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a b s t r a c t 

This near-infrared spectral dataset consists of 2,106 diverse 

mineral soil samples scanned, on average, on six different 

units of the same low-cost commercially available handheld 

spectrophotometer. Most soil samples were selected from 

the USDA NRCS National Soil Survey Center-Kellogg Soil Sur- 

vey Laboratory (NSSC-KSSL) soil archives to represent the 

diversity of mineral soils (0–30 cm) found in the United 

States, while 90 samples were selected from Ghana, Kenya, 

and Nigeria to represent available African soils in the same 

archive. All scanning was performed on dried and sieved 

( < 2 mm) soil samples. Machine learning predictive models 

were developed for soil organic carbon (SOC), pH, bulk den- 

sity (BD), carbonate (CaCO3), exchangeable potassium (Ex. 

K), sand, silt, and clay content from their spectra in the R 

programming language using most of this dataset (1,976 US 

soils) and are included in this data release. Two model types, 
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Cubist and partial least squares regression (PLSR) were de- 

veloped using two strategies: (1) using an average of the 

spectral scans across devices for each sample and, (2) using 

the replicate spectral scans across devices for each sample. 

We present the internal performance of these models here. 

The dry spectra and Cubist models for these soil properties 

are available for download from 10.5281/zenodo.7586621 . 

An example of detailed code used to produce these mod- 

els is hosted at the Open Soil Spectral Library, a free ser- 

vice of the Soil Spectroscopy for the Global Good Network 

( soilspectroscopy.org ), enabling broad use of these data for 

multiple soil monitoring applications. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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pecifications Table 

Subject Soil Science 

Specific subject area Soil spectroscopy, NIR spectroscopy, predictive machine-learning 

modeling 

Type of data Raw 

Code files 

Data collection A set of 2,106 mineral soil samples were selected and scanned for 

inclusion in this dataset on NeoSpectra handheld NIR 

spectrophotometers (Si-Ware Systems, Cairo, Egypt). 2,016 samples 

were selected to represent mineral topsoil (0-30cm) in the US, and 90 

samples from Ghana, Kenya, and Nigeria were selected to represent 

African soils. A subset of 1,976 US samples was used to build 

predictive machine learning models. Two model types (Cubist and 

partial least squares regression) were employed to produce predictions 

for eight soil properties. 

Data source location Countries: United States of America, Ghana, Kenya, and Nigeria. 

Data accessibility Repository name: Zenodo 

Data identification number: 10.5281/zenodo.7586621 

Direct URL to data: https://zenodo.org/doi/10.5281/zenodo.7586621 

Detailed code associated with the model building is available from the 

Github repository https://github.com/soilspectroscopy/ossl-models 

Related research article Mitu, S. M., Smith, C., Sanderman, J., Ferguson, R. R., Shepherd, K., & 

Ge, Y., Evaluating consistency across multiple NeoSpectra (compact 

Fourier transform near-infrared) spectrometers for estimating common 

soil properties. Soil Science Society of America Journal Volume 88 

Issue 4 (2024) 1324-1339. https://doi.org/10.1002/saj2.20678 

. Value of the Data 

• Large soil spectral libraries typically produce reliable predictions across a range of soil types

but take a large investment of time and effort to produce, thus, representing a significant

barrier to entry to the use of soil spectroscopy. This spectral library and predictive models

can immediately be used by anyone with a compatible NIR spectrophotometer. 

• This methodology and code can be reproduced by other researchers to make predictions for

bulk density (BD), calcium carbonate (CaCO3), clay content, exchangeable potassium (Ex. K),

pH, sand content, silt content, and soil organic carbon (SOC) on external sample sets. 

• The data extends the concept of the Global Soil Spectral Library and Estimation Service

(Shepherd et al., 2023) to include NIR by selecting a diverse set of samples from the same

soil spectral library and supplementing it with African soils. 

https://zenodo.org/records/13122321
http://soilspectroscopy.org
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7586621
https://zenodo.org/doi/10.5281/zenodo.7586621
https://github.com/soilspectroscopy/ossl-models
https://doi.org/10.1002/saj2.20678
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• We hope that by providing this spectral library, other researchers can apply more advanced

modeling techniques that can add value, and even potentially replace, the models that are

provided in this data release. 

2. Background 

Diffuse reflectance infrared spectroscopy has become an indispensable laboratory tool for

rapid estimation of numerous soil properties to support soil mapping, soil monitoring and soil

testing applications [ 4 ]. Recent advances in hardware technology have enabled the development

of handheld sensors with similar performance specifications as laboratory-grade near infrared

(NIR) spectrophotometers [ 6 ]. Handheld sensors like the NeoSpectra scanner used in this dataset

are more cost effective than traditional laboratory grade spectrometers. By building and publicly

providing a library of spectral data with associated quality-controlled analytical data on numer-

ous soil properties and predictive models, we are offering researchers and soil professionals the

ability to utilize this dataset and predictive models to make predictions for soil properties on

scans of their own samples. 

3. Data Description 

The spectral dataset is provided in two formats: 

1) The file “Neospectra_WoodwellKSSL_soil + site + NIR.csv” includes six individual spectral scans 

from each of approximately five different scanners per sample. 

2) The subset of 1,976 samples used to build the models described below is provided in the file

“1976_NSlibrary_withmetadata.csv”. In this file, each row contains the averaged spectra for a

given scanner and soil sample (1 spectra per scanner per soil sample). 

The Cubist models as presented and described here are provided as Quick serialization (“.qs”)

files ( Table 1 ). This data format is accessible for use in the R programming language. 

An example of detailed code to produce and run the Cubist average models is available

from the Github repository ( https://github.com/soilspectroscopy/ossl-models/ ), allowing for pre-

dictions to be reproduced. The corresponding code files for this analysis are all annotated with

the model name “nir.neospectra_cubist_ossl_na_v1.2”. 
Table 1 

Model file names and descriptions for the Cubist average (one average spectra per sample) each sample, so there is only 

one spectra per sample) and Cubist replicate (one spectra per scanner per sample) models for 8 soil properties. 

File description File name 

Cubist average model for log(1 + BD). log..bd_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for log(1 + CaCO3). log..caco3_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for clay. clay_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for log(1 + Ex. K). log..k.ex_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for pH. ph.h2o_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for sand. sand_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for silt. silt_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist average model for log(1 + SOC). log..soc_model_nir.neospectra_cubist_AVG_ossl_na_v1.2.qs 

Cubist replicate model for log(1 + BD). log..bd_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for log(1 + CaCO3). log..caco3_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for clay. clay_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for log(1 + Ex. K). log..k.ex_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for pH. ph.h2o_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for sand. sand_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for silt. silt_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

Cubist replicate model for log(1 + SOC). log..soc_model_nir.neospectra_cubist_REPS_ossl_na_v1.2.qs 

https://github.com/soilspectroscopy/ossl-models/
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. Experimental Design, Materials and Methods 

.1. Sample selection 

From a previous project [ 7 ], 519 US samples were queried from the USDA NRCS NSSC-KSSL

oil archives as having a complete set of eight measured properties (total carbon, total organic

arbon, total nitrogen, cation exchange capacity, pH, clay, sand, and silt). They were stratified

ased on the major horizon and taxonomic order, omitting the categories with less than 500

amples. Three percent of each stratum (i.e., a combination of major horizon and taxonomic or-

er) was then randomly selected as the final subset retrieved from KSSL’s physical soil archive as

-mm sieved samples. With a goal of building a dataset of 20 0 0 samples, additional US samples

ere queried from the USDA NRCS NSSC-KSSL soil archives with the following criteria described

n Mitu et al. [ 1 ]: lower depth ≤ 30 cm, pH range 4.0 to 9.5, organic carbon < 10 %, greater

han lower detection limits for all properties, actual physical samples available in the archive,

amples collected and analyzed from 2001 onwards, samples having complete analyses for high-

riority properties (sand, silt, clay, cation exchange capacity, Buffered ammonium-acetate ex-

hangeable Ca, Mg, K and Na, and SOC), and MIR scanned. Out of all samples meeting these

riteria ( > 20,0 0 0), Latin hypercube sampling was used to limit this new set to 1,497 samples.

dditionally, 90 samples from Ghana, Kenya, and Nigeria were selected from the archives and

canned to represent African soils available in the archive. Summary statistics for the 2,106 sam-

les in this dataset are listed in Table 2 below. 

.2. Scanning and lab methods 

The selected dry 2-mm sieved soil samples were then scanned using NeoSpectra handheld

IR spectrophotometers (Si-Ware Systems, Cairo, Egypt). These NeoSpectra scanners use an in-

ernal light source to capture spectral reflectance within the NIR range of 1350–2500 nm, col-

ecting 257 data points with linear interpolation and 32k fast Fourier transform points for each

easurement [ 1 ]. 

To scan a sample, approximately 20–50 g of dry soil sieved to < 2 mm was added to a plastic

eigh boat. The optical surface of the scanner (10 mm in diameter) was placed in contact with

he soil surface, and six individual scans were taken as the optical window was moved slowly

cross the surface of the sample. To capture instrument variability, nine separate NeoSpectra

canners were used throughout the course of the study as functional issues necessitated the re-

lacement of a few ( Fig. 1 ). The aim was to scan each soil sample on at least five different scan-

ers, this was completed as possible and the scans with corresponding instrument serial num-
Table 2 

Summary statistics of 8 soil properties for the samples in this dataset. 

Soil property count Mean Minimum Q1 ∗ Median Q3 ∗∗ Maximum Lab method (KSSL method code) 

SOC (%) 2106 2 -0.03 0.59 1.31 2.63 53.88 Total carbon (4H2a1) minus 

inorganic carbon (4E1a1a1) 

pH 2096 6.25 3.69 5.21 6.12 7.35 9.52 1:1 water extraction (4C1a2a1) 

BD (g/cm3) 964 1.31 0.3 1.18 1.34 1.47 2.03 Clod (1B1a2) 

CaCO3 (%) 693 5.91 -0.57 0.26 1.64 7.61 89.03 HCl treatment/manometric 

(4E1a1a1) 

Ext. K (cmol( + ) 

kg−1 ) 

2096 0.55 0 0.14 0.33 0.68 11.25 NH4OAc/pH 7 extraction 

(4B1a1c1-4) 

Sand (%) 2106 41.88 0.3 17.6 39.25 64.38 100 Pipette method (3A1a) 

Silt (%) 2106 37.57 0 21.8 37.4 52.1 87.9 Pipette method (3A1a) 

Clay (%) 2106 20.55 0 9.08 18.33 28.83 86.69 Pipette method (3A1a) 

∗ Q1 = Quartile 1 (Lower Quartile) 
∗∗ Q3 = Quartile 3 (Upper Quartile) 
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Fig. 1. A photo of the scanning process with multiple scanners (left), and a plot of raw spectra from 4 samples of differing reflectance (right). 
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ers can be found in the linked Zenodo repository. Of the 2,106 total soil samples, 519 samples

ere scanned following this protocol at Woodwell Climate Research Center and the remaining

,587 samples were scanned at the NSSC-KSSL utilizing the same protocol. 

All analytical data on the various soil properties were generated by the KSSL following pub-

ished methods [ 5 ]. The method codes are available in Table 2 . 

.3. Model building 

These six scans per sample per scanner were averaged to create one scan per sample on

ach individual scanner, and a large subset of the data containing 1,976 unique US soil sam-

les was used for model building. The spectra in reflectance units were preprocessed by in-

erpolating to 2 nm intervals, increasing the number of wavelength columns from 257 to 601

nd a Standard Normal Variate (SNV) transformation was applied. Two machine learning algo-

ithms, Cubist (using the R package ‘mlr3’) and Partial Least Squares Regression (PLSR; using the

 package ‘mdatools’), were employed to develop predictive models for eight soil properties, in-

luding bulk density (BD), calcium carbonate (CaCO3), clay content, buffered ammonium-acetate

xchangeable potassium (Ex. K), pH, sand content, silt content, and soil organic carbon (SOC).

xcept for the granulometric fractions and pH, all soil properties were natural log transformed

ith an offset (log(1 + x)) before model calibration to control the skewness of the range of values.

erformance metrics are presented using the log(1 + x) units. 

Two strategies were evaluated for handling scanner-to-scanner variability: averaging the

cans across scanners for each sample (avg) versus retaining scans from each scanner for each

ample (reps) during model building. In both strategies the six replicate scans on each scanner

or each sample were averaged prior to any model building. 

PLSR is a standard algorithm in chemometrics [ 8 ] and predictive models were built testing

p to 30 factors with the number of factors being optimized by 5-fold cross-validation. Inter-

al evaluation of the dataset was done separately by refitting the fine-tuned models with 10-

old cross-validation. Cubist models [ 2 ], in turn, were built using the Open Soil Spectral Library

OSSL) framework which consists of compressing the spectra up to the n first components re-

aining around 99.99 % of the original cumulative variance in the spectra and employing the

omponents scores as training features [ 3 ]. Cubist models were fine-tuned, setting 0 for the

yperparameter “neighbors” and testing an optimum number of “committees” in the range of

1,5,10,15,20] using 5-fold cross-validation. Similarly, 10-fold cross-validation with refitting was

sed for internal model evaluation. For the replicate models, random splits of cross-validation

ere made by ensuring the soil sample IDs were grouped/blocked together to avoid information

eakage and over-optimistic performance estimation. 

.4. Model evaluation 

Models were evaluated internally using a 10-fold cross-validation with a refitting approach to

ssessing their performance in predicting soil properties. The performance metrics included Root

ean Square Error (RMSE), mean error (bias), the square of the correlation coefficient (R ²), Lin’s

oncordance Correlation Coefficient (CCC), and the ratio of performance to interquartile distance

RPIQ). Cubist models had larger CCC values than the PLSR models for all soil properties except

D, with the models built on averaged spectra slightly outperforming models built using the

eplicate scans for most soil properties ( Tables 3 & 4 ). The best models for SOC, CaCO3, clay,

nd pH all had CCC values > 0.80. Sand, silt, exchangeable K, and BD all had slightly lower Lin’s

CC between 0.66 and 0.74 for the best models ( Fig. 2 ). These performance metrics, also sum-

arized in goodness-of-fit plots ( Fig. 3 ), are presented to justify the inclusion of only the Cubist

odels in the code repository. Both the average and replicate models have been included be-

ause we believe the replicate models might outperform the average models when applied in a

ew setting with a scanner different than one of the nine used in building this database. 
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Table 3 

Model performance statistics for the Cubist models. 

Soil property Variant Unit n RMSE bias R2 CCC RPIQ 

BD AVG log(1 + x) 1085 0.08 -0.01 0.45 0.62 1.46 

BD REPS log(1 + x) 4157 0.08 0.00 0.47 0.65 1.49 

CaCO3 AVG log(1 + x) 665 0.64 -0.02 0.67 0.80 3.06 

CaCO3 REPS log(1 + x) 2705 0.60 -0.01 0.73 0.84 3.55 

Clay AVG original 1976 7.30 0.12 0.72 0.83 2.60 

Clay REPS original 7790 7.47 0.13 0.72 0.83 2.56 

K AVG log(1 + x) 1976 0.22 0.03 0.54 0.68 1.75 

K REPS log(1 + x) 7790 0.23 0.02 0.49 0.66 1.63 

pH AVG original 1976 0.64 0.01 0.75 0.85 3.39 

pH REPS original 7790 0.66 0.01 0.73 0.84 3.37 

Sand AVG original 1976 18.16 0.63 0.59 0.72 2.58 

Sand REPS original 7790 18.29 0.20 0.59 0.74 2.66 

Silt AVG original 1976 13.79 0.18 0.54 0.67 2.17 

Silt REPS original 7790 13.98 -0.07 0.54 0.69 2.18 

SOC AVG log(1 + x) 1974 0.25 -0.01 0.80 0.89 3.22 

SOC REPS log(1 + x) 7782 0.26 0.00 0.81 0.89 3.29 

Table 4 

Model performance statistics for the PLSR models. 

Soil property Variant Unit n RMSE bias R2 CCC RPIQ 

BD AVG log(1 + x) 1085 0.08 0.00 0.47 0.66 1.50 

BD REPS log(1 + x) 4157 0.08 0.00 0.45 0.63 1.45 

CaCO3 AVG log(1 + x) 665 0.74 -0.01 0.57 0.75 2.66 

CaCO3 REPS log(1 + x) 2705 0.75 0.01 0.58 0.75 2.84 

Clay AVG original 1976 8.52 -0.04 0.62 0.77 2.23 

Clay REPS original 7790 9.57 -0.02 0.53 0.71 2.00 

K AVG log(1 + x) 1976 0.24 0.00 0.44 0.63 1.59 

K REPS log(1 + x) 7790 0.25 0.00 0.37 0.56 1.47 

pH AVG original 1976 0.72 0.00 0.68 0.81 3.02 

pH REPS original 7790 0.78 0.00 0.63 0.78 2.87 

Sand AVG original 1976 22.30 0.03 0.38 0.57 2.10 

Sand REPS original 7790 23.69 -0.03 0.31 0.50 2.05 

Silt AVG original 1976 17.10 0.00 0.28 0.46 1.75 

Silt REPS original 7790 17.83 0.01 0.26 0.43 1.71 

SOC AVG log(1 + x) 1974 0.29 0.00 0.73 0.85 2.76 

SOC REPS log(1 + x) 7782 0.31 0.00 0.72 0.84 2.75 

Fig. 2. Lin’s CCC values for the 4 model types across all 8 properties. 
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Fig. 3. Goodness of fit plots for the Cubist replicate models from top left to right for bulk density (BD), calcium carbonate (CaCO3), clay content, exchangeable potassium (Ex. K), and from 

bottom left to right for pH, sand content, silt content, and soil organic carbon (SOC). 
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Limitations 

• While this spectral library is broadly representative of the diversity of 0–30 cm mineral soils

found in the USA, specific soil types might be underrepresented and as such users are en-

couraged to check for spectral similarity with their samples before applying these models. 

• The library was built by scanning each sample on an average of five different Neospectra

scanners to try to ensure that variability across scanners are captured, but these data and

models have not been tested against NIR spectra obtained on different brands of scanners. 

• This library will not be appropriate for soil samples scanned under field conditions because

all samples were dried and sieved prior to scanning. 

• Compared to wet chemistry methods, NIR spectral predictions add uncertainty to soil prop-

erty estimates and users need to consider if this increased uncertainty outweighs the benefits

of rapid low-cost soil monitoring. 

• The Open Soil Spectral Library is a living resource with the library itself growing and models

being updated periodically. 
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