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Abstract: This paper describes the use of Generalized Additive Models (GAMs) to create regression
models whose coefficient estimates vary with geographic location—spatially varying coefficient (SVC)
models. The approach uses Gaussian Process (GP) splines (smooths) for each predictor variable,
which are parameterised with observation location in order to generate SVC estimates. These
describe the spatially varying relationships between predictor and response variables. The proposed
GAM approach was compared with Multiscale Geographically Weighted Regression (MGWR) using
simulated data with complex spatial heterogeneities. The geographical GP GAM (GGP-GAM) was
found to out-perform MGWR across a range of fit metrics and resulted in more accurate coefficient
estimates and lower residual errors. One of the GGP-GAM models was investigated in detail to
illustrate model diagnostics, checks of spline/smooth convergence and basis evaluations. A larger
simulated case study was investigated to explore the trade-offs between GGP-GAM complexity (via
the number of knots), performance and computational efficiency. Finally, the GGP-GAM and MGWR
approaches were applied to an empirical case study. The resulting models had very similar accuracies
and fits and generated subtly different spatially varying coefficient estimates. A number of areas of
further work are identified.

Keywords: spatial analysis; process spatial heterogeneity; spatial regression; GAM

1. Introduction

In regression, the relationship between response and predictor variables may vary
with observation location. This may be due to a poor conceptual model; poor measurements
with regional biases; omitted local factors or the presence of process spatial heterogeneity,
also known as process spatial non-stationarity. In such cases, spatially varying coefficient
(SVC) models provide an alternative to global or whole-map regressions, in which the
relationships between response and predictor variables are assumed to be constant across
space by relaxing the assumption of relationship spatial stationarity [1]. SVC models
allow relationships to vary with observation location and generate spatially distributed
or local coefficient estimates. These quantify process spatial non-stationarity or spatial
heterogeneity—a key and increasingly common task in spatial data analysis—and can

ISPRS Int. J. Geo-Inf. 2024, 13, 459. https://doi.org/10.3390/ijgi13120459 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13120459
https://doi.org/10.3390/ijgi13120459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-3652-7846
https://orcid.org/0000-0003-0259-4079
https://orcid.org/0000-0002-3827-1012
https://orcid.org/0000-0002-6333-0301
https://orcid.org/0000-0001-8741-5345
https://orcid.org/0000-0003-4254-1780
https://doi.org/10.3390/ijgi13120459
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13120459?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2024, 13, 459 2 of 19

be mapped to indicate how and where statistical relationships vary. SVCs provide in-
sights into the spatially varying natures of different drivers of a response and can guide
further investigations.

The SVC brand leader is Geographically Weighted Regression (GWR) [2], which uses
a single moving window or kernel whose size is optimised and determines the scale of
spatial heterogeneity in the resultant outputs. GWR has been extended to a multiscale
approach (MGWR) [3,4] in which individual kernels are fitted for each predictor variable,
thereby capturing individual scales of the spatially varying relationships between predictor
and response variables. MGWR is considered by some to be the default GWR model [5].
However, there are a number of limitations associated with MGWR approaches, the main
ones being that they cannot predict out of sample and that only approaches for Gaussian
and Poisson responses have been developed [6].

This paper addresses these critical gaps and describes a novel SVC modelling approach
that uses Generalized Additive Models (GAMs) [7,8] with Gaussian Process (GP) smooths
to capture process spatial non-stationarity. GAM smooths are commonly used to accom-
modate varying relationships between predictor and response variables in attribute space.
But if the smooths are parameterised with observation location, then the result is an SVC,
as the relationship between the target variable and each predictor is estimated locally over
geographic space. The GAM-based SVC approach proposed in this paper—the Geographical
Gaussian Process GAM (GGP-GAM)—is evaluated through three experiments. The first
compares it with MGWR using simulated data with complex and highly localised degrees
of spatial heterogeneity. Both models are fully tuned. The second investigates the ability
of GGP-GAM to handle larger datasets and examines how performance is affected as the
number of knots used in the smooths increases. Finally, an empirical case study of the UK
referendum to leave the European Union in 2016 (Brexit) is used illustrate and compare
MGWR and GAM-based approaches.

2. Literature Review
2.1. SVC Models

Spatially varying coefficient regression models seek to the capture spatial dependen-
cies in each relationship between target and predictor variables. Their outputs provide
explicit indications of the scales of these and their spatial variations. A widely used SVC
model is geographically weighted regression (GWR) [2], which has been extended to
Multiscale GWR (MGWR) [3,4]. In a MGWR/GWR, a series of local models is created
using data subsets extracted using a moving window or kernel. For each local model, the
subset data are weighted by their distance to the location under consideration, resulting in
local, spatially distributed coefficient estimates. Kernel size is optimised using a weighted
least squares algorithm or AIC in a standard GWR and an iterative back-fitting algorithm
in MGWR. Besides GWR/MGWR, other widely utilized multiscale SVC models include
Bayesian Gaussian Process (GP) models that employ co-kriging via a Linear Model of
Co-regionalisation (LMC) (Bayes-GP) [9–12] and Eigenvector Spatial Filtering (ESF) with
Moran coefficients (ESF-MC) [13–15]. ESF-MC enhances the deterministic ESF model [16]
by incorporating random effects to capture stochastic spatial processes. These SVC models
are directly inter-related [15], and comparative analyses indicate that no single multiscale
SVC model is significantly better than others. Recently, other multiscale SVC models have
emerged, such as a triangulation model utilizing bivariate spline estimators [17], a GP-
based model adopting a frequentist approach with ML estimation [18] and a GLM-based
model incorporating a reduced-rank spline [19]. However, these SVC models have not been
widely adopted by the research community, and the use of GWR approaches has increased
rapidly [20]. However, there are a number of theoretical limitations associated with GWR
approaches (including MGWR): they generate a collection of local models rather than a
single one, while Bayes-GP, ESF-MC and GGP-GAM each offer a single, non-stationary
model formulation (e.g., [10,21]); the same observation is used in multiple local models;
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and MGWR approaches cannot predict out of sample. As a result, it has been argued that
GWR and MGWR are essentially exploratory approaches [18,22].

2.2. GAM-Based SVC Models

GAMs can handle different types of response variables and produce multiple model
terms that are additively combined [7,8,23]. In this way, they capture complex data re-
lationships and interactions, including non-linearities between predictor and response
variables [24]. GAMs provide a framework for making predictions from complex systems,
for quantifying variable relationships and for making inferences about these relation-
ships [7,8]. They perform as well as many machine learning models in terms of prediction
accuracy and computational speed [25], and critically, in the context of varying coeffi-
cient modelling, GAMs combine this inferential power with transparency and process
understanding. They have been described as providing “intrinsically understandable white-
box machine learning models that provide a technically equivalent, but ethically more acceptable
alternative to [machine learning] black-box models” ([26], p. 2).

GAMs can incorporate smooths or splines to model non-linear relationships, whose
forms can vary depending on the problem and/or the data [8]. Smooths are composed
of combinations of basis functions that can be single- or multi-dimensional in terms of
predictor variables. Consequently, GAMs with smooths are composed of sums of multiple
basis functions and, in this way, are able to model complex data relationships. As a result of
these properties, a number varying coefficient and Bayesian regression models using GAMs
have been proposed [27–30]. These make few assumptions about the response variable
distribution (which may be skewed, kurtotic or discrete), and their ‘varying coefficient’
aspects relate to the target variable properties of location, scale and shape. ‘Location’ refers
to the central tendencies of the target variable, ‘scale’ to measures of spread such as standard
deviation in normal distributions and ‘shape’ to the nature of the skew and kurtosis in
the distribution. Thus, such GAM-based varying coefficient approaches accommodate
‘spatial’ effects but not within an explicitly geographic framework with respect to location.
Recent work proposed an SVC GLM regression model using GAMs [19] with reduced-rank,
thin-plate smooths; however, an alternative approach for modelling predictor-to-response
relationships is to consider them as Gaussian processes (GPs) over space. GPs capture
relationships that decay over distance, reflecting Tobler’s First Law of Geography [31] and
have been found to be effective in handling spatial autocorrelation [32]. The approach
proposed in this paper uses decomposed or low-rank GP smooths parameterised with
observation location for each predictor variable. It extends initial investigations of GAMs
in SVC modelling using the geographical Gaussian process GAM (GGP-GAM) [33] by
exploring GAM tuning with more complex spatial problems.

3. Methodology

Three analyses were undertaken. The first compared GGP-GAM and MGWR SVC
models of 100 simulated datasets, each with 625 observations, a target variable (y) and
3 predictor variables (x1, x2 and x3). A second set of analyses investigated the ability of the
GAM approach to handle larger datasets—in this case, with 250,000 observations—and model
tuning via the knots parameter (k). The aim was to identify possible trade-offs between model
performance, accuracy and computational cost. A third analysis compared GGP-GAM and
MGWR using an empirical case study of the Brexit vote in the UK.

3.1. Data

For the first analysis comparing the proposed GGP-GAM and MGWR SVC models,
a simulated spatially varying coefficient dataset was created, with three coefficients each
having different degrees of spatial heterogeneity. This was created by extracting Moran
eigenvectors [13] generated using the spmoran R package v0.3.3 [34]. Here, the 1st, 10th
and 25th surfaces were selected from the matrix of the first L eigenvectors for a 25 by
25 grid (625 observations). Each coefficient surface, (termed β1, β2 and β3), had a normal



ISPRS Int. J. Geo-Inf. 2024, 13, 459 4 of 19

distribution and was rescaled to have a mean of 0 and standard deviation of 1. An intercept
surface (β0) with a constant value of 2 was also defined. These represent the true regression
coefficients and are shown in Figure 1.

True β0 True β1 True β2 True β3

−2

−1

0

1

2

Figure 1. Four simulated surfaces with varying degrees and forms of spatial heterogeneity that serve
as the true spatially varying coefficients (n = 625).

One hundred simulated datasets were created from random generated values for x1,
x2 and x3 with a specified normal distribution, a mean of 0 and a standard deviation of 1.
Each of these was min–max-transformed to have a range of (0, 1). Values for the error term
(ϵ) were generated in a similar way but min–max-transformed to have a range of (0, 0.25).
The simulated response (y) was calculated directly from these and the true coefficients
(Figure 1).

For the second analysis, a single simulated dataset was, again, created from Moran
eigenvectors over a 500 by 500 grid. The 1st, 10th and 25th surfaces were extracted to create
250,000 observations with 3 true coefficients and an intercept surface with a constant value
of 2. The coefficients had different spatial heterogeneities than those shown in Figure 1.
Values for x1, x2, x3, ϵ and y were generated in the same way as for the smaller simulated
study. The true coefficients are shown in Figure 2. Note that the range of the true coefficients
is slightly larger than that of those in Figure 1, and their spatial variations are different.

True β0 True β1 True β2 True β3

−3

−2

−1

0

1

2

3

Figure 2. True regression coefficient surfaces, with varying degrees of spatial heterogeneity, for a
larger dataset (n = 250,000).

3.2. GAM-Based SVC Models

The standard form for an OLS regression is

yi = β0 +
m

∑
j=1

β jxij + ϵi (1)

where for observations indexed by i = 1 . . . n, yi is the response variable, xij is the value of
the j-th predictor variable, m is the number of predictor variables, β0 is the intercept term,
β j is the regression coefficient for the j-th predictor variable and ϵi is the random error term.
This can be extended to define an SVC regression model:

yi = β0(ui ,vi)
+

m

∑
j=1

β j(ui ,vi)
xij + ϵi (2)

where now (ui, vi) are the spatial coordinates of the observations i and β j(ui, vi) are the
coefficients estimated at those locations.
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GAMs can also calibrate regression models in which the functions of the predictor
variables are unknown, taking the following form:

y = α + f1(z1) + f2(z2) + · · ·+ f j(zj) + ϵ (3)

where α is the intercept (β0 in Equations (1) and (2)) and the j-th predictor zj can be a scalar
or a vector.

These can be extended so that each f j(zj) becomes a linear regression coefficient on
another scalar predictor in a linear regression (xj):

y = α + f0(z0) + x1 f1(z1) + x2 f2(z2) + · · ·+ xm fm(zm) + ϵ (4)

Furthermore, if z0 = z1 = · · · zm = z, for example, and z is a vector of locations or
coordinates (similar to (u, v) in Equations (1) and (2)), then a spatially varying coefficient
model is specified:

y = α + f0(z) + x1 f1(z) + x2 f2(z) + · · ·+ xm fm(z) + ϵ (5)

where f j(z) represents the j-th SVC.
One approach to specifying α(z) · · · fm(z) is to generate each function from a GP

smooth defined as follows:

f j(z) =
P

∑
p=1

κp(z)γj,p γj,p ∼ N(0, s2
j ) (6)

where κp(z) represents a basis function, γj,p is the corresponding coefficient and s2
j is the

smoothing parameter. SVC f j(z) exhibits high spatial variation if s2
j is large and remains

constant if s2
j = 0. In this way, the smoothing parameter determines the wiggliness of the

SVC, that is, how the function varies across its range.
The basis function (κp(z)) is specified such that f j(z) has a spatially smooth pattern—in

this case, driven by the following covariance function:

Cov( fm(z), f j(z′) = s2
j c(dz,z′) (7)

where dz,z′ represents the distance between locations z and z′ and the covariance function
c(dz,z′) decreases with increases in dz,z′ . This is similar to kriging and MGWR. Kriging
uses covariance functions via the semi-variogram and a covariance function is calibrated
individually for each f j(z) in the same way as bandwidths are optimised in MGWR. Thus
a key task in using GAMs to model SVCs is to estimate the smoothness parameters s2

j and
thereby f j(z).

A GAM employs smooth functions of the predictor variables, assuming that the values
of the response variable (y) follow some kind of exponential distribution:

f (y|θ) = h(y) exp(ν(θ)T(x)− A(θ)) (8)

where h(.), ν(.), T(.) and A(.) are known functions and θ is a vector of parameters. This
has a flexible form and is, thus, able to handle a wide range of distributions, including
Gaussian, Poisson, gamma or binomial distributions.

In summary, GAMs can estimate SVCs by modelling non-linear relationships as
spatially non-stationary distributions using GP splines parameterised over geographical
and attribute space, and a GP spline with spatial location is defined for each predictor
variable (j). Additionally, an offset (αj) is added to account for the GP’s zero mean, thereby
creating the SVCs (β j(z)). In the standard 2D case, zi = (ui, vi) defines the geographical
Gaussian process GAM (GGP-GAM).



ISPRS Int. J. Geo-Inf. 2024, 13, 459 6 of 19

3.3. Analysis I: Comparing GGP-GAM and MGWR

GAMs with GP were undertaken using the gam function in the mgcv R package [35].
The observed spatial locations (z) were extracted and used to parameterise the splines
with a GP smooth. The GPs constructed in this manner had a mean of zero; therefore,
an additional fixed offset term was included for each predictor variable alongside the
spatially smoothed terms.

There are some important tuning considerations in fitting GAMs with mgcv, includ-
ing the specification of spline smoothing parameters and the number of knots. These
parameters influence the nature of the varying coefficients and the characterization of
response-to-predictor relationships across space. The smoothing parameter regulates the
degree of data smoothing through a correlation function, and the GAM function in the mgcv
package optimises this using an estimation method. In this case, REML was specified for
optimization instead of a cross-validation estimator. The number of knots (k) determines
the basis dimensions; the maximum number of base functions used in the smooth; and,
thus, the degree of sensitivity in fitting the model to the data. For example, consider the
models predicting y specified with different numbers of knots in Figure 3. These deter-
mine the degree of relationship non-linearity in the smooth, together with the smoothing
parameter. They are heuristically optimised by most GAM implementations in order to
balance over-fitting with capturing relationship complexity. In the approach suggested
by Wood [35], k can be manually and iteratively determined; an initial value is set, and
the resultant splines are examined to determine whether the smoothing optimisation has
converged and whether the basis dimensions defined by k are adequate. If not, they are
increased. For the first analysis comparing GGP-GAM and MGWR, k = 155 was specified
after investigation.

−1

0

1

2

0.00 0.25 0.50 0.75 1.00
x

y

Knots

k=3

k=6

k=9

k=15

k=21

Figure 3. The effect of increasing the knots specified in a GAM smooth on model accuracy.

The GWmodel R package [36,37] was used to construct the MGWR models, which were
specified with an adaptive bisquare kernel. Note that fixed kernels were also investigated,
and the comparisons with the GGP-GAM results reported below were found to be sim-
ilar. MGWR accommodates and quantifies varying degrees of spatial heterogeneity in
the predictor-to-response relationships by determining an optimal kernel bandwidth for
each predictor variable. Implementations of MGWR use a back-fitting algorithm to do
this [37–39]. Here, the convergence of the back-fitting procedure was evaluated through
cross-validation of the residual sum of squares, and the threshold for convergence was set
at 10−5 or 2000 convergence iterations.
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In the first analyses, the GGP-GAM and MGWR models were fitted to the 100 simu-
lated datasets with 625 observations. The SVC estimates were extracted for each model,
along with predictions of y (i.e., ŷ) for each observation. Measures of fit were calculated
from the model coefficient estimates with the true ones in Figure 1, including R2 for β1, β2
and β2 (β0 is stationary) and RMSE and MAE for β0, β1, β2 and β3. Model AIC measures
were also calculated. Finally, the model residuals (y − ŷ) were also extracted to compare
their spatial autocorrelation. To ensure consistency, functions for AIC, MAE, RMSE and
R2 were coded rather than using the values generated by the outputs of the mgcv and the
GWmodel packages.

3.4. Analysis II: GGP-GAM Tuning with a Larger Dataset

A second set of analyses investigated model tuning via the knots parameter (k) using
a single larger dataset with 250,000 observations. The aim was to identify any trade-offs
between performance, computational efficiency and accuracy. Seven GGP-GAMs were
specified, each with an increasing number knots. The effects of increasing k were evaluated
through computation time, coefficient accuracy and predictive performance. Again, these
were implemented in the mgcv package but using the bam function with parallel processing.
Each model had the same input data but with the k parameter varying.

3.5. Empirical Example: Brexit Vote

A final comparative analysis was undertaken using an empirical example. This used
data from the 2016 referendum on leaving the European Union for England, Wales and
Scotland (the Brexit vote) [40] and compared GGP-GAM and MGWR models. The spatial
distribution of the Leave vote share (the response variable) over 380 Local Authority
Districts is shown in Figure 4. This suggests that the overall outcome of a 51.9% majority in
favour of ‘Leave’ conceals notable regional patterns. For this example, predictor variables
from the 2011 UK Census were analysed: Christian is the proportion stating their religion
as Christian, Degree is the proportion with a bachelor’s degree, No Car is the proportion
who do not own a car or van and Younger is the proportion of the electorate between the
ages of 20 and 44 years old. The variables were not rescaled.

Leave
(%) − 50%

−20
−10
0
10
20

Figure 4. The ‘Leave’ vote share in the 2016 UK referendum on leaving the EU across Local Authority
Districts (England, Wales and Scotland).
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4. Results
4.1. Comparing GGP-GAM and MGWR

Evaluations of the estimated coefficients against the true coefficients arising from the
100 GGP-GAM and MGWR models are shown in Figure 5. The boxplots have the outliers
removed to emphasise the differences between the median values in the fit measures.
For each fit measure (RMSE, MAE and R2), the GGP-GAM provides more accurate estimates
of the true coefficients than MGWR, with the difference increasing with the degree of spatial
heterogeneity (i.e., from β0 to β3).

AIC R2 β1 R2 β2 R2 β3

RMSE β0 RMSE β1 RMSE β2 RMSE β3

MAE β0 MAE β1 MAE β2 MAE β3

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

0.5

0.80

0.85

0.90

0.95

1.00

0.1

0.2

0.3

0.1

0.2

0.3

0.4

0.90

0.95

1.00

0.05

0.10

0.15

0.20

0.25

0.1

0.2

0.3

0.925

0.950

0.975

1.000

0.10

0.15

0.20

0.25

0.1

0.2

0.3

−2500

−2000

−1500

GGP−GAM MGWR

Figure 5. Assessment of the accuracy of GGP-GAM and MGWR regression coefficient estimates when
compared to the true coefficients, along with the distribution of model AIC values.

The distributions of model fit indicated by AIC show that the GGP-GAMs consistently
have lower AIC values than the MGWR models. Investigations of these revealed them
to be driven by differences in the residuals rather than the number of model parameters.
These are summarised in Table 1.

Table 1. Summaries of the residuals of the 100 GGP-GAM and MGWR models.

Min. 1st Qu. Median Mean 3rd Qu. Max.

GGP-GAM −0.130 −0.019 0.000 0.000 0.019 0.133
MGWR −0.520 −0.052 0.000 0.001 0.052 0.600

The spatial variation in the residuals was also compared. A Moran’s I statistic was
generated for the residuals arising from each GGP-GAM and MGWR model. Their dis-
tributions are summarised in Table 2. The MGWR residuals have higher positive values,
indicating stronger positive spatial autocorrelation (i.e., clustering), while the GGP-GAM
residuals have more negative values, indicating stronger negative spatial autocorrelation
(i.e., dispersion).
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Table 2. Summaries of the Moran’s I of the residuals of the 100 GGP-GAM and MGWR models.

Min. 1st Qu. Median Mean 3rd Qu. Max.

GGP-GAM −0.199 −0.155 −0.002 −0.054 0.000 0.000
MGWR −0.002 −0.002 0.000 0.109 0.313 0.413

The accuracy of the predicted measures of y (i.e., ŷ) arising from the two models are
compared in Figure 6, using RMSE, MAE and R2. The GGP-GAMs generate more accurate
predictions, reflecting their better of estimation of the true coefficients.

R2 MAE RMSE

0.00

0.05

0.10

0.000

0.025

0.050

0.075

0.100

0.985

0.990

0.995

1.000

GGP−GAM MGWR

Figure 6. The GGP-GAM and MGWR model fits.

Model calibrations were also investigated. The GGP-GAM spline smoothing parame-
ters are part of a covariance function that penalizes model complexity, while the individual
bandwidths in MGWR describe the scale of each predictor-to-response relationship and the
scales of process spatial heterogeneity. These are summarised in Table 3. The homogeneity
of these, as indicated by the inter-quartile ranges, reflect the convergence of the band-
width optimisation in the MGWR models and the optimisation of the spline smoothing
parameters in the GGP-GAMs.

Table 3. The distributions of MGWR bandwidths (BW) and GGP-GAM spline smoothing parame-
ters (SP).

Min. 1st Qu. Median 3rd Qu. Max.

GGP-GAM SP β0 9.5e-04 1.5e-02 8.7e+00 2.5e+01 4.5e+01
GGP-GAM SP β1 4.7e-06 7.1e-06 7.9e-06 8.6e-06 1.2e-05
GGP-GAM SP β2 7.0e-07 8.0e-07 8.8e-07 9.7e-07 1.2e-06
GGP-GAM SP β3 1.5e-07 1.8e-07 1.9e-07 2.1e-07 2.8e-07
MGWR BW β0 8 10 10 10 12
MGWR BW β1 22 30 34 42 73
MGWR BW β2 17 24.75 30 34 42
MGWR BW β3 4 17 17 21 598

4.2. A Single GGP-GAM in Detail

It is instructive to examine the nature of a GGP-GAM and its coefficients in detail.
The 51st model was randomly selected, and its properties were examined. Diagnostics
summaries of the model SVCs are shown in Table 4. These are generated by the gam.check
function in the mgcv package. This summarises the results of the model optimisation
procedures and allows the basis dimensions defined by k to be evaluated. Wood [24] noted
that a “low p-value and a k-index of <1) may indicate that k is too low, especially if effective degrees
of freedom (EDF) are close to k”. Similar results were found for other randomly selected
models. It is evident that a k value of 155 is adequate: the EDFs are lower than k, and all
the p-values are high.
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It is also possible to examine the fixed (parametric) coefficient estimates. These can be
considered as the global model terms, similar to the outputs of a standard OLS regression,
and are shown in Table 5. The effect of the large k is evident: the intercept has a significant
global effect, and the fixed global relationships between the response and the predictor
variables are reduced to zero.

Table 4. Diagnostics of the GGP-GAM smoothing optimisation for the SVCs of a single GGP-GAM.

k’ edf k-Index p-Value

s(X,Y):β0 154 2.748 1.192 1
s(X,Y):β1 155 47.469 1.192 1
s(X,Y):β2 155 93.353 1.192 1
s(X,Y):β3 155 136.112 1.192 1

Table 5. The fixed (parametric) coefficients for a single GGP-GAM.

Estimate Std. Error t Value Pr(>|t|)

β0 2.136 0.012 180.69 0
β1 0.000 0.000 - -
β2 0.000 0.000 - -
β3 0.000 0.000 - -

Table 6 summarises the smooth terms, the geographic GP splines. The full set of
coefficients are not printed because there many coefficients for each spline—one for each
basis function. The edf (effective degrees of freedom) indicates the spline complexity,
with higher edf values suggesting increasing non-linearity in the predictor-to-response
relationship. For example, an edf of 1 suggests a linear relationship, an edf of 2 indicates a
quadratic relationship, etc. In this context, these values apply to each predictor variable
across a two-dimensional space defined by (X, Y), and the p-values indicate the significance
of any spatial variation in the coefficient estimates, i.e., whether they vary significantly over
space. In this case, the SVCs for β1, β2 and β3 are locally significant, but the intercept (β0)
is not.

Table 6. The spline smooth terms for a single model.

edf Ref.df F p-Value

s(X,Y):β0 2.748 3.307 0.638 0.596
s(X,Y):β1 47.469 60.164 121.679 0.000
s(X,Y):β2 93.353 110.613 77.813 0.000
s(X,Y):β3 136.112 142.870 80.537 0.000

It also is possible to examine whether and how the relationships between y and the
predictor variables vary spatially, i.e., the SVCs. Table 7 summarises these for the single
GGP-GAM. These reflect the relatively low spatial variation in the intercept and its globally
significant effect, as well as the relatively high spatial variation in the coefficient estimates
for x1, x2 and x3.

Table 7. Summaries of the spatially varying coefficients for a single GGP-GAM.

Min. 1st Qu. Median Mean 3rd Qu. Max.

β0 2.091 2.123 2.137 2.136 2.149 2.164
β1 −1.942 −0.711 0.010 0.010 0.744 1.929
β2 −1.919 −0.893 0.024 −0.005 0.833 1.924
β3 −2.121 −0.695 −0.013 −0.020 0.666 1.995
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A final investigation mapped the GGP-GAM and MGWR SVCs alongside the true
coefficients (Figure 7). The GGP-GAM and MGWR coefficient estimates are generated
from the same input data, and the shading range was intentionally set to the same as
Figure 1. The coefficient estimates for β0, β1, β2 and β3 indicate the better performance of
the GAM-based approach over MGWR. The grey areas in the MGWR coefficient estimates
indicate predicted values outside of the shading range.

True β0 True β1 True β2 True β3

GGP−GAM β0 GGP−GAM β1 GGP−GAM β2 GGP−GAM β3

MGWR β0 MGWR β1 MGWR β2 MGWR β3

Figure 7. The true coefficients with the GGP-GAM and MGWR estimated spatially varying coefficient
surfaces modelled from a single simulated dataset.

4.3. GGP-GAM Tuning with a Larger Dataset

A second set of analyses investigated the impact of increased observation number and
tuning via the knots parameter for 250,000 observations over a 500 by 500 grid (Figure 2).
Seven GGP-GAMs were constructed but specified with different values of k: 100, 250, 500,
750, 1000, 1500 and 2000. Evaluations included computation time, coefficient accuracy and
model-fit metrics. These are shown in Figure 8. Model deviance (unpenalized), the effective
model residual degrees of freedom and the estimated variance parameter all decrease
with increased k, as might be expected. The model fits also increase as the degree of
tuning increases with higher values of k. There is a distinct elbow to many of these trends,
suggesting suggests that a trade-off is possible between more complex but accurate models
and increased computation times with higher values of k.

Table 8 summarises the residuals arising from the different GGP-GAMs. They have
similar central tendencies, and the inter-quartile ranges indicate that although the models
with higher values of k have a lower variation, the differences are not dramatic. Again, this
reinforces the possibility of a trade-off between model complexity and accuracy.
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AIC R2 RMSE MAE

Time (mins) Model Deviance Residual DoF Estimated Variance
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k

Figure 8. The GGP-GAM metrics and fits with an increasing number of knots k.

Table 8. Summaries of the GGP-GAM residuals with increasing values of k.

k Min. 1st Qu. Median Mean 3rd Qu. Max.

100 −0.3007 −0.0257 0.0004 0 0.0263 0.2395
250 −0.2508 −0.0209 0.0001 0 0.0212 0.2003
500 −0.2069 −0.0194 0 0 0.0194 0.1828
750 −0.1748 −0.0186 0 0 0.0187 0.1476

1000 −0.1510 −0.0182 0 0 0.0183 0.1357
1500 −0.1284 −0.0179 −0.0001 0 0.0179 0.1278
2000 −0.1208 −0.0177 −0.0001 0 0.0178 0.1256

The fixed parametric coefficient estimates of the seven models were investigated to
examine the degree to which the effects observed in Table 5 for the small single GGP-
GAM were also found (i.e., a significant intercept and insignificant predictor variables
whose coefficients were zero). These are shown in Table 9. Whilst the intercept (β0) has
similar values and is always significant, the trends in the other predictor variables are more
variable, especially at lower values of k. However, they are generally not significant when
k ≥ 1000.

Table 9. Summaries of the GGP-GAM fixed parametric coefficients with increasing values of k.

k x0 p-valx0 x1 p-valx1 x2 p-valx2 x3 p-valx3

100 2.119 0.000 0.000 - 62.613 0.000 0.000 -
250 2.119 0.000 0.826 0.789 24.283 0.010 130.407 0.000
500 2.119 0.000 −0.567 0.847 0.000 - 5.441 0.784
750 2.120 0.000 0.228 0.938 0.000 - 87.764 0.000

1000 2.120 0.000 0.000 - 0.000 - 0.000 -
1500 2.120 0.000 −0.617 0.831 5.618 0.547 −5.470 0.818
2000 2.120 0.000 −0.830 0.775 0.000 - −20.802 0.381

Table 10 summarises the geographic GP splines (the smooth terms) for the seven
models. Recall that the effective degrees of freedom (edf) summarise the complexity of the
spline smooths and the p-values indicate whether the coefficients are locally significant.
In the model constructed for the single smaller dataset summarised in Table 6, the spatially
varying intercept was not significant local, but all the other predictor variables were.
The same pattern is found with the larger data, but notice how the effective degrees of
freedom increase with k.
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Table 10. The effective degrees of freedom (edf) of the GGP spline smooth terms and their local
significance (p-val) with increasing values of k.

k ed fx0 p-valx0 ed fx1 p-valx1 ed fx2 p-valx2 ed fx3 p-valx3

100 2.011 0.521 95.002 0.000 97.872 0.000 99.889 0.000
250 4.512 0.594 196.866 0.000 239.852 0.000 247.733 0.000
500 3.983 0.705 266.541 0.000 429.945 0.000 490.232 0.000
750 2.006 0.636 294.026 0.000 553.743 0.000 724.258 0.000

1000 2.022 0.643 309.444 0.000 636.787 0.000 938.711 0.000
1500 2.012 0.807 329.487 0.000 771.339 0.000 1344.097 0.000
2000 2.017 0.718 338.441 0.000 839.436 0.000 1674.279 0.000

The GGP-GAM spline smoothing parameters from the different models were exam-
ined. The homogeneity of these indicate the model convergence as determined by k, which
defines the spline basis dimensions. These are summarised in Table 11. Two trends are
evident in the smoothing parameter values across all values of k: the heterogeneity of the
intercept across the different values of k, reflecting its global significance and local insignifi-
cance (Tables 9 and 10), and the homogeneity within each predictor variable, with values of
the same order of magnitude across different values of k.

Table 11. The GGP spline smoothing parameters with increasing k values.

k s(X,Y):x0 s(X,Y):x1 s(X,Y):x2 s(X,Y):x3

100 15.8204 4.86e-07 3.01e-08 2.95e-09
250 0.0403 5.07e-07 4.93e-08 5.49e-09
500 0.0577 4.57e-07 5.05e-08 5.51e-09
750 32.2305 4.20e-07 4.19e-08 4.46e-09

1000 8.0443 4.06e-07 3.88e-08 4.48e-09
1500 15.3684 3.89e-07 3.69e-08 5.28e-09
2000 10.4797 3.83e-07 3.66e-08 5.29e-09

In summary, a series of GGP-GAMs was constructed using a larger simulated dataset
with different values of k. As k increases, the number of spline bases increases and the
models take longer to fit, indicating the trade-off between model complexity, accuracy and
computation time. A distinct elbow was found with increasing k values in model deviance,
residual degrees of freedom and estimated variance, as well as in the model-fit measures
(AIC, R2, RMSE and MAE), suggesting possible trade-offs at around k = 500 to k = 750
(Figure 6). The residuals of these models were found to be similar to those of the models
with high values of k (Table 8), where greater tuning might be expected to result in more
accurate models. Except for the intercept, the global parametric coefficients flatten out
or are insignificant at all values of k (Table 9), and all the predictor variables are locally
significant at all values of k (Table 10), supporting trade-offs at values of k between 500 and
750 in this case.

4.4. Empirical Example: Brexit Vote

A final empirical analysis compared GGP-GAM and MGWR SVC models of the 2016
UK referendum on leaving the EU in England, Wales and Scotland (Figure 4). The model
summaries are shown in Table 12, and in this case, both models perform well in terms of
fit metrics (R2, AIC, MAE and RMSE), with the MGWR model marginally out-performing
the GGP-GAM, although the GGP-GAM was computationally more efficient. However,
perhaps of greater interest are the minor differences in coefficient estimates as summarised
in Tables 13 and 14 and mapped in Figure 9. The tables include the significance of the
GGP-GAM smooth (i.e., the spline generating local coefficient estimates) and the MGWR
bandwidths, whose sizes indicate the scale or degree of localness of each predictor-to-
response relationship (their theoretical maximum is 1198 km).



ISPRS Int. J. Geo-Inf. 2024, 13, 459 14 of 19

Table 12. Fit measures from the GGP-GAM and MGWR models of the Brexit vote.

Model R2 MAE RMSE AIC

MGWR 0.940 0.017 0.025 −1701.7
GGP-GAM 0.938 0.018 0.026 −1685.1

Table 13. Summaries of the SVCs for the Brexit GGP-GAM.

Min. 1st Qu. Median Mean 3rd Qu. Max. Smooth p-Values

β0 0.346 0.778 0.826 0.829 0.886 1.143 0.617
βChristian −0.326 0.082 0.146 0.137 0.217 0.429 0.001
βDegree −1.532 −1.193 −1.088 −1.084 −0.958 −0.029 0.000
βNoCar −0.497 −0.229 −0.122 −0.154 −0.078 0.254 0.001
βYounger −0.597 −0.181 −0.130 −0.138 −0.083 0.385 0.102

Table 14. Summaries of the SVCs for the Brexit MGWR model.

Min. 1st Qu. Median Mean 3rd Qu. Max. Bandwidth (km)

β0 0.421 0.807 0.841 0.850 0.903 1.196 68.8
βChristian −0.403 0.092 0.133 0.118 0.189 0.805 158.5
βDegree −1.275 −1.121 −0.995 −1.027 −0.951 −0.766 204.0
βNoCar −1.510 −0.156 −0.028 −0.092 −0.009 0.113 171.8
βYounger −0.250 −0.244 −0.243 −0.244 −0.243 −0.243 1196.4

GGP−GAM β0 GGP−GAM βChristian GGP−GAM βDegree GGP−GAM βNo Car GGP−GAM βYounger

MGWR β0 MGWR βChristian MGWR βDegree MGWR βNo Car MGWR βYounger

Figure 9. The GGP-GAM and MGWR regression coefficient estimates, shaded using a diverging
palette to indicate negative (blue) and positive (red) values.

Overall, when the central tendencies and inter-quartile ranges are examined, the two
sets of coefficient estimates have similar values and ranges. Considering each in turn,
a number of observations can be made:

• Intercept (β0): This is not locally significant in the GGP-GAM but is in its parametric
form (not shown). The MGWR model indicates that it has a highly localised (i.e., spa-
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tially varying) relationship with a relatively small bandwidth. Both sets of coefficient
estimates are positive and have similar values and ranges.

• Christian: Both sets of coefficient estimates indicate a negative association with the
Leave vote in Scotland and parts of North Wales and a positive one in England. They
are locally significant in the GGP-GAM and exhibit moderate local variation in the
MGWR model, with a bandwidth of 159 km.

• Degree: This is locally significant in the GGP-GAM and is negatively associated with
the Leave vote throughout the study area in both models. It indicates moderate local
variation in the MGWR bandwidth (204 km).

• No Car: This is locally significant in the GGP-GAM. It is mostly negatively associated
with the Leave vote share in both models and indicates similar areas of positive
association with the Leave vote share in the north. The MGWR bandwidth indicates
moderate local variation (172 km).

• Younger: This is not locally significant in the GGP-GAM, and in the MGWR its
bandwidth is 1196 km. These both indicate that this predictor variable is globally
(evenly) associated with the target variable.

In summary, the two models have similarly high fit and accuracy metrics and suggest
subtly different process spatial heterogeneities and non-stationarities in the relationships
between the target variable and the different predictor variables. These are more apparent in
the extremes of the study area, potentially reflecting the mechanics of the moving window
approach in GWR-based models.

5. Discussion

There is increasing interest in SVC models because of their ability to accommodate,
capture and describe process spatial non-stationarity via regression coefficient estimates
that vary geographically. Data are increasingly spatial (i.e., observation location is included
in some form), and consequently, more researchers are working with spatial data. SVC
models are attractive because they provide an indication of how and where statistical
relationships vary over space, and the results can be mapped, providing insights about the
spatial heterogeneity of the process being examined.

Some initial work has proposed SVC models using GAMs with Gaussian process
smooths that include observation location—a Geographical GP GAM (GGP-GAM)—and a
comparative study with MGWR was undertaken [33]. This used a different, less spatially
complex set of simulated data to those presented here and accepted the default settings for
GAMs in the mgcv package [35]. In this study, GGP-GAM and MGWR were applied to a
more spatially complex set of simulated data (i.e., with much greater spatial heterogeneity),
and the GGP-GAMs were tuned by specifying a sufficiently large number of knots such that
the properties of the smooths converged. This was because the number of knots defines
the basis dimension in the GP splines and the high value ensured sufficient degrees of
freedom in each of the smooths. MGWR tuning was automatically undertaken during
bandwidth optimisation.

The first part of this study compared GGP-GAM and MGWR SVC models of 100 simu-
lated datasets, each with 625 observations. The GGP-GAMs performed better than MGWR
across a range of fit measures, although a higher degree of variation was found in the GGP-
GAM smoothing parameters than in the MGWR bandwidths (Table 3). The GGP-GAM
generated more accurate coefficient estimates than MGWR, a finding that was confirmed
when the MGWR analyses were re-run with fixed distance bandwidths rather than adap-
tive ones. On investigation, the difference in performance was found to be due to the
relatively higher residuals arising from the MGWR models, although, objectively, both
models performed well. This resulted in the MGWR model struggling to estimate the
known, true coefficients (Figure 7) and suggests that MGWR models (and potentially
other geographically weighted approaches) may struggle with more complex, highly lo-
calised spatial heterogeneities due to their rudimentary kernel/moving window-based
formulation. Further investigation is required to confirm this assertion.
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A second set of analyses applied the GGP-GAM to a larger simulated dataset, and
a series of models were constructed with varying values of k, defining the number of
knots. The results indicate excellent measures of fit at all values of k, and a degree stability
in the GGP spline smooths was found for k ≥ 750, suggesting that acceptable degrees
of trade-off are possible between model complexity, computation times and GGP-GAM
stability. Identifying the value of k at which model performance stabilises has operational
benefits: the value of k determines the upper limit on the effective degrees of freedom
linked to spline smoothness and, consequently, the spline bases. Increasing k also prolongs
computation time. However, determining the optimal k algorithmically for a given case
study is challenging. A common approach is to explore various k values and increasing
and decreasing them as necessary. Here, it was shown that the gains at values of k ≥ 750
resulted in marginal performance gains at the cost of increases in computation time (a few
minutes vs. a few hours).

The final analysis constructed and compared GGP-GAM and MGWR SVC models of
the UK’s Brexit referendum vote to leave the European Union in 2016 with a small number
of socio-economic variables. Both approaches generated similarly accurate models in terms
of the ability to model the Leave vote share. The spatially varying coefficient estimates they
generated indicated minor differences locally, with perhaps the greatest differences evident
in the extremes of the study area. Consider, for example, the coefficients for Christian and
No Car in the Shetland Islands in Figure 9: these are positive in the GGP-GAM and negative
in the MGWR model, reflecting the smoothing effect of the GWR-based moving window
approach and, potentially, the adaptive distance kernel. There were also difference in the
predictor variables that were found to have a local relationship with the target variable.
In sum, the MGWR and GGP-GAM approaches generated similar understandings of the
process in this empirical case study but with differences in the geographical extremes. This
may be due to the way that GWR-based approaches capture spatial non-stationarity: they
move a weighted window across observations and estimate coefficients at each location
rather than quantifying local variation in ‘data’ space [22]. Further work will seek to unpack
these differences.

Other of areas of work are suggested by the findings of this study. One is to explore
how the GGP-GAM approach may be further calibrated through out-of-sample predictions
over randomly selected spatial data subsets. MGWR approaches are unable to do this
because of their iterative back-fitting approach to model calibration. As a consequence, they
cannot be applied to ‘new’ data. Another is to continue to extend the stgam R package [41].
Initial work on spatially varying coefficient modelling using GGP-GAMs simply coded
the analysis in R. But as analyses progressed, the stgam package was developed to contain
tools and wrapper functions for creating SVC models using GAMs with GP smooths.
The functionality of this toolkit will continue to be expanded. One particular area of
development is the generation of explicit measures of the scale of spatial dependencies
in the coefficient estimates. In MGWR, this is provided by the kernel bandwidth, and in
GGP-GAMs, a similar indication of scale could be to determine the variogram range for
each spatially varying coefficient. There are also further opportunities arising from the
core theory underpinning GAMs [7,8,35]. GGP-GAMs are more flexible than GWR-based
approaches. They are inherently multiscale through their specification, and they are able to
handle different responses, as well as having options for handling collinearity, outliers, and
heteroskedastic and autocorrelated error terms—options that are not readily available for
MGWR, aside from recent work on MGWR with autocorrelated errors [42] and Poisson
responses [6]. Finally, extensions into space-time will be explored to investigate how to
model space-time dependencies [43], potentially using model averaging [44] to determine
optimal space-time model form. The ability to construct coefficient models in which the
coefficients are allowed to vary over space and/or time is key in, for example, analysis of
resilience to climate change, where the aim is to determine the varying drivers of changes
in resilience and to predict tipping points.
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6. Conclusions

This study describes spatially varying coefficient modelling using GAMs with Gaus-
sian process splines parameterised with observation location, referred to as geographical
Gaussian process GAM (GGP-GAM). In a series of analyses, GGP-GAM was applied to sim-
ulated data with known and complex spatial heterogeneities and found to perform better
than MGWR, the SVC brand leader. This raises questions about the ability of kernel-based
approaches like GWR to handle highly localised processes. GGP-GAM was then applied
to a larger datasets to investigate model tuning. Processes for determining acceptable
trade-offs between model complexity, computational efficiency and stability were identified
with respect to the number of knots used in the GP smooths. Finally, the GGP-GAM and
MGWR were applied to an empirical case study of the 2016 UK Brexit referendum vote.
Both models performed well in terms of fit metrics, with the MGWR model marginally
out-performing the GGP-GAM. The coefficient estimates generated by the two approaches
for each predictor variable were broadly similar in terms of their sign (positive/negative),
their mapped spatial distributions and the degree of local heterogeneity they suggested.
However, differences were found in the geographical extremes, likely due to the mechanics
and smoothing effect of the moving window approach in GWR-based models. Further
research will continue to the develop the GGP-GAM approach, including the R package
that was created in this work, [41], handling responses with non-Gaussian distributions,
and will extend into the temporal domain to generate spatially and temporally varying
coefficient models.
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