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Abstract
Plant cells regularly encounter hypoxia (low-oxygen conditions) as part of normal growth and development, or in response to 
environmental stresses such as flooding. In recent years, our understanding of the multi-layered control of hypoxia-responsive gene 
expression has greatly increased. In this Update, we take a broad look at the epigenetic, transcriptional, translational, and post- 
translational mechanisms that regulate responses to low-oxygen levels. We highlight how a network of post-translational 
modifications (including phosphorylation), secondary messengers, transcriptional cascades, and retrograde signals from the 
mitochondria and endoplasmic reticulum (ER) feed into the control of transcription factor activity and hypoxia-responsive gene 
transcription. We discuss epigenetic mechanisms regulating the response to reduced oxygen availability, through focussing on active 
and repressive chromatin modifications and DNA methylation. We also describe current knowledge of the co- and post- 
transcriptional mechanisms that tightly regulate mRNA translation to coordinate effective gene expression under hypoxia. Finally, we 
present a series of outstanding questions in the field and consider how new insights into the molecular workings of the hypoxia- 
triggered regulatory hierarchy could pave the way for developing flood-resilient crops.

ADVANCES BOX

• Gene regulatory responses to hypoxia are orchestrated 
across epigenetic, transcriptional, translational, and 
post-translational scales.

• ERFVIIs are major transducers of hypoxia via the 
N-degron pathway of proteolysis. ERFVII expression, lo
calization, and function are further regulated by diverse 
protein kinases, transcriptional cascades, and retro
grade signals from the mitochondria and ER, providing 
multiple points for signal integration.

• Chromatin remodeling through ERFVII-dependent 
enzyme recruitment and O2-regulated polycomb com
ponents provides an additional layer of epigenetic 
control that may contribute to longer-term hypoxia 
responses.

• Nuclear and cytoplasmic mRNA control—including al
ternative splicing and polyadenylation, modulated 
translation, and protection from degradation—is tuned 
to cellular signaling and energy management.
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© The Author(s) 2024. Published by Oxford University Press on behalf of American Society of Plant Biologists. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per
mits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Oxygen is the third most abundant element by mass in the uni
verse. Molecular diatomic oxygen (O2), the most stable form of 
oxygen, is critical to life on Earth. Plants grow at tropospheric O2 

levels ranging from 20.9% (pO2 kP) at sea level to 9.5% at 6000 m 
above sea level (Dentant 2018), assuming a temperature of 0 °C. 
Within plant tissues, O2 levels can fall rapidly as a consequence 
of sudden flooding or be constitutively depressed due to low aera
tion or high metabolic activity, as in the center of a potato tuber or 
in meristematic regions, respectively (Weits et al. 2021). In some 
contexts, O2 dynamics serve as a cue, such as in the unfolding 
of the apical hook of the hypocotyl of a dicot seedling emerging 
from soil (Abbas et al. 2015). Early clues that plant cells respond 
to and prepare to persevere hypoxia came from the observation 
that a small set of proteins are synthesized in roots of abruptly 
submerged maize seedlings, but the mRNAs that could be isolated 
and translated in vitro encoded for a larger number of proteins 
(Sachs et al. 1980). In the ensuing decades, we have learned that 
the regulation of hypoxia-responsive gene expression—spanning 
from chromatin through to mRNA translation—entails a remark
able diversity of mechanisms. Here, we review the coordinated 
epigenetic and transcriptional mechanisms triggered by hypoxia 
and their integration with post-transcriptional and post- 
translational processes influenced by rapid or gradual changes 
in O2 level, mitochondrial state, or energy status. We focus on 
the regulation of the hypoxia responsive genes (HRGs), defined 
as the mRNAs that increase and are translated across cells, tis
sues, and species in response to rapid hypoxia (Mustroph et al. 
2010; Reynoso et al. 2019), and others important for survival of hy
poxic or submergence stress. These advances in understanding 
provide opportunities for improving the flooding resilience of 
crops.
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Oxygen sensing via the N-degron pathway of 
proteolysis
Plant response to a drop in available O2 is coordinated by 
the ethylene-responsive factor Group VII (ERFVII) transcription fac
tors, which serve as the primary activators of HRG expression 
(Bailey-Serres et al. 2012; Bui et al. 2015; van Dongen and Licausi 
2015; Zubrycka et al. 2023). In Arabidopsis, the PLANT CYSTEINE 
OXIDASE (PCO) N-degron pathway connects gene expression to O2 

availability via O2-dependent degradation of 3 constitutively ex
pressed RELATED TO APETALA (RAP)-type ERFVIIs—RAP2.12, 
RAP2.2, and RAP2.3—and 2 hypoxia-inducible ERFVIIs: HYPOXIA 
RESPONSIVE ERF 1 (HRE1) and HRE2 (Gibbs et al. 2011; Licausi et al. 
2011a). These share a conserved N-terminal MCGGAI(I/L)(A/S)D 
motif; under normoxia, PCO enzyme-catalyzed oxidation of 
Cys2 and subsequent arginylation creates a degron for 
PROTELYSIS6- and BIG/DARK OVEREXPRESSION OF CAB1/ 
TRANSPORT INHIBITOR RESPONSE3-mediated degradation by 
the 26S proteasome (Gibbs et al. 2011; Licausi et al. 2011a; Weits 
et al. 2014; White et al. 2017; Zhang et al. 2024) (Fig. 1). Protein turn
over by the N-degron pathway requires nitric oxide (NO) in addition 
to O2 (Gibbs et al. 2014), and accumulation of ethylene under sub
mergence acts as an early signal for hypoxia by augmenting ERFVII 
stabilization through NO scavenging by PHYTOGLOBIN1 (Hartman 
et al. 2019). Although O2-dependent turnover of ERFVIIs is con
served in monocotyledonous crops (Mendiondo et al. 2016; 
Vicente et al. 2017; Loreti and Perata 2023), rice contains an atypical 
ERFVII, SUBMERGENCE1A (SUB1A), which evades degradation 

through masking of the N-terminal degron, contributing to its 
prominent role in submergence tolerance (Gibbs et al. 2011; Lin 
et al. 2019). The N-degron pathway not only regulates metabolic re
sponses to hypoxia but also orchestrates O2 regulation of develop
ment by controlling the abundance of the transcription factor 
LITTLE ZIPPER 2 (ZPR2) and the Polycomb Repressive Complex 2 
subunit, VERNALIZATION2 (VRN2), which also contain Cys at posi
tion 2 (Gibbs et al. 2018; Weits et al. 2019; Labandera et al. 2021).

Multi-layered regulation of ERFVII transcription 
factors
Hypoxia responses must be tightly controlled, since constitutive 
expression of genes required for fermentative metabolism de
pletes reserves essential for regrowth upon reoxygenation 
(Licausi et al. 2011a; Cho et al. 2021). Moreover, spatial and tempo
ral flexibility in the hypoxia response is required to accommodate 
local hypoxic microenvironments in tissues and organs, as well as 
environmental fluctuations in O2 availability (Weits et al. 2021; 
Triozzi et al. 2024). Since the discovery of the N-degron pathway 
as a key O2-sensing mechanism, it has emerged that the localiza
tion, abundance, and activity of ERFVIIs are further regulated by 
the interplay between sequestration, phosphorylation, and degra
dation, as well as transcriptional control (Fig. 2 and summarized 
in Table 1). These interconnected feedback mechanisms provide 
the capacity to tune ERFVII activity to meet the prevailing needs 
of the cell while providing resilience toward future challenges.

Figure 1. Oxygen sensing via ERFVIIs and the N-degron pathway. RAP-type ERFVII transcription factors bear a cysteine residue at position 2, which is 
exposed by the co-translational action of methionine aminopeptidases (MetAPs). Under aerobic conditions, Cys2 residues are oxidized by PCO enzymes. 
Subsequent N-terminal arginylation, catalyzed by arginyl tRNA transferase enzymes (ATEs) creates a recognition signal (N-degron) for the candidate E3 
ubiquitin ligases, PROTEOLYSIS6 (PRT6) and BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 (BIG), which target ERFVIIs for 
proteasomal degradation. NO promotes degradation through the N-degron pathway through an unknown mechanism. In hypoxic conditions, RAPs are 
stabilized and transcriptionally activate multiple HRGs, including ALCOHOL DEHYDROGENASE1 (ADH1) and PYRUVATE DECARBOXYLASE (PDC), which 
encode enzymes involved in fermentation, as well as 2 other ERFVIIs: HRE1 and HRE2. HRE1 and 2 are also subject to N-degron pathway-mediated 
degradation under normoxia. Under submergence conditions, rapid accumulation of ethylene occurs before the cellular O2 tension drops sufficiently to 
stabilize ERFVIIs. Ethylene signaling induces synthesis of PHYTOGLOBIN1 (PGB1) which scavenges NO, leading to ERFVII stabilization, priming the plant 
to respond to subsequent hypoxia.
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Post-translational regulation of RAP-type ERFVIIs
In well-aerated (normoxic) Arabidopsis, RAP-type ERFVIIs are se
questered at the cytosolic face of the plasma membrane via interac
tion with 2 acyl-CoA binding proteins (ACBP1/2) but translocate to 
the nucleus as hypoxia ensues (Li and Chye 2004; Licausi et al. 
2011a; Abbas et al. 2015; Kosmacz et al. 2015; Schmidt et al. 2018; 
Zhou et al. 2020). ACBP1 binds preferentially to unsaturated long- 
chain acyl-CoA species (18:1-, 18:2-, 18:3-CoA), which triggers disso
ciation of these RAPs allowing for nuclear localization (Schmidt 
et al. 2018; Zhou et al. 2020). It is proposed that the energy crisis 

imposed by hypoxia modulates the CoA pool in favor of long chain 

species to promote the release of RAPs and initiate the transcrip

tional response to hypoxia (Schmidt et al. 2018). This activates 

anaerobic metabolism while upregulating genes important for cur

tailing the response. If ATP levels drop in the absence of hypoxia, 

RAP2.12 is degraded by the N-degron pathway, avoiding inappropri

ate activation of the response. Thus, the ACBP:RAP complex is a hub 

that coordinates O2 availability and cellular energy status (Fig. 2).
RAPs are further tuned to sugar and energy availability by the 

central energy sensor, Target of Rapamycin (TOR), which is 

A

C

B

Figure 2. Transcriptional and post-translational regulation of ERFVII activity under hypoxia. A) Sequestration of transcription factors. In normoxia, 
RAP2.12, RAP2.3, and WRKY70 are sequestered by specific ACBPs in a state of preparedness for potential hypoxic conditions. Hypoxia stress arising from 
plant submergence leads to changes in the composition of the acyl-CoA pool, with long chain fatty acyl-CoAs (LCFA-CoA) triggering dissociation of 
transcription factors from ACBPs and facilitating their translocation to the nucleus. B) Pathway to phosphorylation of transcription factors. 
Submergence activates PLD α1 and δ, resulting in PA production from phosphatidylethanolamine (PE) in the plasma membrane. PA enhances the 
activity of MPK3 and MPK6 to positively regulate ERFVII-mediated signaling. CPK12 is also rapidly activated under hypoxia through Ca2+-dependent 
phosphorylation. PA promotes translocation of phosphorylated CPK12 to the nucleus where it phosphorylates ERFVIIs, increasing their stability. 
Nuclear translocation of CPK12 is restrained by 14-3-3κ. The activity and nuclear translocation of RAP2.12 and RAP2.2 are also regulated by TARGET OF 
RAPAMYCIN (not shown). C) Feedback regulation of transcription factors. RAP2.12 is positively regulated by WRKY70 and negatively regulated by the 
HRG HRA1. The HRG WRKY33 positively regulates RAP2.2 in collaboration with WRKY12. Phosphorylation of WRKY33 promotes both its transactivation 
activity and its degradation by the E3 ligase SR1. Transcription factors are indicated in yellow/brown; acyl-CoA binding proteins in pink; E3 ligases in 
green; enzymes and transporters in gray. Arrows demonstrate positive effects and circles inhibitory effects.
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required for a complete hypoxia response (Kunkowska et al. 2023). 
Sugar activation of TOR promotes activity of RAP2.12 and RAP2.2 
through phosphorylation, thus ensuring that HRG expression 
matches carbohydrate availability, a prerequisite for fermenta
tive metabolism. Paradoxically, inhibiting or downregulating 
TOR increases nuclear localization of RAP2.12 independent of 
the N-degron pathway, perhaps indicating a homeostatic mecha
nism (Kunkowska et al. 2023). At least 2 other classes of protein 
kinases further modulate ERFVII activity. Mitogen-activated pro
tein kinases (MPKs) 3, 4, and 6 are activated within 15 minutes 
of hypoxia and to a further extent within minutes of reoxygena
tion in Arabidopsis (Chang et al. 2012). Indeed, mitogen-activated 
protein kinase 3 (MPK3)/6 activation by submergence phosphory
lates RAP2.12, resulting in increased abundance, translocation to 
the nucleus, and transcriptional activity (Zhou et al. 2022) (Fig. 2). 
Similarly, complete submergence of rice activates MPK3, shown to 
phosphorylate submergence tolerance-conferring SUB1A-1 at 
Ser161 (Singh and Sinha 2016; Lin et al. 2023). This Ser is replaced 
by Pro in the less effective SUB1A-2 protein (Xu et al. 2006). The ac
tivation of Arabidopsis MPK3/6 may be stimulated by phosphati
dic acid (PA), which is liberated from membrane lipids during 
submergence by the action of phospholipase D (PLD) α1 and δ 
(Xie et al. 2015; Zhou et al. 2022). Although pldα1 and pldδ mutants 
are hypersensitive to hypoxia, they are more tolerant of submer
gence, likely due to improved membrane integrity. 
Submergence-induced PA production is regulated via a feedback 
loop involving phosphorylation of PLDα1/δ by MPK3/MPK6 (Zhou 
et al. 2022).

A release of Ca2+ from intracellular stores upon hypoxia is a 
prerequisite for HRG activation in Arabidopsis and maize 
(Subbaiah et al. 1994; Sedbrook et al. 1996; Baxter-Burrell et al. 
2002; Bailey-Serres and Chang 2005). In Arabidopsis, fluorescent 
Ca2+ sensors confirm a transient rise in cytosolic Ca2+ within 2 
hours in submerged leaves (Wagner et al. 2019). Ca2+-dependent 
protein kinase 12 (CPK12) is rapidly activated under hypoxia via 
Ca2+-dependent phosphorylation of Ser186 (Fan et al. 2023). It 
was found that PA, which is known to facilitate nuclear import 

of proteins lacking a canonical nuclear localization signal (Yao 
et al. 2014), promotes the translocation of phosphorylated 
CPK12 to the nucleus where it phosphorylates RAP-type ERFVIIs, 
increasing their stability. Counterbalancing this is 14-3-3κ, which 
acts as a negative regulator of CPK12 cytosol-to-nucleus translo
cation (Fan et al. 2023) (Fig. 2). The question arises: why are 
ERFVIIs regulated by multiple distinct phosphorylation cascades? 
One possibility is that they help to steer ERFVII specificity in the 
context of physiological hypoxia. Alternatively, it may reflect the 
involvement of the N-degron pathway in diverse biotic and abiotic 
stress responses (Holdsworth et al. 2020). Given the known roles of 
CPK12 in salt signaling and MPKs in reactive oxygen species (ROS) 
and defense responses (Pitzschke et al. 2009; Chang et al. 2012; 
Zhang et al. 2018b), regulation of ERFVIIs by these kinases may en
able integration of hypoxia responses with other environmental 
stress signaling pathways. A second question is: do mitochondrial 
signals regulate ERFVII phosphorylation, in addition to PA? This 
could be the case as treatment with the mitochondrial electron 
transport chain (mETC) inhibitor antimycin A activates Ca2+ re
lease, MPK3/MPK6, and HRG mRNA accumulation in aerated 
seedlings (Chang et al. 2012; Zhu et al. 2023). As will be discussed, 
there is genetic redundancy in transcriptional activation of HRGs 
in response to mETC inhibition under hypoxia.

Transcriptional regulation of RAP-type ERFVIIs
Although the Arabidopsis RAP-type ERFVIIs are constitutively ex
pressed, they are further regulated by transcriptional feedback 
loops to tune hypoxia responses. ERFVII transcription is positively 
influenced by WRKY transcription factors, which in turn are sub
ject to post-translational regulation. In a positive feedback loop, 
RAP2.2 activates WRKY33 through a Hypoxia-Responsive 
Promoter Element (HPRE) located proximal to the transcription 
start in this and many other HRGs (Gasch et al. 2016; Lee and 
Bailey-Serres 2019). WRKY33 then recruits WRKY12 to synergisti
cally upregulate RAP2.2 and amplify the hypoxia signal (Liu et al. 
2021; Tang et al. 2021) (Fig. 2). WRKY33 is regulated by MPK3/ 

Table 1. Summary of ERFVII regulators, including the specific ERFVIIs they act upon and the functional relationship.

Regulator ERFVII Target Nature of regulation

ACBP1/2 RAP2.12 (Licausi et al. 2011a; Schmidt et al. 2018;  
Zhou et al. 2020) 

RAP2.3 (Li and Chye 2004)

Sequestration at the PM 
Sequestration at the PM

MPK3/6 
(kinase)

RAP2.12 (Zhou et al. 2022) 
SUB1A-1 (Singh and Sinha 2016)

Phosphorylation 
Phosphorylation

CPK12 
(kinase)

RAP2.12 (Fan et al. 2023) 
RAP2.2 (Fan et al. 2023) 
RAP2.3 (Fan et al. 2023) 
HRE1 (Fan et al. 2023) 
HRE2 (Fan et al. 2023)

Phosphorylation 
Phosphorylation 
Phosphorylation 
In vitro interaction only 
In vitro interaction only

TOR 
(kinase)

RAP2.12 (Kunkowska et al. 2023) 
RAP2.2 (Kunkowska et al. 2023)

Phosphorylation 
Phosphorylation

WRKY33/WRKY12 
(transcription factor)

RAP2.2 (Tang et al. 2021) Transcriptionally upregulated

WRKY70 
(transcription factor)

RAP2.12 (Lou et al. 2022; Guo et al. 2024) Transcriptionally upregulated

HRA1 
(DNA binding protein)

RAP2.12 (Giuntoli et al. 2014) Repression of transcriptional activity

ADA2b-GCN5 
(acetyltransferase)

SUB1A-1 (Lin et al. 2023) Enhanced transcription of ERF66 and ERF67 by SUB1A-1

MED25 
(Mediator subunit)

RAP2.12 (Schippers et al. 2024) 
RAP2.2 (Schippers et al. 2024)

Transactivation of certain RAP-targeted HRGs under hypoxia

BRAHMA 
(SWI/SNF ATPase)

RAP2.12 (Vicente et al. 2017) 
RAP2.3 (Vicente et al. 2017)

Enhanced ERFVII-mediated response to abiotic stress
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6-dependent phosphorylation, which is thought to promote its 
transactivation activity. Phosphorylation also promotes WRKY33 
degradation by the E3 ligase SUBMERGENCE RESISTANT 1 (SR1). 
SR1 is predominantly expressed under O2-replete conditions and 
acts in concert with the N-degron pathway to counterbalance 
the hypoxia response (Liu et al. 2021), which may be important 
during and post stress. The role of WRKY33 appears to be specific 
to RAP2.2 since transcript levels of the other 4 ERFVIIs are not cor
related with WRKY33 expression (Tang et al. 2021).

RAP2.12 is positively regulated by WRKY70 (Lou et al. 2022). In a 
manner analogous to the ACBP-ERFVII module, WRKY70 is se
questered in the cytosol by binding to ACBP4. Hypoxia-induced ac
cumulation of 18:1-CoA and phosphorylation of ACBP4 promote 
dissociation of WRKY70 from the complex, followed by transloca
tion to the nucleus, where it activates RAP2.12 expression (Guo 
et al. 2024) (Fig. 2). WRKY70 also binds to the ACBP4 promoter, sug
gesting a positive feedback loop. The kinase responsible for ACBP4 
phosphorylation remains to be identified, but MPK3/6 are plausi
ble candidates, given their role in positive regulation of the hypo
xia response and their activity toward WRKY33 (Liu et al. 2021). 

RAP2.12 is also subjected to negative regulation by HYPOXIA 
RESPONSE ATTENUATOR1 (HRA1), which encodes a trihelix DNA 
binding protein (Giuntoli et al. 2014). HRA1 interacts with 
RAP2.12 to curtail its activity and also negatively regulates the ac
tivation of its own promoter. HRA1 is predominantly expressed in 
young shoot tissues that exhibit physiological hypoxia, thereby 
fine-tuning the hypoxia response during development to preserve 
resources for regrowth following the return to normoxia (Giuntoli 
et al. 2017a). Two orthologs of HRA1 are implicated in submer
gence responses in rice and interact with SUB1A and the related 
ERFVII SUB1C in a yeast 2-hybrid assay (Jung et al. 2010).

Epigenetic mechanisms controlling hypoxic gene 
transcription
While ERFVIIs are the predominant transcriptional regulators of 
response to hypoxia, and a mechanism connecting their activity 
to the perception of O2 deprivation is now well characterized 
(Gibbs et al. 2011; Licausi et al. 2011a), the presence of transcrip
tion factors alone is insufficient to accurately control or predict 
the signal-triggered activation of genes. Epigenetic regulatory 
mechanisms provide additional layers of control over gene 
activity. This can be directly on the DNA sequence through 
cytosine methylation (Zhang et al. 2018a) or via remodeling of nu
cleosomes—composed of histone protein octamers—that make 
up the chromatin scaffold supporting DNA (Bannister and 
Kouzarides 2011; Talbert and Henikoff 2017). The positioning of 
nucleosomes and the identity and post-translational modification 
of their composite histone variants collectively influence gene ac
tivity by impacting 3D chromatin structure, access of transcription 
factors to DNA binding sites, and the efficiency of RNA Polymerase 
II (RNAPII) recruitment and elongation (Candela-Ferre et al. 2024). 
Histone modifications—including acetylation, methylation, and 
mono-ubiquitination—occur on accessible tails of histones and, 
depending on their nature and location, can promote or repress 
transcription. These modifications are dynamic and reversible 
through the action of antagonistic “writers” and “erasers” but can 
also be mitotically stable. As such, in addition to coordinating im
mediate gene regulatory responses, epigenetic modifications can 
encode longer term memories at genes, which can be important 
for facilitating plant adaptation to seasonal change and recurring 
stresses (see Box 1).

Large scale “omics” studies have revealed the global patterns of 
hypoxia-triggered changes to histone modifications, histone var
iants, chromatin accessibility, and DNA methylation. Here, we dis
cuss current knowledge and speculate on the underlying 
mechanisms controlling these epigenetic responses in plants 
through focusing on specific enzymes and their hypoxia-responsive 
activities.

Box 1. Forget me not: Flooding priming and memory.

Transient exposure of plants to stresses can induce long- 
term changes that promote faster or more robust responses 
upon stress reoccurrence (Hilker et al. 2016). These changes 
can be considered as beneficial “memories,” while the initial 
signals that trigger their induction are commonly referred to 
as priming events. Priming can promote short-term altera
tions in gene activity, protein levels and activity, or metabo
lite abundance, whereas longer-term changes can be 
induced epigenetically at “memory genes” through DNA 
methylation or histone modifications that persist either 
within or across generations (Harris et al. 2023). There is in
creasing evidence that plants can be primed for flooding re
sponses. For example, wheat (Li et al. 2011), soybean 
(Agualongo et al. 2022), cucumber (Kęska et al. 2021), and to
mato (Niu et al. 2023) all display enhanced tolerance to a sec
ond waterlogging stress following a prior nonlethal 
waterlogging event, and for wheat there is some indication 
that this can be transmitted across generations (Feng et al. 
2022). For each case, stress priming was correlated with al
terations in various downstream processes, such as changes 
in ROS levels and signaling, concomitant changes to photo
synthesis, enhanced glycolysis, and the induction of ethyl
ene biosynthesis. Despite documenting such changes, the 
underlying molecular perception and transduction mecha
nisms were not defined. Recently, a role for ethylene in es
tablishing short-term hypoxic stress priming was reported 
in Arabidopsis, through promoting expression of 
PHYTOGLOBIN1, a potent NO-scavenger that facilitates the 
accumulation of ERFVII transcription factors before cellular 
hypoxia sets in (Gibbs et al. 2014; Hartman et al. 2019). While 
this mechanism preadapts plants for low-O2 stress during 
flooding, it remains to be elucidated if it can also prime 
plants over longer time periods. A molecular candidate for 
the induction of longer-term epigenetic memories of hypoxia 
is the PRC2 subunit VRN2 (Gibbs et al. 2018; Labandera et al. 
2021). Similar to its roles in promoting a memory of winter 
cold through epigenetically silencing FLC, hypoxia-stabilized  

Box 1. Continued 

VRN2 might also promote epigenetic silencing of key loci 
under flooding stress to facilitate longer-term flooding resil
ience. As our knowledge of the epigenetic players and mech
anisms controlling hypoxia-responsive gene expression and 
tolerance advances, it will be important to investigate their 
potential roles in long-term priming and the coordination 
of stress memory, as this could provide new solutions for en
hancing stress tolerance in diverse crop species (Liu et al. 
2022).
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Chromatin remodeling under hypoxia

Active chromatin
Active gene expression is associated with chromatin loosening, 
and HRGs display increased chromatin accessibility near their 
transcription start site in response to hypoxia in Arabidopsis 
(Lee and Bailey-Serres 2019) and submergence in rice and 
Medicago (Reynoso et al. 2019; Reynoso et al. 2022). This indicates 
that chromatin relaxation is a conserved feature of low-O2 re
sponses across plant species. A hallmark of gene activity is 
Histone H3 Lysine 9 acetylation (H3K9Ac); indeed, this mark is evi
dent on the gene body of actively transcribing HRGs in Arabidopsis 
and rice (Tsuji et al. 2006; Lee and Bailey-Serres 2019). Histone ace
tylation is catalyzed by histone acetyltransferases (HAT), and 
chemical inhibition of histone deacetylase (HDAC) activity can en
hance HRG expression (Tsuji et al. 2006); until recently, a mecha
nism connecting these enzymatic activities to hypoxia remained 
unknown. The rice ERFVII SUB1A-1 physically associates with 
the ADA2b-GCN5 acetyltransferase complex in response to its 
hypoxia-triggered phosphorylation by MPK3. Within this com
plex, GCN5 functions as a HAT for the deposition of H3K9ac. 
Analysis of 2 target genes of SUB1A-1, ERF66 and ERF67, found 
their transcription is potentiated by phosphorylation-dependent 

recruitment of SUB1A-1 (Lin et al. 2019) (Fig. 3A). By contrast, 
the SUB1A-2 variant that lacks this MPK3 phosphosite fails to ac
tivate ERF66 and ERF67 in the presence of ADA2b-GCN5. Since 
SUB1A turnover is uncoupled from the O2-sensing N-degron path
way (Gibbs et al. 2011), this signaling cascade may help to steer its 
specificity under submergence, although an assessment of 
SUB1A-1–responsive changes to global H3K9Ac levels is lacking. 
Whether HAT recruitment is a more general feature of ERFVIIs 
is yet to be determined, but, as highlighted earlier, MPK3 in 
Arabidopsis phosphorylates RAP2.12 and potentiates its tran
scriptional activity, suggesting a potential conservation of mech
anism that should be investigated (Zhou et al. 2022; Fan et al. 
2023; Kunkowska et al. 2023). Alternatively, HAT recruitment by 
ERFVIIs in other species may not require an intermediate phos
phorylation step since a majority are labile in oxygenated 
environments.

ERFVII association with the multi-subunit and variable 
Mediator Complex that connects transcription factors to RNAPII 
in a signal-dependent manner also appears to be important for 
gene activation under hypoxic stress. Interactions between 
RAP2.2/RAP2.12 and the MEDIATOR COMPLEX 25 (MED25) subunit 
promotes transactivation of a subset of HRGs in response to low 
O2 (Schippers et al. 2024). Moreover, a ubiquitin ligase controlling 
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Figure 3. Defined and hypothetical mechanisms of chromatin remodeling under hypoxia. A) In submergence-tolerant rice containing the active 
SUB1A-1 allele, hypoxia-triggered phosphorylation of SUB1A-1 by MPK3/6 promotes physical interaction with the ADA2b/GCN5 HAT complex. This 
facilitates the deposition of activating H3K9Ac (Ac) marks on SUB1A-1 target genes ERF66 and ERF67, potentiating their expression under submergence. 
B) Stable Arabidopsis ERFVIIs bind to the Hypoxia Response Promoter Element and can interact with the SWI/SNF chromatin remodeler BRAHMA, 
reinforcing their ABA-responsive functions. BRAHMA is known to promote H2A.Z eviction, shown to occur at HRGs under O2 deprivation. BRAHMA 
interacts and colocalizes with the histone demethylase (KDM) REF6 at many loci across the genome. It is speculated that this could provide a 
hypoxia-responsive mechanism for histone demethylation at HRGs to further induce an active chromatin state. C) The PRC2 subunit VRN2 is stabilized 
under hypoxia and positively regulates hypoxia resilience, suggesting that it could steer H3K27me3 (Me) deposition under stress. An interactor of VRN2, 
VIN3, is transcriptionally induced by low O2 and enhances hypoxia tolerance. VIN3 may act in conjunction with VRN2 to promote a long-term 
repressive state at target genes. In animals, several KDMs have been defined as direct O2 sensors that are inhibited under hypoxia; plant KDMs may also 
function in a similar manner and that their hypoxia-triggered inhibition could promote retention of repressive H3K27me3 marks across the genome. 
Question marks and dashed lines denote hypothetical mechanisms that still require experimental validation. Arrows demonstrate positive effects, and 
circles inhibitory effects.
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MED25 stability—MED25 BINDING RING-H2 PROTEIN 1 (MBR1) – 
also contributes to the regulation HRG expression, with natural 
variants of MBR1 differentially impacting hypoxia tolerance and 
adaptation of Arabidopsis to rainy environments (Castellana 
et al. 2024). It is not yet known if chromatin features or involve
ment of specific transcription factors or cis-elements determine 
which HRGs are Mediator-dependent or independent.

In addition to histone modifiers, ATP-dependent chromatin re
modelers also facilitate gene activation by repositioning, ejecting, 
or modifying nucleosomes to increase DNA accessibility (Reyes 
et al. 2021). The SWI/SNF (Switch Sucrose Non-fermentable)-type 
ATPase BRAHMA physically associates with stabilized ERFVIIs in 
Arabidopsis and contributes to their ABA-related stress function 
(Vicente et al. 2017), indicating that BRAHMA may positively influ
ence expression of HRGs. A recent study showed that BRAHMA co
localizes with the H2A.Z histone variant across the Arabidopsis 
genome (Torres and Deal 2019). H2A.Z is typically found in proxi
mal promoter regions, and its eviction from the transcription start 
site region of HRGs correlates with their enhanced RNAPII engage
ment under hypoxia (Lee and Bailey-Serres 2019), which may be ac
tioned via ERFVII-BRAHMA association (Fig. 3B). Arabidopsis 
BRAHMA can interact with and co-target many of the same genes 
as the histone lysine demethylase (KDM) RELATED TO EARLY 
FLOWERING 6 (REF6) (Li et al. 2016), which promotes an active chro
matin state by reducing the levels of repressive Histone H3 Lysine 
trimethylation (H3K27me3; see next section). REF6 functions along
side the chromatin remodeler EIN6 ENHANCER (EEN) to repress 
H3K27me3 levels and promote H2A.Z eviction at ETHYLENE 
INSENSITIVE 2 (EIN2), which encodes the central regulator of the 
ethylene signaling pathway (Zander et al. 2019). Given the link be
tween ethylene signaling and hypoxia responses, this concerted 
regulation of chromatin state at EIN2 might help coordinate sub
mergence responses. Although a direct connection between REF6 
activity and HRGs has not been established, we speculate that 
hypoxia-stabilized ERFVIIs may act as docking hubs for the 
co-recruitment of a diverse array of chromatin modifiers—includ
ing HATs, ATP remodelers, and KDMs—at genes with a Hypoxia 
Response Promoter Element to synergistically activate transcrip
tion in response to low O2 (Fig. 3). It remains to be seen how varia
tions in cis-regulating motif composition and posttranslational 
modification of the ERFVIIs contribute to protein interactions in 
this context.

Repressed chromatin
One of the most prevalent repressive histone modifications is 
H3K27me3. Although HRGs do not undergo major H3K27me3 
changes in response to short-term hypoxia in Arabidopsis (Lee 
and Bailey-Serres 2019), it is likely that transcriptional reprogram
ming in response to reduced O2 affects the levels of this mark at 
certain loci, given its abundance across the genome. In mammals, 
H3K27me3 accumulates under hypoxia due to a reduction in the 
O2-dependent activity of 2 Jumonji-type dioxygenase KDMs that 
erase this mark in O2-replete conditions (Batie et al. 2019; 
Chakraborty et al. 2019). To date, a direct connection between in
tracellular O2 availability and KDM activity has not been estab
lished in plants, but related proteins have been found (Chen 
et al. 2011; Holdsworth and Gibbs 2020), suggesting that a similar 
mechanism for influencing the methylation status of chromatin 
under hypoxia might exist.

H3K27me3 is deposited by the conserved PRC2 holoenzyme, 
and flowering plants have an expanded number of genes encoding 
individual subunits of this polycomb complex compared with 

animals (Margueron and Reinberg 2011; Derkacheva and Hennig 
2014). One of these, VERNALIZATION2 (VRN2), was identified as 
an O2- and NO-labile target of the N-degron pathway, suggesting 
that it may act as a sensor subunit that can direct PRC2 activity 
under hypoxia (Gibbs et al. 2018). Within hypoxic niches of the 
root, VRN2 has a repressive growth effect, with enhanced root sys
tem proliferation in vrn2 mutants, while in the hypoxic shoot apex 
it has differential effects on flowering depending on day length 
and ecotype (Labandera et al. 2021). In aerial tissues, VRN2 has 
a repressive effect on growth, specifically through methylating 
histones of genes linked to cell expansion that are targeted by 
the PIF4 transcription factor (Osborne et al. 2024). Deposition of 
H3K27me3 at these loci facilitates their light-mediated repres
sion by phytochrome B and the VRN2-PRC2 accessory protein 
VIL1/VRN5. As such, VRN2 may connect natural hypoxia gra
dients in the shoot to the control of plant growth by establishing 
a stable and conditionally repressed epigenetic state at key 
growth-associated genes. Whether this repressive growth function 
in shoots and roots directly influences submergence tolerance is 
yet to be established, but growth cessation (i.e. quiescence) is a 
common strategy employed by certain flood-tolerant species and 
ecotypes (Voesenek and Bailey-Serres 2015; Pucciariello and 
Perata 2024).

As well as being enriched in hypoxic developmental niches, 
VRN2 is stabilized in response to submergence-induced hypoxia, 
where it promotes waterlogging and hypoxia tolerance via un
known targets (Gibbs et al. 2018). VRN2 may contribute to short- 
term or transient transcriptional repression in response to low 
O2, or hypoxia-stabilized VRN2 may contribute to the induction 
of hypoxia-stress memory by targeting and stably repressing spe
cific genes (see Box 1), similar to how cold-stabilized VRN2-PRC2 
represses FLC to encode a memory of winter (Gendall et al. 
2001). VRN2-PRC2 interacts with the accessory protein VIN3, a 
close relative of VIL1/VRN5 and a major facilitator of vernalization 
(Sung and Amasino 2004; Wood et al. 2006). Interestingly, VIN3 is 
also induced by low-O2 stress and promotes hypoxia tolerance in 
seedlings, though not through targeting classic HRGs (Bond et al. 
2009). The rate of VIN3 induction appears to be slower than that 
of hypoxic-triggered VRN2 accumulation and indeed HRG induc
tion (Bond et al. 2009; Labandera et al. 2021). The polymerization 
of VIN3 in association with nuclear assemblies is important for en
hancing the avidity, retention, and activity of VRN2-PRC2 at FLC 
once VIN3 levels reach a critical threshold (Schulten et al. 2024). 
Possibly, VIN3 cooperates with VRN2-PRC2 only under conditions 
of sustained O2 deprivation to facilitate robust and long-term 
H3K27me3 deposition at important response genes (Fig. 3C).

DNA methylation and hypoxia responses
Although a genome-scale evaluation of DNA methylation changes 
in response to hypoxia in plants is lacking, recent work deciphered 
a potential role for RNA-directed DNA methylation (RdDM) in sur
vival of transient hypoxia. Loreti et al. (Loreti et al. 2019) studied 
ARGONAUTE1, a mediator of post-transcriptional gene silencing 
that regulates microRNA (miRNA) production. miRNAs influence 
hypoxia responses in animals, and the expression of a number 
of miRNAs is modulated by hypoxia and mitochondrial dysfunc
tion in Arabidopsis and maize (Moldovan et al. 2010; Licausi 
et al. 2011b). Although ago1 mutants are hypersensitive to sub
mergence, due to effects on starch content and sugar starvation, 
changes to miRNA expression under hypoxia are minimal and 
do not correlate with changes in target mRNAs (Loreti et al. 
2019). Interrogation of the submerged ago1 transcriptome 
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Figure 4. Integration of mitochondrial and ER hypoxia response. A) In mitochondria, low O2 compromises the mETC, resulting in ROS production. B) In the 
ER, hypoxia influences oxidative protein folding, depicted as a simplified scheme in the dashed box. Nascent peptides bearing thiol groups are transported 
into the ER via the Sec61 translocon. In the ER lumen, disulfide bonds form by the sequential action of protein disulfide isomerase (PDI) and ER oxidoreductase 
(ERO) enzymes, with O2 as the terminal electron acceptor. C) Protein misfolding occurs under low O2 and is sensed through the dissociation of heat shock 
protein 70 chaperones (BiPs) from the ER-tethered transcription factors bZIP17 and bZIP28. bZIP28 translocates to and is proteolytically processed in the Golgi 
(indicated by the white scissors icon), releasing the N-terminal portion, which translocates to the nucleus. In parallel, ER located Inositol-requiring enzyme 1 
(IRE1) is activated in response to protein misfolding and catalyzes unconventional splicing of bZIP60u mRNA to produce bZIP60 encoding a form of the 
transcription factor bearing a nuclear localization signal (NLS). D) Following translocation to the nucleus, the bZIP transcription factors homo- and 
heterodimerize to activate expression of UPR genes. E) Mitochondrial ROS signals release ANAC transcription factors from the ER. For example, ANAC013 is 
cleaved by rhomboid-like protease, RBL2 (black scissors icon) and translocates to the nucleus. ANAC013 and 017 regulate transcription of diverse genes 
bearing a mitochondrial dysfunction motif, including a subset of HRGs and genes encoding enzymes involved in the alternative respiratory chain (AOX1A, 
NDA1, 2) that allow a oxidative phosphorylation bypass. ANAC017 also regulates bZIP60 and bZIP17, enabling cross-talk between mitochondrial retrograde 
signaling and the ER. F) Mitochondrial ROS also activates MPK3/6 with targets including RAP-type ERFVIIs, which are increased in abundance by higher 
mitochondrial UCP1 activity. MDM and HRPE (Hypoxia Response Promoter Element) binding sites are recognized by ANACs and ERFVIIs, respectively.
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identified several mRNAs that are hyper-induced relative to wild 
type, including HOMOLOG of RPW8-4 (HR4), which is also upregu
lated in lines expressing stable RAP2.12 (35S::Δ13-RAP2.12) but ab
sent in the erfVII quintuple mutant (Giuntoli et al. 2017a). 
Considering alternative functions for AGO1, which can directly in
fluence RNA transcription and RdDM, it was shown that HR4 is 
strongly methylated in its second exon in wild type relative to 
35S::Δ13-RAP2.12 and mutants of ARGONAUTE4 (AGO4), a key cat
alytic mediator of RdDM. Correlating with this, ago4 mutants are 
tolerant of hypoxic stress. This study reveals complex and still un
clear involvement of post-transcriptional gene silencing and DNA 
methylation actioned via AGO1 and AGO4 during hypoxia and in
triguingly suggests that O2 sensing by RAP2.12—and possibly oth
er ERFVIIs—can influence DNA methylation on a constrained set 
of response genes.

Hypoxia responses beyond the N-degron pathway
Multiple cellular reactions require molecular O2 and therefore have 
the potential to act as hypoxia sensors, dependent on their respective 
Michaelis-Menten constant, KmO2 (van Dongen and Licausi 2015). 
Beyond the central importance of ERFVII-directed HRG expression, 
there are ERFVII-independent and ERFVII-intersecting signaling 
mechanisms that coordinate low O2 responses in different subcellu
lar compartments (Holdsworth 2017; Giuntoli et al. 2017b; Zubrycka 
et al. 2023). Prominent among these is mitochondrial dysfunction. 
A sudden reduction in O2 rapidly attenuates the mETC at 
Complex IV due to absence of O2 as the terminal electron acceptor, 
leading to a release of at Complex III that triggers mitochondrial 
retrograde signaling (Chang et al. 2012; Khan et al. 2024) (Fig. 4A). 
This is partly mitigated by the activity of Uncoupling Protein 1 
(UCP1), an abundant inner mitochondrial protein which uncouples 
ATP synthesis from the proton gradient across the inner membrane 
to limit ROS production. In parallel, UCP1 upregulation activates 
HRG transcription by inhibiting the N-degron pathway to 
link mitochondrial signaling with O2 sensing in the cytoplasm 
(Barreto et al. 2016, 2022). Also, during hypoxia, mitochondria 
bypass Complex I of the mETC via an alternative respiratory 
chain comprising Alternative Oxidases (AOXs) and Type II NAD(P) 
H Dehydrogenases, NDA1 and NDA2 (Jethva et al. 2023). 
AOX1a and NDA1 are transcriptionally activated by 3 NO 
APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION 
FACTOR/CUP-SHAPED COTYLEDON (NAC) transcription factors 
(ANAC013/16/17), which bind to a Mitochondrial Dysfunction 
Motif (MDM) in their promoters (De Clercq et al. 2013; Ng et al. 
2013; Eysholdt-Derzsó et al. 2023) (Fig. 4B). In parallel with the acti
vation of AOX and NDAs, RAP2.2 activates HRM1, which in turn at
tenuates mETC activity and modulates the respiratory chain under 
hypoxia (Tsai et al. 2023).

Interestingly, pharmacological inhibition of the mETC induces 
a subset of HRGs, and mitochondrial signaling mutants share 
common transcriptional signatures with plants subjected to sub
mergence (Wagner et al. 2018; Meng et al. 2020). Underpinning 
these observations, 31 of the 49 core HRGs of Arabidopsis contain 
at least 1 copy of the MDM, which enables binding and activation 
by ANAC013/16/17 (Eysholdt-Derzsó et al. 2023). In the absence 
of stress, these transcription factors are anchored at the ER mem
brane through a C-terminal transmembrane domain (Liang et al. 
2015). Shortly after imposition of hypoxia stress, ANAC013 is 
cleaved by Rhomboid-Like Protease 2 (RBL2) and translocates to 
the nucleus to initiate transcription of HRGs (Eysholdt-Derzsó 
et al. 2023) (Fig. 4C). Although ANAC013 and ANAC017 positively 
regulate submergence tolerance, ANAC017 is not released in 

the initial response to low O2, suggesting that it could play a role 
in prolonged hypoxia/submergence and/or reoxygenation (Bui 
et al. 2020; Meng et al. 2020; Eysholdt-Derzsó et al. 2023). 
Consistently, under submergence, ANAC017 regulates genes in
volved in chloroplast functions and the response to oxidative 
stress (Ng et al. 2013; Meng et al. 2019). A better understanding 
of how chloroplasts contribute to hypoxic gene regulation in illu
minated photosynthetic organs is needed (Klecker et al. 2014).

Protein folding in the ER is another example of an O2-dependent 
process that integrates hypoxia responses between subcellular com
partments. Disulfide bond formation is driven by a relay system in 
the ER lumen involving protein disulphide isomerases and ER oxidor
eductins, with O2 as the terminal electron acceptor (Cao et al. 2022; 
Ugalde et al. 2022) (Fig. 4D). Consequently, both hypoxia and reduc
tive stress impair protein folding and trigger the unfolded protein re
sponse (UPR) (Zhou et al. 2021; Fuchs et al. 2022). Moreover, mutants 
impaired in either ER oxidoreductase activity or the UPR are hyper
sensitive to hypoxia and reductants such as dithiothreitol (Zhou 
et al. 2021; Ugalde et al. 2022). The UPR is controlled by 2 distinct sig
naling pathways. One involves the ER-anchored Basic Leucine Zipper 
(bZIP) transcription factors bZIP17 and bZIP28, and the other involves 
ER-localized Inositol-Requiring Enzyme 1 that catalyzes unconven
tional cytoplasmic splicing of bZIP60, allowing its synthesis and sub
sequent nuclear localization (Ko and Brandizzi 2024) (Fig. 4D). 
Intriguingly, the upregulation of bZIP17 and bZIP60 by ANAC017 pro
vides a mechanistic link between the UPR and mitochondrial retro
grade signaling (Fig. 4, E and F). This serves to protect oxidative 
protein processing in the ER by boosting mitochondrial respiration 
(Meng et al. 2019; Fuchs et al. 2022).

Co- and post-transcriptional response to hypoxia 
prioritize energy management and prime 
recovery
Hypoxia has a pronounced effect on gene regulation following 
transcriptional initiation (Fig. 5, A to H). In Arabidopsis, hypoxia- 
modulated co-transcriptional processes include pausing of 
RNAPII, alternative splicing, and alternative polyadenylation site 
selection (Juntawong et al. 2014; de Lorenzo et al. 2017; Lee and 
Bailey-Serres 2019). Transient pausing of RNAPII is prevalent on 
genes associated with heat and oxidative stress and, depending 
on the gene, is released during the stress or upon reaeration (Lee 
and Bailey-Serres 2019). This suggests certain RNAPII complexes 
are engaged but require a signal to be released, such as the ROS 
burst upon reoxygenation. A comparison of transcripts with sim
ilar abundance under control and hypoxic conditions identified 
extensive intron retention in mRNAs encoding splicing factors, 
as well as alternative splicing in induced and reduced transcripts 
(Juntawong et al. 2014). Alternative splicing of the HRG HRE1, an 
ERFVII, results in synthesis of 2 protein isoforms shown to differ 
in transactivation activity in protoplasts (Seok et al. 2020). 
Hypoxia also alters the site of polyA tail addition on some 
mRNAs, resulting in truncated or lengthened mRNAs (de 
Lorenzo et al. 2017) (Fig. 5B). Premature polyadenylation in introns 
of NITRATE REDUCTASE1 and 2 results in transcripts encoding 
truncated enzymes that retain the active site for nitrite produc
tion (de Lorenzo et al. 2017). These isoforms may bolster nitrite 
levels to augment NO production upon reoxygenation to promote 
ERFVII turnover. Altered polyA site selection could be sympto
matic of reduced RNAP II processivity, alterations in the polyade
nylation apparatus, or N6-methyadenosinene modification of 
specific adenosines of transcripts. N6-methyadenosinene is bound 
by readers that interact with other proteins to direct mRNA 
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polyadenylation, splicing, turnover, and translation. This is yet to 
be studied in the context of hypoxia in plants.

Although polyA+ mRNA is routinely used to monitor gene activ
ity, other subpopulations of transcripts can be isolated and pro
filed, including nuclear, ribosome associated (translatome), or 
RNA-binding protein associated (Lee and Bailey-Serres 2017). In 
fact, the Arabidopsis HRGs were recognized as the set of 49 gene 
transcripts with increased translation across cell types of roots 
and shoots in hypoxic seedings (Mustroph et al. 2009). In addition, 
each cell type has a distinct pattern of differentially translated 
mRNAs under hypoxia; for example, certain sucrose transporters 
are preferentially upregulated in the root phloem. Perhaps 
ERFVIIs or other transcription factors that regulate the core hypo
xia response also target genes that are regulated in a cell-specific 
manner. Precise mapping of individual ribosomes on mRNAs con
firmed that HRG mRNAs are highly translated during hypoxia 
(Fig. 5C), whereas mRNAs encoding many proteins, including 
those needed to build cytosolic ribosomes, are stable but disasso
ciate from ribosomes (Branco-Price et al. 2008; Juntawong et al. 
2014) (Fig. 5D). Submergence also invokes preferential translation 
of HRG mRNAs in seedlings of Arabidopsis (Cho et al. 2022) and of 
conserved submergence-upregulated mRNAs, including HRGs in 
root tips of rice, tomato, and medicago (Reynoso et al. 2019). The 

coordinated decline in translating ribosomes and ATP during hy
poxia and recovery upon reoxygenation supports the hypothesis 
that translation, which is highly ATP demanding, is globally re
pressed under hypoxia as a general energy management strategy 
(Branco-Price et al. 2008). But how might this global and 
mRNA-specific translation be orchestrated?

Translation is intertwined with processes of mRNA turnover and 
sequestration (Browning and Bailey-Serres 2015; Chantarachot and 
Bailey-Serres 2018). GENERAL CONTROL NONDEREPRESSIBLE 
(GCN2) controls overall levels of translation by limiting formation 
of the eukaryotic initiation factor 2α (eIF2α)-tRNA-Met complex re
quired to complete the initiation phase (Cho et al. 2022). GCN2 
phosphorylates eIF2α via an ethylene-activated pathway within 
an hour of seedling submergence, reducing overall translation 
(Fig. 5E). Remarkably, this eIF2α phosphorylation facilitates transla
tion of tested HRGs under the stress. Translational control at the 
mRNA-specific level, on the other hand, can involve the energy 
sensing Snf1-related protein kinase (SnRK1). SnRK1 activation 
within 30 min of submergence triggers phosphorylation of eukary
otic Initiation Factor (eIF)iso4G1 (Cho et al. 2019) (Fig. 5F). This pro
tein is important in preparing mRNA for scanning by a pre-initiation 
complex carrying eIF2α-tRNA-Met (Browning and Bailey-Serres 
2015), and SnRK1-phosphorylated eIFiso4G fosters translation of 

Figure 5. Overview of nuclear and cytoplasmic co- and post-transcriptional regulation in response to hypoxic stress and reoxygenation. A) Three 
scenarios of transcriptional regulation following initial stages of initiation. HRG mRNAs are coordinately synthesized, exported, and translated. Many 
genes with a Heat Shock Element accumulate high levels of nuclear pre-mRNAs without co-upregulation in total or polysomal mRNA (Lee and 
Bailey-Serres 2019). These mRNAs either gradually appear in polysomes under hypoxic stress or appear upon reoxygenation. Other genes expressed 
under aerated conditions can have ongoing or reduced transcription. Genes encoding RIBOSOMAL PROTEINS, for example, continue transcription. 
B) SnRK1 is activated by low cellular sucrose. Among its targets is eIFiso4G upon hypoxia. eIFiso4G-P is used successfully by HRG mRNAs in the initiation 
phase of translation. eIFiso4G and eIF4G are distinct subunits of the eIFiso4F and eIF4F complexes that recruit 5′-capped and 3′ polyadenylated mRNAs 
for translation with different specificity. C) Hypoxia enhances alternative splicing and polyadenylation site placement. D) Translating ribosomes 
decrease upon hypoxic stress. A global on/off switch for translation is the phosphorylation of eIF2α by the GCN2 kinase, which blocks formation of the 
ternary complex tRNA-Met-GTP. This complex is an essential component of the pre-initiation complex, comprised of the 40S ribosomal subunit and 
other proteins. E) Upon hypoxia, most mRNAs dissociate from polysomes, and those that are stable associate with the constitutively present RNA 
binding protein UBP1C until this is reversed by reoxygenation. UBP1C and the hypoxia-induced RNA binding protein CML38 form heterogenous 
biomolecular condensates in the cytoplasm containing RNA and other proteins. UBP1C and CML38 may form interacting or distinct complexes. F) Little 
is known about the impact of hypoxia and reoxygenation on mRNA degradation pathways. Likely important are the heterogenous cytoplasmic 
condensates called processing bodies that organize the removal of the protective 5′ m7G cap and 3′ polyA tail of mRNAs (Chantarachot and Bailey-Serres 
2018). Orange lines, hypoxia; blue dotted lines, reoxygenation.
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certain HRGs. A determinant of this may be an unstructured 5′ UTR, 
presumed to require less ATP for translational initiation. Another 
example of mRNA-specific translational regulation under hypoxia 
is observed for S1 class bZIP transcription factor mRNAs. The 5′ 
UTRs of these possess a conserved polypeptide-encoding upstream 
open reading frame that causes ribosomes to stall before reaching 
the ORF encoding the bZIP, in a sucrose-dependent manner. 
Ribosome footprinting studies revealed that gatekeeping by the con
served polypeptide-encoding upstream open reading frame of these 
mRNAs is derepressed by hypoxia (Juntawong et al. 2014).

Intriguingly, mRNAs that are poorly translated during hypoxia 
associate with the RNA binding protein OLIGOURIDYLATE 
BINDING PROTEIN 1C (UBP1C) that assembles into cytoplasmic con
densates within minutes of hypoxia and rapidly dissipates upon re
oxygenation (Sorenson and Bailey-Serres 2014) (Fig. 5G). A 
comparison of ribosome-associated and UBP1C-associated mRNAs 
confirmed a rapid shift in mRNAs that encode ribosomal protein 
from polyribosomes to UBP1C complexes under hypoxia. Upon re
oxygenation, these and other UBP1C-bound mRNAs rapidly reasso
ciate with ribosomes. Other RNA binding proteins are important 
during hypoxic stress. CALMODULIN LIKE38 (CML38), encoded by 
a HRG essential for resilience, also forms cytoplasmic condensates 
during hypoxia. These contain proteins associated with mRNA se
questration (RBP47B) and mRNA silencing (SUPPRESSOR OF 
SILENCING 3) (Lokdarshi et al. 2016; Field et al. 2021). The calmodu
lin domain of CML38 could integrate cytosolic Ca2+ dynamics with 
mRNA control under hypoxia. Thus, the ability of plants to prioritize 
the translation of HRG mRNAs over other mRNAs during hypoxia 
may reflect their ability to circumvent sequestration. This targeted 
curtailment of mRNA translation, perhaps because of GCN2 activa
tion, limits ATP consumption and protects many mRNAs from de
cay until reoxygenation (Fig. 5H). There is still much to be learned 
about RNA regulation in the context of hypoxia.

Concluding remarks
The processes of gene regulation in response to hypoxic stress— 
from chromatin through translation and the associated diversity 
of post-translational processes—involve complex and intertwined 
mechanisms. We have highlighted the importance of changes in 
O2 availability, ethylene, energy, and second messengers such 
as Ca2+, as well as crosstalk across organelles and a complex net
work of post-translational protein modifications. Despite the 
breadth of knowledge gained using Arabidopsis, there are many 
Outstanding Questions. Moreover, there is little knowledge of 
the conservation of hypoxia-response mechanisms within and 
across species. Given what has been gleaned by within-species 
comparisons, such as ERFVII variation at high altitudes (Abbas 
et al. 2022) and variation gene regulatory circuitry in floodland- 
vs dryland- adapted species (Reynoso et al. 2019), there is likely 
much to be learned from natural variation.

OUTSTANDING QUESTIONS

• What controls hypoxia response signatures in cell types 
and tissues across the life cycle?

• How is the interplay between N-degron-ERFVII, ER 
stress, mitochondrial, and other retrograde signaling 
modules and genes regulated? Do these connect to cell- 
specific networks controlling metabolism, growth, and 
development?

• Do plants encode bona fide hypoxia stress “memories” at   

Continued 

the chromatin level, and under what timescales are 
these initiated and maintained?

• How is the response silenced at the protein level as O2 

levels recover? Are Ca2+, ROS, redox state, and ATP levels 
involved?

• Is transcription primed for reoxygenation? Do 
hypoxia-responsive or reoxygenation-triggered phos
phatases counterbalance phosphorylation of ERFVII by 
MPKs and CPKs?

• What determines which mRNAs are translated, seques
tered into condensates, or degraded during hypoxia and 
upon reaeration?
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