composition [41,42] and,

for the aphid alarm pheromone, could involve replacement

of EBF with a minor component, (E,E)-a-farnesene, observed

previously [43]. However, rather than to have to develop an

entirely new toxophore, as would be the case for insecticide

resistance, the gene for the biosynthesis of (E,E)-a-farnesene

could be readily substituted for the EBF synthase.
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5. Companion cropping
Although the new breeding and GM technologies for deliver-

ing semiochemical-based pest control are still very much in

the development stages, the use of companion crops has

demonstrated the value of semiochemical-based crop protec-

tion via plants. The most dramatic demonstration of its value

has been achieved in sub-Saharan Africa, without compe-

tition from the pest control technologies of high-input

agriculture, which are not adopted by the majority of farmers

in this region. The technology has been described in detail

[11] and involves ‘push’ effects on insect pests, and at the

same time exploiting conservation biological control by

increasing foraging by parasitoid wasps. Both processes are

based on the release of semiochemicals, from intercrops,

that initiate stress signals associated with herbivory. These

compounds include the homoterpenes or, more correctly, tet-

ranorterpenes that are formed when plants are damaged and

reduce colonization by herbivores and recruit foraging para-

sitoids [29]. The trap ‘pull’ crop is a highly attractive plant

that draws pests away from the main crop. Both inter- and

trap crops have value as forage for farm animals. A legumi-

nous intercrop developed for push–pull in the Desmodium
genus fixes nitrogen and controls weeds, particularly the

African witchweed Striga hermonthica [44,45]. The companion

cropping system adopted should involve intensification with

minimal increase in main crop spacing. The overall yield

must be greater per unit area compared with normal farmer

practice, even where a trap crop is deployed, and must be

assessed in terms of farmer benefit [46].
6. Defence gene elicitors
When plants are damaged, defence genes are expressed and

can produce semiochemicals, for example the homoterpenes.

Plant hormones, including jasmonic acid, can be involved in

this elicitation, but other deleterious effects on the plant may

ensue. Although widely recognized as highly promising

[47,48], it must be borne in mind that there could be negative

effects of cross-talk between other signalling pathways and

anti-nutritional or acceptability effects on the food products.

However, cis-jasmone has been identified [49,50], apparently

without such disadvantages, and patented as a volatile plant

defence elicitor. cis-Jasmone signals differentially from jasmo-

nic acid [51,52] and can be used to increase defence against

pests, and for conservation biological control by exploiting

natural populations of parasitoids in crops, for example

wheat, in the field [53], and others, such as cotton [54], soya

bean [55] and sweet pepper [56] in the laboratory. The pro-

moter sequences for defence-related genes upregulated in

A. thaliana by cis-jasmone have been placed upstream

of marker genes for luciferase and GUS [51,52] and, with

appropriate engineering, will be used to ‘switch on’ the EBF

biosynthesis in genetically modified wheat (see §4) in a refine-

ment of the current constitutive expression. Other elicitors or

gene suppressors are available from caterpillar regurgitant

[57], aphid feeding [58] and via the rhizosphere [59] or arbus-

cular mycorrhizal hyphae transmitting stress elicitor signals

from damaged to undamaged plants [60]. cis-Jasmone passes

into the plant without damage, but the other elicitors listed

above require a plant lesion caused by insect feeding. However,

the existence of a potentially valuable new type of elicitor has
emerged from the push–pull programme, in which eggs of the

moth pest Chilo partellus are associated with an elicitor that

enters the intact plant and causes a systemic elicitation of

homoterpene production, attracting not only egg parasitoids,

but also larval parasitoids, with the plant seemingly anticipat-

ing the ensuing development of larvae. This was first observed

in maize land races but not in commercial hybrid varieties [61],

and then in maize from farmer field gathered seed or open pol-

linating varieties (OPVs) [62]. This trait will be exploited for

maize and sorghum as part of an initiative funded by the

UK agencies Biotechnology and the Biological Sciences

Research Council (BBSRC) and the Department for Inter-

national Development, together with the Bill & Melinda

Gates Foundation (‘Achieving sustainable Striga control for

poor farmers in Africa’) and will provide African farmers

with new OPVs with enhanced pest resistance as well as the

possibility of licensing genes developed in Africa for industrial

agricultural plant breeders in the north.
7. Sentinel crops
Having plants that respond to pest development-related elicitors

opens up the opportunity to develop ‘smart’ agricultural prac-

tices in the extension of decision support systems already in

use and under further development (see Introduction). This

would allow rapidly developing pests or diseases, for example

soya bean rust caused by the fungal pathogen Phakopsora
pachyrhizi, first to impact sentinel plants responding by the upre-

gulation of visual markers, which would allow early deployment

of fungicides. This elicitation could then be linked to the

induction of plant defence either directly or via a new type of sen-

tinel plant, as depicted in figure 3. Already, these options are

being investigated in an Anglo-Brazilian collaboration between

BBSRC and Embrapa (UK–Brazil partnership: ‘The chemical

ecology of crop-plant–rust-pathogen interactions for underpin-

ning novel crop protection strategies’) involving Rothamsted

Research and The Sainsbury Laboratory [63] and Embrapa Soja

(C. B. Hoffmann-Campo, R. Abdelnoor and S. Lima).
8. Wider opportunities
The rhizosphere-generated secondary metabolites responsible

for the inhibitory effects of Desmodium spp. on S. hermonthica
(see §5) have been identified as di-C-glycosides of flavonoids,

including apigenin. Transforming legumes, for example

cowpea, with the C-glycosyl transferases that transfer the

sugars glucose and arabinose to precursors of the flavonoids

[64] is being investigated, so as to produce edible beans from

plants that will possess the parasitic weed-controlling trait

found only in Desmodium spp. This approach to exploiting alle-

lopathic effects could have wider value in weed control in

industrial agriculture.

Allelopathic effects could be harnessed by genetically

engineering the associated secondary plant metabolism to

reduce methane emission from ruminant husbandry, an

essential practice in using land that can support only grass

and other animal forages for human food. Whether using

synthetic or natural nitrogenous nutrients, nitrous oxide

(N2O) is a waste of fixed nitrogen and is an extremely power-

ful greenhouse gas. Certain savannah grasses, e.g. Brachiaria
spp., inhibit this process by means of secondary metabolites

released into the rhizosphere [65] that could also be exploited
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Figure 3. Smart sensing to optimize farm inputs: sensitive sentinel plants
detect problem, not just pests, diseases and weed competition but also
depleted or excess nutrients and water and signal to main crop of smart
plants, with natural response to a signal linked to gene expression (by
GM) to deal with the problem.
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by the approaches being developed here. Pathways to these

metabolites and many others appear to be associated with

gene clusters [66], as for the benzoxazinoid biosynthesis or

the avenacins [67], and provide support via bioinformatics

for identifying genes in newly targeted pathways.
0281
9. Perennial crop plants
The benefits of perennial arable crop plants have been men-

tioned (see Introduction), but protection against competing

organisms augmented by those exploiting these more apparent

plants will be even more challenging. Such protection must be

delivered through the planting material and opportunities for

‘switching on’ genes by pest, disease and weed-related elicitors

must be explored now. Already, there are programmes on peren-

nial wheat in the US (Washington State University, Pullman)

and non-irrigated rice (Food Crops Research Institute, Kunming

and Beijing Genetics Institute, Shengzhen) in China. In Africa,

we see a rapid increase in smallholder cultivation of non-

irrigated rice, i.e. NERICA (NEw Rice for AfrICA), but this

can be heavily infested with S. hermonthica, which is readily con-

trolled by intercropping with Desmodium intortum [44]. This

demonstrates an opportunity to employ a secondary metab-

olite-based solution delivered by plants, and already perennial

rice from the Food Crops Research Institute, Kunming and Beij-

ing Genetics Institute, Shengzhen is being protected effectively

by the intercrop against the parasitic weed. Other recent

methods for crop protection are being developed widely, such

as priming of seed and using seed film coating. For example, a

study on tomato seeds treated with jasmonic acid showed an

increased resistance to spider mites, caterpillars and aphids
and the necrotrophic fungal pathogen Botrytis cinerea, whereas

seed treatment using b-aminobutyric acid gave defence against

powdery mildew disease caused by Oidium neolycopersici [68].

Future work will need to explore the generality and robustness

of these approaches.
10. Conclusion
Agricultural ecosystems are vulnerable to attack by adapted

pests, weeds and diseases because they provide an environment

with large areas of lush, fertilized crop in which such organisms

can thrive [69]. Crops are often less resistant than their wild

ancestors because they have been selected for yield and human

nutrition and have lost defence traits during domestication,

especially when bred in a pesticide-treated background. Thus,

there is a need to enhance plant defence capabilities in crop

plants. This can be done through the conventional breeding

and development of plant defence activator agrochemicals, but

there are much wider possibilities via GM techniques. Crop pro-

tection via the seed can also be delivered by companion cropping

as in the push–pull system, which makes agriculture more resi-

lient to pest attack. However, companion crops need to be chosen

on the basis of a scientific understanding of host and non-host

plant interactions to ensure that they release the correct semio-

chemicals to protect the main crop. Innovative approaches to

crop protection are needed to make agriculture more efficient

in terms of resources used (land, water, energy, nutrients) by

reducing waste. They are the key to the sustainable intensification

of arable agriculture.
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