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ABSTRACT

R. WALKER, S . ROSSALL AND M.J .C . ASHER. 2004.

Aims: To develop bacterial inoculation treatments on sugar-beet seed that will maintain a commercially acceptable

degree of viability for a minimum of 4 months storage at ambient temperature.

Methods and Results: Single rifampicin-resistant (Rif+) strains of both Gram-positive and negative bacterial

isolates (mostly pseudomonads) were applied in turn to sugar-beet seed in a comparative study by seed soaking,

encapsulation in alginate, pelleting using an inoculated peat carrier or seed priming. The treated seed was assessed

for bacterial survival over a time course by plating out homogenized samples onto a selective medium. Priming

inoculation offered a significant improvement over all the other application strategies tested. After pelleting with

fungicides and drying at 40�C, Pseudomonas marginalis/putida P1W1 maintained populations of >6Æ6 log10 CFU g)1

seed during 4 months storage at 15�C. Subsequent experiments verified a stabilized population under these storage

conditions with commercial pellets at <7% moisture content.

Conclusion: An inoculation method was established which allowed the survival on seed of a Gram-negative

bacterium at ambient temperature with little loss in viability.

Significance and Impact of the Study: This has promising implications for the delivery of beneficial bacteria,

especially Gram-negative strains, on sugar beet.

Keywords: bacteria, inoculation, seed priming, shelf-life, sugar beet.

INTRODUCTION

The key factor in the large-scale production of reliable

bacterial seed treatments for the sugar-beet market is the

ability of the inoculum to survive in storage at ambient

temperature in a dried commercial pellet in such a way that

seed viability and vigour is also retained. Within any given

growing season, a minimum of 4 months is the typical

storage period between commercial processing and pack-

aging of sugar-beet seed and end-point use by the grower.

While Gram-positive endospore-forming bacteria are ideal

candidates for the production of such seed treatments (Paau

1988), the majority of the most promising plant

growth-promoting rhizobacteria and rhizosphere competent

bacteria are Gram-negative pseudomonads (Whipps 1997).

The aim of this study was to examine the application

strategies that would enable candidate bacteria, especially

those that were rhizosphere-competent Gram-negative

strains, to fulfil these survival criteria on sugar-beet seed.

A variety of strategies for the application of bacteria to

sugar-beet seed have been explored in other studies.

Application as an aqueous suspension or slurry is the most

commonly employed laboratory-based approach and, despite

its potential commercial limitations, such a strategy is

particularly useful in aiding the selection and testing of

candidate bacteria for biocontrol activity (Whipps 1997). In

this study, the seed soaking method was used to establish

survival profiles of the isolates applied to the pelleted seed

type used commercially in the UK [EB3, produced by the

Germain’s Technology Group (GTG)] following a range of

cultivation and storage conditions. Once these profiles had
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been established, other seed treatment strategies were

examined in an attempt to optimize the survival of the

bacteria on seed.

Encapsulation of microbial cells in alginate, a linear

polymer extracted from kelp (Macrocystis pyrifera), has been
widely reported as a strategy for maintaining their viability

in storage (Bashan 1986; Bucke 1987; Daigle and Cotty

1997). The sodium salt of alginate, when mixed with a

calcium chloride solution, forms the water-insoluble gel

calcium alginate because of cation exchange. Microbial cells

have been shown to remain physiologically active after

being entrapped in the interstitial spaces of such gels

(Bashan 1986). This strategy has been used for the

application of Pseudomonas fluorescens F113 to sugar-beet

seed in a laboratory to determine whether an alginate

coating produced around the seed could successfully deliver

the bacterium into the seedling rhizosphere (Russo et al.
1996).

Peat is a potential carrier material that is both cheap and

already available commercially as a finely milled sterilized

powder in bags, facilitating direct inoculation and coloniza-

tion by bacteria. Peat has a proven track record of success as

a Rhizobium inoculant which is incorporated directly into

the furrow of leguminous crops or applied to the seed at

sowing (Powell 1992). Existing commercial pelleting tech-

nology can be used to incorporate peat into a seed pellet

(Walker 2002). Clearly, this product has potential for use as

a substrate for inoculum production using bacteria as

biological control agents (BCAs).

Filmcoating has been shown to be an effective way of

delivering dormant bacterial and fungal spores as seed

treatments but has limitations as an application strategy for

Gram-negative bacteria because of the exposure of vegetat-

ive cells to the abrasive shear forces involved (Paau 1988).

Oospores of Pythium oligandrum have been successfully

delivered onto sugar-beet seed using a commercial filmcoat-

ing process (McQuilken et al. 1990). However, more than

90% of Ps. putida 40RNF inoculum applied to sugar-beet

seed during filmcoating died in the process, probably as a

result of cell damage and lysis (Shah-Smith and Burns

1997). Because of the emphasis placed on the survival of

Gram-negative bacteria in this current study, the strategy of

filmcoating was not pursued.

The conditions to which the seed are subjected during the

various priming techniques (which include osmocondition-

ing, solid matrix priming and damp seed incubation) provide

a potentially ideal environment for bacterial inoculation and

colonization of the seed, as has been reviewed by McQuilken

et al. (1998). Seed species which have been shown to

respond to various priming inoculations include: tomato

(Harman and Taylor 1988; Legro and Satter 1995; Warren

and Bennett 1999), sweet corn (Callan et al. 1990, 1991) and
carrot (Jensen et al. 2002).

The commercial use of a sugar-beet priming procedure

(based on the method of Durrant and Jaggard 1988) has

increased significantly in the USA and in the UK sugar-beet

crop in the last 5 years. The microbial inoculation of sugar-

beet seed during an existing commercial hydration process

already known to produce physiological enhancement, would

be both economically and agronomically attractive with

increased beneficial value for the crop. Surprisingly there are

only two reports, neither of which have been widely

circulated as full papers, relating the use of priming

inoculations for sugar-beet seed (Paternoster and Burns

1996; Paternoster 1997) and no published data with regard to

shelf-life at ambient temperature in relation to commercial

pellet moistures. Our work was therefore directed towards

evaluating priming and other inoculation systems for a

selection of bacterial species and also at investigating their

survival for several months in typical seed storage conditions.

MATERIALS AND METHODS

Chemicals and microbiological media

Unless otherwise stated all chemicals were obtained from

Sigma (Dorset, UK) and microbiological media from Oxoid

(Basingstoke, UK).

Isolation and maintenance of wild-type strains of
bacteria

All of the bacterial isolates used throughout this study were

obtained from roots of sugar-beet seedlings and their isolation,

screening, selection and characterization have already been

documented (Williams and Asher 1996). The isolates were

identified by fatty acidmethyl ester profiling (DrDavid Stead,

Central Science Laboratories, Sand Hutton, York, UK) as

strains of; Bacillus megaterium (P8S105), Arthrobacter histid-
inolovorans (P2T9), Ps. fluorescens (P22P101), Ps. syringae
(P22P104) and Cytophaga johnsonae (P1T139). An additional

isolate, Ps. marginalis/putida strain P1W1 (Walker et al.
2002), was selected for application in the priming studies.

Rifampicin-resistant (Rif+-marked) strains of the isolateswere

used throughout the work. All wild-type and Rif+-marked

strains of the isolates were maintained on plates of nutrient

agar (NA) (Oxoid CM3) at 30�C and stored on NA slopes in

universal bottles at 5�C and in 1 ml aliquots of sterile distilled

water (SDW) in cryovials (System 100TM, Nalgene�; Nalge

Nunc International, Rochester, NY, USA) at )20�C.

Production of antibiotic-resistant marked strains
of bacteria

Rifampicin-resistant strains of the isolates were produced by

spread plating wild-type liquid cultures in log growth phase
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in tryptone soya broth (TSB) (Oxoid CM0876) onto NA

containing 10 lg ml)1 rifampicin. The resulting rifampicin-

resistant colonies were then streak plated onto NA contain-

ing 100 lg ml)1 rifampicin (NAR) and the Rif+-marked

strains were subsequently maintained on this medium.

Seed material

All �raw� (processed, rubbed and graded) and pelleted seed

used throughout this study was obtained from British Sugar

(Peterborough, UK). Seed pelleted with EB3 blend material

(GTG; GTG-UK, King’s Lynn, Norfolk, UK) without

other pretreatment or fungicides is referred to as �pelleted
seed�. Standard commercial seed (SCS) refers to seed

steeped in 0Æ2% w/v aqueous suspension of thiram prior to

pelleting followed by the addition of thiram and hymexazol

to the EB3 blend at rates of 4Æ8 g active integredient (a.i.)

and 10Æ5 g a.i. per 100 000 seed respectively.

Application of bacterial strains to prepelleted seed
(seed soaking)

The bacterial suspensions were prepared for application to

seed as described by Walker et al. (2002). All liquid cultures

were incubated at 30�C and 100 rpm in rotary culture

(Economy Incubator, Gallenkamp, UK) unless otherwise

stated. Conical flasks containing 100 ml TSB were inocu-

lated with 100 ll bacterial suspension from 24 h cultures in

nutrient broth (Oxoid CM1). Flasks were incubated until

each isolate had reached the mid-log phase of growth

(determined previously by growth curve studies). The

bacterial cells were centrifuged at 8000 g and 22�C for

30 min (4K10 Centrifuge; Sigma). The supernatant was

discarded and the pellet re-suspended in 100 ml SDW. This

washing procedure was repeated. The concentration of each

bacterial isolate was determined by total cell counts in an

Improved Neubauer haemocytometer (Weber; Lancing,

Sussex, UK) and was adjusted to 9 log10 cells ml)1.

Bacterial strains were applied to prepelleted seed as

described by Williams and Asher (1996). Standardization

was achieved by applying 500 ll aliquots of the cell

suspension to 10 seeds in a single compartment of a

100 mm 25-compartment repli-dish (Bibby Sterilin; Stone,

Staffordshire, UK) to give a final application rate of 5 · 107

cells per seed. The treatments were allowed to soak into the

seed pellet for 4 h at 22�C and then dried for 16 h in a

laminar flow cabinet at ca 20�C.

Re-isolation of Rif+-marked strains from
inoculated seed and carrier materials

Each replicate sample was homogenized separately in

maximum recovery diluent (MRD) (Oxoid CM0733) (1 g

tissue in 9 ml MRD) for 15–30 s at 32 200 g using Janke &

Kunkel Ultra-Turrax T25 (IKA�-Labortechnik, GmbH &

Co. KG, Staufen, Germany). Homogenized samples were

serially diluted in MRD and selected dilutions were spiral-

plated (Model D Spiral Plater; Don Whitley Scientific

Limited, Shipley, West Yorkshire, UK) onto NAR con-

taining the antifungal agent cycloheximide (NARC;

50 lg ml)1). The spiral-plated samples were incubated at

30�C and the numbers of re-isolated CFU calculated.

An amendment was made to this protocol for assessing

samples where preparations of alginate were involved. All

replicate samples were soaked for 30 min in tri-sodium

citrate buffer (C6H5Na3O7Æ2H2O) (pH 7Æ0) (1 g tissue in

9 ml buffer) to dissolve the alginate. The samples were then

homogenized in MRD as described previously.

Survival profiles of the Rif+-marked isolates
applied in aqueous suspension to pelleted seed

The following experiments were carried out to determine

the effects of different cultivation temperatures, duration of

cultivation and seed drying regimes on the subsequent

survival of the Rif+-marked isolates on pelleted seed stored

at two different storage temperatures (5 and 22�C).
The Rif+-marked strains of isolates B. megaterium P8S105,

Ps. fluorescens P22P101, Ps. syringae P22P104 and Cyt.
johnsonae P1T139 were grown in liquid shake culture

(100 ml TSB in 250 ml conical flasks) for 5, 11 and 28 days

at 20�C and for 6, 12 and 28 days at 8�C, and cell number in

these cultures was determined microscopically just before the

bacteria were applied to pelleted seed as described previ-

ously. Half of this inoculated seed was dried at 40�C for 4Æ5 h

in a fan-assisted incubator (Economy Incubator) and the

remainder was air-dried for 16 h at room temperature in a

laminar flow cabinet. Samples of the treated seed were stored

at both 5 and 22�C. The numbers of surviving CFUs were

assessed at various sample times by the spiral plating of seed

homogenates prepared as described previously. In addition,

growth curves of the five Rif+-marked isolates in liquid shake

culture at both 20 and 8�C were determined over the 28 days

inoculum preparation period. This experiment was repeated

with all five Rif+-marked isolates (including P2T9) but the

treated seed was stored at 5�C only.

Encapsulation of Rif+-marked isolates in alginate
polymer

The medium viscosity sodium salt of alginic acid (A-2033,

Sigma) was mixed with SDW and the resulting aqueous

solution was then autoclaved at 121�C for 15 min. The

effects of alginate polymer on the survival of the Rif+-

marked isolates was assessed both in alginate beads and after

coating pelleted seed with alginate.
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Aqueous cell suspensions of the Rif+-marked isolates were

prepared as described previously. The concentration of each

bacterial isolate was adjusted to 1 · 109 cells ml)1 in 3%

alginate/bacterial suspension. Beads of alginate/bacteria

ca 3 mm in diameter were produced by extruding the

suspension into a solution of 0Æ1 MM CaCl2 using a 1000 ll
Gilson Pipetman (Gilson, Middleton, WI, USA). Encapsu-

lation of seed was carried out either by dipping prepelleted

seeds into the suspension of bacterial cells contained in 3%

alginate or by soaking the seed in a bacterial suspension and

then adding a layer of 3% alginate around the seed.

Immediately after these treatments, the seeds were im-

mersed in a 0Æ1 MM CaCl2 solution. After allowing the gel to

harden for 30 min, treated seeds and beads were rinsed in

SDW and air-dried in a laminar-flow cabinet at room

temperature.

Using these procedures, the following treatments were

prepared for the five Rif+-marked isolates: alginate beads;

seeds dipped in alginate/bacterial suspension (3% alginate

final concentration); seeds soaked in aqueous bacterial

suspension (seed soaking) for 3 h then dipped in 3%

alginate, and seeds soaked in aqueous bacterial suspension

(seed soaking) for 3 h (no alginate).

Samples of all the treatments were stored in screw-cap

Sterilin containers (Bibby Sterilin) at both 5 and 22�C.
Survival of the isolates was assessed as described previously.

Survival of Rif+-marked isolates in colonised peat
(Rhizobium inoculant)

Experiments were undertaken to explore the possibility of

using peat as a carrier material for incorporating bacteria in a

commercial seed pellet. The peat product (formerly from

Microbio Ltd, Littlehampton, West Sussex, UK and

currently available from Legume Technology Ltd, Epper-

stone, Nottinghamshire, UK) is used commercially as a field

inoculant for Rhizobium. This product consists of a finely

milled, sedge-based peat that is sterilized and sealed in gas-

permeable bags. Colonization of the peat with Rhizobium is

achieved commercially by sterile injection of an aqueous

bacterial suspension into the bag and �massaging� the bag

thoroughly to aid distribution of the introduced liquid,

followed by a period of incubation known as �curing�. The
Rif+-marked isolates were cultivated and harvested as

described previously. The concentration of each bacterial

isolate was determined microscopically and these cultures put

through a 1/370 dilution step. Five peat bags per isolate were

inoculated by aseptically injecting each bag with 180 ml of the

diluted cultures. The bags were cured at 30�C for 11 days.

After curing, the number of bacteria colonizing the peat

was assessed for each isolate. The peat was dried in a laminar

flow cabinet and stored in 15 ml aliquots in sealed Sterilin

tubes (Bibby Sterilin) at 5 and 22�C. The survival of the

bacteria was then monitored against time at these two storage

temperatures. In addition, four bags of each isolate were

stored unopened at room temperature for long-term survival

studies. At sample times of 6 and 27 months, two replicate

bags were opened for each isolate and three replicate samples

removed from each bag and assessed for bacterial survival.

Survival of Rif+-marked Ps. syringae P22P104 in a
commercially produced EB3/peat pellet The peat inoc-

ulant was tested for its suitability as a carrier material for

introducing the best performing Gram-negative bacterium

into the commercial EB3 seed pelleting process (conducted

at GTG-UK). Peat inoculated with Ps. syringae was applied
at three different rates in the seed pellet either by application

to the seed followed by EB3 pelleting or by mixing with the

EB3 blend prior to pelleting. The effects of two different

drying regimes on the survival of the isolate were also

compared. This yielded 12 different treatment combina-

tions. The treatments were tested for inoculum survival on

seed at room temperature against time with the first sample

being assessed the day after pelleting (T ¼ 1 day). Seed of

the cultivar Madison (Danisco Seeds, Lincoln, UK) was

used throughout.

Survival of Rif+-marked Ps. marginalis /putida
P1W1 applied to seed during priming

Experiments were designed to explore the feasibility of

applying a selected Gram-negative isolate to sugar-beet seed

(cultivar Celt; Syngenta Seeds, Cambridge, UK) during the

commercial priming process. The proprietary �advantage�
process used routinely for sugar-beet seed preparation

(conducted by GTG-UK) involves a preliminary steeping

stage (also including a thiram fungicide steep in the UK

product to eradicate deep-seated Phoma betae infections),

followed by incubation of the damp seed for several days

under controlled temperature conditions and a moisture

content selected for the seed lot in question (Thomas et al.
1993).

The survival of Ps. marginalis/putida P1W1 following

various priming application strategies was monitored during

seed storage at 15�C over a 4-month period, the parameters

selected to represent typical conditions in the commercial

storage and distribution environment of pelleted sugar-beet

seed (B. Gummerson, personal communication).

Comparison of the two seed steeping methods and of
different inoculation rates of P1W1 The isolate was

applied to seed during priming by addition of 20 ml

of bacterial suspension in sterile water at rates of:

log5 cells ml)1, log7 cells ml)1, neat suspension (log9)10
cells ml)1) and untreated control. Each of these treatments

was applied to sugar-beet seed during priming following
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two different steeping strategies to give eight treatments

in total. Although the exact conditions remain proprietary

information, the methods involved in the commercial

treatment used in the UK include thiram fungicide in the

steep (to eradicate deep-seated Phoma betae infections)

followed by incubation for several days under controlled

moisture and temperature conditions. In these experiments,

the thiram was replaced with an alternative proprietary

biocidal steep with non-selective antimicrobial activity to

explore whether this would improve seed colonization by

P1W1 through displacement of some of the resident

microbial community. This strategy was compared with

steeping the seed in water alone. (In later experiments, the

effect of the standard thiram steep on the subsequent

survival of Ps. marginalis/putida P1W1 was also evaluated).

The surviving populations of P1W1 Rif+ and the resident

microflora on the stored seed were determined by spiral

plating of selected dilutions of seed sample homogenates onto

NAR, Pseudomonas selective medium (PSM) (Oxoid

CM0559 supplemented with Oxoid SR0103) and NA. The

first medium was selective for the growth of Rif+-marked Ps.
marginalis/putida P1W1, while the other two media deter-

mined the populations of resident Pseudomonas species and
the total bacterial count respectively. All three media were

supplemented with cycloheximide antibiotic (50 lg ml)1) to

prevent fungal colonization. Two replicate samples were

analysed for each of the treatments at each sample time. The

mean data were plotted against time to determine the survival

profiles of P1W1 expressed as CFU g)1 seed in relation to the

resident microbial populations for each treatment.

Effects of subsequent pelleting, drying temperature
and the addition of fungicides on survival of P1W1 A

range of treatments (Table 1) were prepared applying isolate

P1W1 as 20 ml of neat suspension in SDW where indicated

and using the standard seed steeping strategy throughout.

Fungicides were applied to the pellet at the standard

commercial rate where indicated. The populations of P1W1,

resident Pseudomonads and the total bacterial count were

monitored as described previously.

Comparison of priming with other application tech-
niques using P1W1 The survival of isolate P1W1 applied

in the commercial priming process was compared with other

application techniques (Table 2). Rif+-marked P1W1 was

cultured in TSB and the cells harvested. The treatments

were prepared, dried at room temperature and then stored at

15�C followed by testing for survival at the sampling times

described previously.

Effect of drying to different pellet moistures on shelf-life
of P1W1 primed seed Thiram-steeped seed primed

with isolate P1W1 was pelleted with fungicides applied

at the standard rate and then dried at 30�C to produce

four separate subsamples each with a different pellet

moisture. The samples were stored at 15�C followed by

testing for survival at the sampling times described previ-

ously.

Statistical analysis

Bacterial numbers were expressed as CFU following

logarithmic transformation. Significant differences between

sample means (Fisher’s protected LSD, P ¼ 0Æ05) were

determined by ANOVAANOVA performed with Genstat V.

Table 1 List of treatment combinations used to apply Rif+-marked Pseudomonas marginalis/putida P1W1 to seed during priming

Treatment Description EB3 pellet Thiram steep Fungicides in pellet Drying regime

1 P1W1 raw seed (RT) ) ) ) RT

2 P1W1 raw + thiram (RT) ) + ) RT

3 P1W1 EB3 pellet (RT) + ) ) RT

4 P1W1 SCS pellet (RT) + + + RT

5 P1W1 raw seed (40�C) ) ) ) 40�C
6 P1W1 raw + thiram (40�C) ) + ) 40�C
7 P1W1 EB3 pellet (40�C) + ) ) 40�C
8 P1W1 SCS pellet (40�C) + + + 40�C

RT, room temperature SCS, standard commercial seed (rubbed, polished and graded 3Æ25–4Æ25 mm).

Table 2 List of treatment combinations used to compare priming of

Rif+-marked Pseudomonas marginalis/putida P1W1 with other appli-

cation techniques

Treatment Description

1 Alginate beads (no seeds)

2 Alginate/bacterial mix applied to pelleted seed

3 Soaked pelleted seed + alginate coating

4 Soaked pelleted seed

5 Peat stored in sealed tubes (no seed)

6 Primed raw seed

7 Primed raw seed (stored at 22�C)
8 Primed seed + pellet
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RESULTS

Survival profiles of the Rif+-marked isolates
applied by soaking onto pelleted seed

For the four isolates tested, inoculum survival was poor

when seed was stored at the higher temperature, with loss in

viability of all treatments within 28 days of storage (data not

shown). When treated seed was stored at 5�C, each isolate

produced distinct survival profiles that shared common

characteristics (Table 3).

Firstly, the survival profiles of the treatments occurred in

pairs according to the temperature and length of incubation

of the liquid culture, irrespective of the seed drying

temperature. In general, drying the seed at 40�C to conform

to commercial seed-pelleting practices had no significant

effect on bacterial survival compared with drying at ambient

temperature. In two treatment pairs (of the 24 treatments

tested) the numbers of bacteria were significantly greater

after drying at 40�C compared with drying at ambient

temperature. There were no other significant differences

between the two drying procedures.

Secondly, cells from fresh, active cultures displayed better

subsequent survival on seed than cells from older cultures.

In almost all cases, cells harvested from late log-phase or

early stationary-phase cultures survived significantly better

on seed than cells from late stationary and decline-phase

cultures, irrespective of the incubation temperature or

bacterial isolate.

Finally, although bacteria were shown to survive the

application and drying procedures in high numbers (cf.

samples taken at T ¼ 0), a large population decline during

the first 24 h of seed storage (cf. samples taken on

T ¼ 1 day) was typical for all treatments of each isolate

(data not shown). This decline varied between 2 and 5 log10
CFU depending on the isolate and the culture formulation.

Encapsulation of Rif+-marked isolates in alginate
polymer

Calculation of the survival rates in the beads showed a

stabilization of the populations of all five isolates (Table 4).

A population decline of only <1 log10 CFU after 24 h

storage and <3 log10 CFU after 300 days was recorded for

B. megaterium, Ps. syringae and A. histidinolovorans. The

remaining two isolates showed a population decline of only

<3 log10 CFU after 24 h storage and <3–5 log10 CFU after

300 days. For all five isolates, survival was significantly

greater following encapsulation in alginate beads compared

with soaking pelleted seed in the absence of alginate. Results

showed that the populations of all isolates on seed were

greater in the presence of alginate and this was observed at

all sampling times.

Survival of Rif+-marked isolates in colonized peat
(Rhizobium inoculant)

All isolates showed excellent survival on peat in sealed gas-

permeable bags and all populations stabilized at >6 log10
CFU g)1 after 27 months storage. The levels of the

pseudomonads and B. megaterium, at 8 log10 CFU g)1,

were particularly high (Table 5).

Colonized peat stored in sealed tubes at 5�C produced

stable population numbers of the Rif+-marked isolates

(Fig. 1a) over the 4-month period studied, with the

exception of Ps. fluorescens which suffered a decline of ca
3 log10 CFU g)1 during the first week of storage. The

populations of B. megaterium and Ps. syringae were partic-

ularly well sustained, with a decline of <1 log10 CFU g)1

after storage for 300 days. This survival was significantly

better than that achieved previously with the seed soaking

method (Table 6). When the preparations were stored at

22�C, the performance of all isolates was reduced. Despite

this, at the critical 4-month storage limit, the populations

of both Ps. syringae and B. megaterium were at ca
6Æ5 log10 CFU g)1 (Fig. 1b). When the peat was compared

with alginate it was found to be as effective for four of the

isolates and was only significantly poorer for Ps. fluorescens

Table 3 Effect of cultivation temperature, incubation time and

drying of seed on subsequent survival of Rif+-marked isolates

on seed stored for 160 days at 5�C

Single treatments

(LSD ¼ 2Æ12�)

Survival of Rif+-marked isolates (log CFU g)1)*

Bacillus

megaterium

Pseudomonas

fluorescens

Pseudomonas

syringae

Cytophaga

johnsonae

20�C (5 days) RT 7Æ20a� 1Æ95b 3Æ61 0Æ00b

20�C (5 days) D 7Æ24a 5Æ16a 5Æ39a 0Æ00b

20�C (11 days) RT 2Æ05c 4Æ58a 0Æ82b 0Æ00b

20�C (11 days) D 1Æ17c 4Æ81a 0Æ98b 0Æ00b

20�C (28 days) RT 0Æ00c 0Æ00b 0Æ00c 0Æ00b

20�C (28 days) D 0Æ00c 0Æ00b 0Æ00c 0Æ00b

8�C (6 days) RT 0Æ00c 5Æ53a 6Æ02a 0Æ80b

8�C (6 days) D 0Æ72c 5Æ22a 5Æ97a 0Æ72b

8�C (12 days) RT 4Æ10 3Æ66 2Æ79b 1Æ60b

8�C (12 days) D 2Æ07c 4Æ17a 2Æ89b 4Æ07a

8�C (28 days) RT 5Æ19 0Æ00b 0Æ00c 0Æ00b

8�C (28 days) D 4Æ21b 0Æ00b 0Æ00c 0Æ00b

Total

(LSD ¼ 0Æ91�)
2Æ83a 2Æ92a 2Æ37a 0Æ54b

*Data shown are means from all sampling times pooled for each isolate.

�Significance between isolates tested using Fisher’s protected LSD

(P ¼ 0Æ05).
�Significant differences between treatments for each Rif+-marked

isolate denoted by �a–c�.
RT, dried at room temperature D, dried at 40�C.
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(Table 6). The best-performing Gram-negative isolate (Ps.
syringae) was selected for incorporation into a commercially

produced peat-EB3 pellet.

Survival of Rif+-marked Ps. syringae P22P104 in a
commercially produced EB3/peat pellet All of the

pelleted preparations using the peat-based formulations

performed poorly in terms of survival of the isolate when

stored at room temperature. The pseudomonad could be

recovered from only one of the 12 treatments after 21-day

storage and in numbers just above the detection limit (data

not shown). This survival behaviour was markedly poorer

than the survival of the isolate on peat stored at 22�C in

sealed tubes. Incorporating colonized peat into the com-

mercial pelleting procedure offered no advantage in terms of

survival of the isolate on seed stored at ambient temperature

compared with the seed soaking method.

Survival of Rif+-marked Ps. marginalis /putida
P1W1 applied to seed during priming

Comparison of the two seed steeping methods and of
different inoculation rates of P1W1 For each application

rate, the population of P1W1 was significantly greater in the

priming application following the standard water-steeping

treatment compared with the corresponding biocidal

treatment (Table 7a). The highest rate of application in

both treatment strategies produced the best survival in

storage, with the most concentrated cell suspension produ-

cing significantly greater populations than the lower appli-

cation rates. An exception was the 5 log10 rate which was not

significantly different to the 7 log10 rate after the biocidal

treatment. However, both of these treatments performed

poorly when compared with the highest application rate.

The biocidal treatment had a noticeable impact on the

resident pseudomonads, causing detectable fluctuations in

the population levels detected (Table 7b). This effect was

also observed for the biocidal control treatment that was

not subsequently treated with P1W1. By comparison, the

water-steeped seed supported significantly greater popula-

tions of resident pseudomonads, with only a slow decline of

ca 1 log unit over the course of the experiment. The

addition of isolate P1W1 did not affect the resident

pseudomonad population in either water steeped or biocidal

treated seed.

All the biocidal treatments, except the one followed by the

highest rate of P1W1 application, yielded lower total

bacterial counts than the water steeped treatments (data

Table 4 Effect of alginate on survival of

Rif+-marked isolates on preparations stored

for 300 days at 5�C Treatment

(LSD ¼ 1Æ59�)

Survival of Rif+-marked isolates (log CFU g)1)*

Bacillus

megaterium

Arthrobacter

histidinolovorans

Pseudomonas

fluorescens

Pseudomonas

syringae

Cytophaga

johnsonae

Alginate beads

(no seed)

8Æ47a� 7Æ00a 6Æ52a 9Æ08a 6Æ01a

Alginate mix onto

pelleted seed

6Æ81b 4Æ96b 0Æ81c 8Æ64 1Æ08b

Soaked pelleted

seed + alginate

4Æ08c 5Æ45 2Æ59b 7Æ80 1Æ55b

Soaked pelleted seed 2Æ61c 4Æ83b 0Æ00c 6Æ11b 0Æ41b

*Data shown are means at all sample times pooled for each isolate.

�Significance between isolates tested using Fisher’s protected LSD (P ¼ 0Æ05).
�Significant differences between treatments for each Rif+-marked isolate denoted by �a–c�.

Table 5 Comparison of survival of Rif+-

marked isolates on peat in gas-permeable bags

stored at room temperature

LSD ¼ 2Æ11�

Survival of Rif+-marked isolates (log CFU g)1)*

Bacillus

megaterium

Arthrobacter

histidinolovorans

Pseudomonas

fluorescens

Pseudomonas

syringae

Cytophaga

johnsonae

6 months 7Æ67a� 7Æ41a 7Æ83a 7Æ50a 4Æ15b

27 months 7Æ56a 5Æ95 7Æ57a 7Æ81a 4Æ21b

Total (LSD ¼ 1Æ49�) 7Æ61a 6Æ68a 7Æ70a 7Æ65a 4Æ18b

*Data shown are means from triplicate samples at all sample times pooled for each isolate.

�Significance between isolates tested using Fisher’s protected LSD (P ¼ 0Æ05).
�Significant differences at each sampling time between Rif+-marked isolates denoted by �a–b�.
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not shown). The general effect of the biocidal treatments

was therefore to slightly reduce the cell numbers in the total

bacterial community, although there were no significant

differences between treatments in terms of their total

bacterial counts. There was no interaction between the

introduced P1W1 isolate and the total bacterial community

in either water steeped or biocidal treatments.

Effects of subsequent pelleting, drying temperatures
and the addition of fungicides on survival of P1W1 The

most stable populations of P1W1 were produced when raw

seed was dried at room temperature following priming

inoculation (Table 8). Thiram-steeping prior to priming

produced a reduction in population levels of P1W1 but this

was only significant when the seed was dried at 40�C.
Compared with nonpelleted seed, subsequent pelleting of

the P1W1 primed seed resulted in a significant reduction in

the P1W1 population. Addition of fungicides to the pellet

had no detrimental effect on the population levels of P1W1

compared with the EB3-pelleted seed without fungicides.

There were no significant differences between the two

drying procedures. As with the previous experiment, there

was no interaction between the introduced P1W1 isolate and

either the resident pseudomonad population or the total

bacterial community (data not shown).

Comparison of priming with other application tech-
niques using P1W1 The priming treatment promoted

survival at ca 7Æ5 log10 CFU g)1 seed after 4 months in

storage at 15�C (Fig. 2). This survival rate was significantly

greater than that following the other preparations. In

addition, the survival of the isolate applied during priming

was not significantly affected when the seed was stored at

22�C.

Effect of drying to different pellet moistures on survival
of P1W1 primed seed The percentage moisture content

recorded in the pellet of the four seed samples was 12Æ30,
10Æ08, 9Æ15 and 6Æ74. The rate of decline in P1W1 population

numbers appeared to be directly related to the final moisture

content of the seed pellet, with the fastest rate of population

decline occurring in the seed sample with the highest pellet

moisture and vice versa (Fig. 3). The survival of the P1W1

populations in the two samples with the higher pellet

moistures showed marked fluctuations in the early storage

period and suffered a rapid decline during later storage.

However, the stabilization of P1W1 population levels in the

two samples with the lower pellet moistures was compar-

able with the results obtained from earlier priming inocu-

lation experiments where moisture content was not

measured.

DISCUSSION

In general, the isolates survived their initial application onto

seed in high numbers irrespective of the strategy and drying

procedure used. Subsequent survival in storage following the

non-priming strategies was commonly characterized by a

rapid initial decline in viable populations especially at ambient

temperature. With the exception of prior biocidal steeping, all

the priming strategies tested displayed a significant improve-

ment with regard to the long-term survival of a selected

Gram-negative bacterium at ambient temperature when

compared with other application techniques.
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Fig. 1 Comparison of survival of Rif+-marked isolates on peat stored

in sealed tubes at (a) 5�C and (b) 22�C. Treatments: Bacillus megaterium

P8S105 (s), Pseudomonas syringae P22P104 ( ) Arthrobacter

histidinolovorans P2T9 (D), Cytophaga johnsonae P1T139 (j) and

Pseudomonas fluorescens P22P101 (d). Significant differences between

treatment means denoted by (a–b). Bars represent least significant

differences between treatment means (Fisher’s protected LSD,

P ¼ 0Æ05)).
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With the seed soaking strategy, all the isolates survived

the initial application stage in high numbers. Surprisingly,

drying the seed at 40�C had no detrimental effect on

bacterial survival. Shah-Smith and Burns (1997) reported

the promising survival of cells of Ps. putida 40RNF applied

to EB3-pelleted sugar-beet seed using a very similar

laboratory-based seed-soaking technique and this has also

been reported for a range of bacterial species (Paternoster

1997). In both of these earlier studies, drying the seed at

raised temperature had no impact on bacterial survival,

producing similar populations in the pellet irrespective of

whether a drying temperature of 22, 30 or 45�C was used.

Although the drying air is at the raised temperature, a damp,

pelleted seed mass actually remains at a lower temperature

during drying and only increases towards the maximal value

when the process is almost complete (B. Gummerson,

personal communication). Therefore the drying temperature

would be expected to have less impact on bacterial viability

than anticipated.

It has been suggested that bacterial cells from dormant

cultures survive better than actively growing cells. Slininger

et al. (1996) reported that, although young cells (from

24–48 h liquid culture) of Ps. fluorescens 2–79 survived

drying processes significantly better than cells from older

cultures (72–96 h), the older cells displayed a significantly

higher survival rate on encapsulated wheat. In the experi-

ments reported here, however, actively growing cells from

log-phase cultures survived significantly better than cells

Table 6 Comparison of peat with alginate on

survival of Rif+-marked isolates for 300 days

at 5�C

LSD ¼ 1Æ68�

Survival of Rif+-marked isolates (log CFU g)1)*

Bacillus

megaterium

Arthrobacter

histidinolovorans

Pseudomonas

fluorescens

Pseudomonas

syringae

Cytophaga

johnsonae

Peat 7Æ93 6Æ48 4Æ13b� 8Æ52a 7Æ18a

Alginate beads (no seed) 8Æ45a 6Æ98a 6Æ59a 9Æ01a 6Æ09a

Alginate mix onto seed 6Æ36b 4Æ84b 0Æ63c 8Æ52a 0Æ84b

Soaked seed 2Æ63c 4Æ69b 0Æ00c 6Æ04b 0Æ55b

*Data shown are means at all sample times pooled for each isolate.

�Significance between isolates tested using Fisher’s protected LSD (P ¼ 0Æ05).
�Significant differences between treatments for each Rif+-marked isolate denoted by �a–c�.

Table 7 Comparison of two priming techniques and three application rates of introduced Rif+-marked P1W1 on (a) its subsequent survival in

storage at 15�C and (b) its effect on the population of resident pseudomonads

Sample time (days)

Population levels on stored seed (log CFU g)1)* (LSD ¼ 2Æ14�)
Total

(LSD ¼ 1Æ08�)0 1 7 14 28 59 84 137 188

(a) P1W1

Log 5 biocidal prime 3Æ83b� 0Æ00b 3Æ70b 2Æ00b 5Æ57b 0Æ00b 1Æ65c 0Æ00c 2Æ00b 2Æ13c

Log 5 standard prime 7Æ39a 7Æ00a 6Æ64a 6Æ49 7Æ03 7Æ26a 6Æ51 3Æ23b 4Æ18a 5Æ92b

Log 7 biocidal prime 3Æ31b 1Æ81b 2Æ77b 0Æ00b 5Æ46b 0Æ00b 0Æ00c 0Æ00c 0Æ00b 1Æ18c

Log 7 standard prime 7Æ79a 7Æ73a 8Æ05a 7Æ31a 8Æ18a 7Æ66a 5Æ55b 6Æ06a 5Æ53a 6Æ91b

Neat biocidal prime 9Æ20a 9Æ07a 8Æ48a 8Æ05a 8Æ35a 8Æ44a 8Æ92a 6Æ50a 4Æ48a 7Æ60a

Neat standard prime 9Æ32a 8Æ96a 8Æ54a 8Æ63a 8Æ95a 8Æ74a 8Æ36a 7Æ55a 5Æ93a 8Æ10a

(b) Resident pseudomonads

Log 5 biocidal prime 4Æ27b 2Æ87b 0Æ00b 2Æ41b 4Æ75b 0Æ00c 1Æ89b 1Æ65b 4Æ63 2Æ19b

Log 5 standard prime 7Æ02a 6Æ61a 6Æ71a 6Æ61a 6Æ41 7Æ09a 8Æ05a 6Æ76a 5Æ49 6Æ73a

Log 7 biocidal prime 0Æ00c 1Æ61b 0Æ00b 0Æ00c 5Æ03 2Æ49b 4Æ92 0Æ00b 3Æ75b 2Æ31b

Log 7 standard prime 7Æ33a 5Æ76a 6Æ95a 5Æ77a 7Æ09a 6Æ27a 6Æ55a 6Æ39a 6Æ02a 6Æ43a

Neat biocidal prime 6Æ02 5Æ29a 6Æ79a 5Æ85a 5Æ61 2Æ49b 4Æ92 0Æ00b 2Æ40b 4Æ01b

Neat standard prime 6Æ63a 6Æ26a 7Æ03a 6Æ27a 7Æ28a 5Æ63a 5Æ04 6Æ09a 6Æ48a 6Æ26a

Control biocidal prime 0Æ00c 5Æ33a 1Æ89b 1Æ65b 4Æ69b 3Æ31 3Æ31b 0Æ00b 4Æ25 2Æ73b

Control standard prime 7Æ73a 3Æ97a 5Æ77a 5Æ74a 5Æ61 5Æ38a 6Æ44a 5Æ80a 4Æ72 5Æ64a

*Data are means from duplicate samples.

�Significance tested using Fisher’s protected LSD (P ¼ 0Æ05).
�Significant differences between treatments at each sample time denoted by �a–c�.
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from older cultures. The harvesting of cells in mid-log-

phase was accordingly adopted as a standard procedure

throughout the remainder of this study.

Despite the promising bacterial survival after seed soaking

and drying of the pellets, their numbers suffered a

significant decline during initial seed storage. In addition,

the seed soaking method only produced sufficient survival of

bacteria on seed when a storage temperature of 5�C was

used. Ambient storage temperatures of both 15 and 22�C
resulted in a rapid decline in viability with this application

technique. This phenomenon, which has been attributed to

a decrease in metabolic activity of the cells at refrigerated

temperatures (Wessendorf and Lingens 1989), has been

widely reported for the storage of Gram-negative bacteria

(Somasegaran 1985; Russo et al. 1996).
It was concluded that the low moisture environment

offered by the EB3-pellet alone was insufficient for long-

term bacterial survival when bacteria were applied directly

to this pellet material. Results from other experiments

carried out in vitro showed that the presence of EB3-

pelleting material had no detrimental effect on the viability

of the isolates (data not shown).

Attempts to stabilize the populations of the isolates with

preparations of alginate both in the presence and the absence

of EB3-pelleted seed produced mixed results. The survival

of the isolates at 5�C was radically improved by encapsu-

lation in alginate beads and alginate coating significantly

increased bacterial survival on EB3-pelleted seed for some of

the isolates tested. This stabilization maintained adequate

Table 8 Effects of subsequent pelleting, drying procedures and addition of fungicides on subsequent survival of Rif+ P1W1 in storage at 15�C

Sample time (days)

Population levels of P1W1 on stored seed (log CFU g)1)* (LSD ¼ 0Æ66�)
Total

(LSD ¼ 0Æ23�)0 1 7 14 28 59 84 137

P1W1 raw seed (RT) 8Æ61 9Æ00 8Æ85 8Æ88 8Æ97 7Æ77 8Æ67 8Æ57 8Æ66a�
P1W1 raw + thiram (RT) 8Æ58 8Æ76 8Æ66 8Æ86 8Æ58 7Æ36 8Æ46 8Æ29 8Æ44
P1W1 EB3 pellet (RT) 7Æ67 7Æ98 7Æ55 7Æ71 7Æ64 5Æ46 5Æ40 6Æ43 6Æ98d

P1W1 SCS pellet (RT) 7Æ70 7Æ55 7Æ67 7Æ56 7Æ79 6Æ83 6Æ74 6Æ76 7Æ32c

P1W1 raw seed (40�C) 8Æ82 8Æ74 8Æ77 8Æ80 8Æ76 7Æ74 8Æ51 8Æ20 8Æ54a

P1W1 raw + thiram (40�C) 8Æ55 8Æ48 8Æ44 8Æ32 8Æ64 7Æ13 8Æ22 7Æ67 8Æ18b

P1W1 EB3 pellet (40�C) 7Æ17 7Æ31 7Æ22 7Æ31 6Æ57 6Æ40 6Æ70 6Æ77 7Æ93d

P1W1 SCS pellet (40�C) 7Æ88 8Æ00 7Æ95 7Æ75 7Æ43 6Æ95 6Æ84 6Æ60 7Æ34c

*Data are means from duplicate samples.

�Significance tested using Fisher’s protected LSD (P ¼ 0Æ05).
�Significant differences between treatment means at each sample time denoted by �a–d�.
RT, seeds dried at room temperature.
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populations of isolates of B. megaterium, A. histidonolovorans
and Ps. syringae for the critical 4-month storage period.

However, a later study showed that all alginate preparations

stored at 15�C performed poorly (data not shown) and that

the presence of alginate around the seed significantly

reduced seedling emergence (Walker 2002).

The isolates survived in high numbers in colonized peat in

sealed gas-permeable bags, with the pseudomonads and B.
megaterium showing a decline of <1 log10 CFU g)1 after

incubation for 27 months, well within the expected survival

limits (P. Fiddaman, personal communication) and compar-

able data published by other workers using a similar

approach supports this (Sparrow and Ham 1983; Somaseg-

aran 1985; Rabindran and Vidhyasekaran 1996; Gasoni et al.
1998). On dried peat stored at 22�C, the populations of both
Ps. syringae and B. megaterium remained within commer-

cially acceptable limits for the critical 4-month storage

period. This suggested that peat had potential as a carrier

material for incorporating the isolates into the commercial

pelleting process. However, although all of the peat-EB3

pellet treatments survived the commercial pelleting and

drying processes with no significant loss in viability,

subsequent survival at room temperature was very poor

(Walker 2002), suggesting that the moisture content of the

EB3-peat pellet was insufficient for survival of the bacteria

in this carrier system.

A similar study, in which peat colonized with either Ps.
fluorescens, B. pumilis or B. cereus was applied to radish seeds,

reported that the Bacillus species produced stable popula-

tions of ca 5–6 log10 CFU g)1 which survived for 150 days

at 20–30�C whereas the pseudomonad had declined to

<4 log10 CFU g)1 after only 20-day storage (Gasoni et al.
1998). Similar shelf-life inadequacies have previously resul-

ted in the biocontrol product Dagger G (a peat-based

granular formulation of Ps. fluorescens) being withdrawn

from the market (Lisansky and Coombs 1993).

Another study using a vermiculite carrier system to

incorporate Ps. fluorescens F113 into the EB3 sugar-beet seed
pellet reported a direct correlation between bacterial survival

and pellet moisture (Moënne-Loccoz et al. 1999). Although a
stable population of 7 log10 CFU g)1 seed was achieved

during storage at 12�C over a 21-day sampling period with a

pellet moisture of ca 10%, the survival of the bacterium was

compromised when a pellet with a moisture of 8% was stored

under the same conditions. In contrast, Shah-Smith and

Burns (1997) maintained populations of ca 2 · 105 CFU per

pellet for 24 weeks with Ps. putida 40RNF applied in a

commercial EB3 pellet stored at 18–20�C. This performance

is within the bounds of commercial acceptability (Paau 1988)

although the moisture content of the pellets was not reported.

A major focus of this study was to overcome the

contradictory technical constraints of producing a seed pellet

with a moisture content that was sufficiently low to maintain

seed viability in long-term storage while sustaining an

adequate population of a rhizosphere competent, non-

spore-forming bacterium. For the long-term storage of

sugar-beet seed, a pellet with ca 7% m.c. was recommended

(B. Gummerson, personal communication). P1W1 applied as

a priming treatment maintained populations of ca
6Æ6 log10 CFU g)1 seed after 137 days storage at 15�C
following subsequent pelleting, addition of fungicides and

drying at 40�C, all standard commercial practices. Subse-

quent experiments verified a population decline of

<1Æ7 log CFU g)1 seed over this storage period when

commercial pellets were dried to <7% m.c. and stored in

accordance with the standard commercial practice. An

inoculation method, which allows the survival on seed of a

Gram-negative bacterium at ambient temperature with little

loss in viability, has thus been established for sugar beet.

It has been reported that the application of bacteria to seed

during priming results in prior colonization (Callan et al.
1990, 1991). This may allow a certain degree of acclimati-

zation to the seed coat environment and thus improve

subsequent survival. Bacteria capable of producing protect-

ive exopolysaccharides in situ, such as pseudomonads, may

do so during priming (Callan et al. 1997). Indeed, in our

study, the performance of Ps. marginalis/putida P1W1

applied during priming by far surpassed survival of this

isolate over a 4-month period at 15�C when applied to the

seed by any other technique. In addition, bacterial survival

was not significantly affected when the storage temperature

was raised to 22�C or the final pellet moistures dried to

<7%. It was also noted that higher moisture content in the

stored pellets could actually be detrimental to bacterial

survival and resulted in population fluctuations. This may

be the result of the excess moisture encouraging the bacterial

cells to proliferate rather than conserve energy for survival.

Alternatively, the resident microbial population may

increase during storage in this moist pellet environment to

out-compete the introduced strain.

It had been anticipated in our work that the biocidal steep

treatment prior to the introduction of the BCA on sugar-

beet seed would facilitate more extensive colonization of the

seed by P1W1 because of the removal of some of the

resident microflora. It may be, therefore, that the biocidal

treatment reduces P1W1 proliferation at low cell concen-

trations via a physical effect, either by removal of seed

exudates utilized as nutritional substrates by colonizing

bacteria or through the release of toxic substances from lysed

microbial cells or the seed coat. In the water-steeped

treatments, where P1W1 demonstrated better survival,

colonization did not occur at the expense of the resident

pseudomonad population or the total culturable bacterial

community. There were no detectable interactions between

P1W1 and any of the resident bacterial populations in any of

the priming inoculation experiments.
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Scanning electron microscopy (Fukui et al. 1994) has

revealed that the colonization patterns of sugar-beet seed by

introduced Gram-negative bacteria. Experiments in which

surface-sterilized sugar-beet seed were subsequently inocu-

lated with strains of Ps. putida and/or Ps. fluorescens-putida
described bacterial colonies randomly distributed over the

entire surface of the pericarp. Despite this distribution, no

more than 10–40% of the total pericarp surface was

colonized, even with very high-density inocula. Nutrients

are not evenly distributed in this environment, suggesting

that colonization is a function of nutrient availability rather

than spatial accessibility.

Strain compatibility during colonization has been partly

attributed to the utilization of differing carbon substrates

(Wilson and Lindow 1994) suggesting that displacement of

the resident microbial community by an introduced bacter-

ium would only occur through direct competition for the

same nutrient source. This may explain the apparent lack of

interaction between the introduced Ps. marginalis/putida
P1W1 and the resident microbial population in the present

study.

When comparing the various components of the com-

mercial seed-pelleting process on priming-inoculated seed,

the addition of the pellet resulted in a significant reduction

in the survival of P1W1, whereas addition of the standard

rate of fungicides to the pellet did not produce any further

significant reduction in survival. Steeping seed in thiram

only had a significant effect on survival of the isolate when

the seed was dried at 40�C.
The use of priming as a strategy to apply a BCA to sugar-

beet seed has not been widely reported previously. Pater-

noster and Burns (1996) demonstrated that application of Ps.
fluorescens (Pf 54/96) to sugar-beet seed during a prepellet-

ing priming step resulted in significantly greater viable

populations on pelleted seed than application during pellet-

ing. Paternoster (1997) has demonstrated the successful

application of a range of bacterial genera including Flavo-
bacterium, Arthrobacter, Bacillus and Pseudomonas to sugar-

beet seed during commercial priming inoculations with

shelf-life responses at ambient temperature comparable with

the data presented in this study.

Clearly, priming inoculation offers enormous potential for

the delivery of Gram-negative bacteria as biological seed

treatments on sugar beet. Further studies of the nutritional

and spatial aspects of seed colonization and the processes

involved during acclimatization are required in order to

optimize this potential.
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