
agronomy

Article

Defining Integrated Weed Management: A Novel Conceptual
Framework for Models

Jonathan Storkey *, Joseph Helps, Richard Hull, Alice E. Milne and Helen Metcalfe

����������
�������

Citation: Storkey, J.; Helps, J.; Hull,

R.; Milne, A.E.; Metcalfe, H. Defining

Integrated Weed Management: A

Novel Conceptual Framework for

Models. Agronomy 2021, 11, 747.

https://doi.org/10.3390/

agronomy11040747

Academic Editor: Anestis Karkanis

Received: 13 March 2021

Accepted: 8 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Rothamsted Research, Harpenden AL5 2JQ, Hertfordshire, UK; joe.helps@rothamsted.ac.uk (J.H.);
richard.hull@rothamsted.ac.uk (R.H.); alice.milne@rothamsted.ac.uk (A.E.M.);
helen.metcalfe@rothamsted.ac.uk (H.M.)
* Correspondence: jonathan.storkey@rothamsted.ac.uk

Abstract: Weed population dynamics models are an important tool for predicting the outcome
of alternative Integrated Weed Management (IWM) scenarios. The growing problem of herbicide
resistance has increased the urgency for these tools in the design of sustainable IWM solutions. We
developed a conceptual framework for defining IWM as a standardised input template to allow
output from different models to be compared and to design IWM scenarios. The framework could
also be used as a quantitative metric to determine whether more diverse systems are more sustainable
and less vulnerable to herbicide resistance using empirical data. Using the logic of object-oriented
programming, we defined four classes of weed management options based on the stage in the weed
life cycle that they impact and processes that mediate their effects. Objects in the same class share
a common set of properties that determine their behaviour in weed population dynamics models.
Any weed control “event” in a system is associated with an object, meaning alternative management
scenarios can be built by systematically adding events to a model either to compare existing systems
or design novel approaches. Our framework is designed to be generic, allowing IWM systems from
different cropping systems and countries to be compared.

Keywords: population dynamics modelling; resistance management; weed life cycle; Integrated
Pest Management

1. Introduction

What is Integrated Weed management (IWM)? Although a widely accepted concept,
defining IWM and assessing whether it is being implemented on a farm is not straight-
forward. In contrast to certified approaches to farming such as ‘organic’ that have clear
management prescriptions that make it easy to categorise a farm, IWM represents a contin-
uum of multiple combinations of chemical and non-chemical interventions. In this sense
IWM is not categorical but represents a gradient of increasing complexity—the so-called
‘many little hammers approach’ [1]. In addition, unlike herbicide prescriptions that can
be made at the level of the crop, IWM takes a field-scale approach that accounts for local
factors. IWM can, therefore, be an elusive concept and, if we are to objectively measure both
the uptake and the impact of IWM, new metrics and methodologies need to be developed
to enable cropping systems to be compared and assessed in terms of progress towards
clearly defined goals. The increasing prevalence of herbicide resistance and decreasing
range of active ingredients available for chemical weed control mean the need for these
new methodologies is now greater than ever [2].

One recent attempt to meet this challenge has been to design farmer questionnaires
that reflect the eight principles of Integrated Pest Management (IPM, of which IWM is
a component) [3] and capture the adoption of new knowledge [4]. Questions included
(1) Why do you typically use an arable rotation? (2) What influences your choice of crop
variety? and (3) What preventive measures are used to control weeds? By asking these
questions of farmers and weighting the questions by their relative importance to IPM,
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farms were ranked according to the relative importance they place on IPM. However, if
the aim is to quantitatively link management to the response of the weed community and
predict the likely impact of change, this social science approach has insufficient resolution
and retains an element of subjectivity. In addition, the response of weeds to management is
complex and operates across multiple time scales meaning a more detailed understanding
of management systems is required. What is needed, then, is a conceptual framework for
systematically ‘mixing and matching’ all the available weed control options in different
scenarios to derive an objective, quantitative ‘gradient of IWM’. Such a framework would
also allow the outcomes of alternative scenarios to be compared along this common gradient
using meta-analysis. Outcomes could include crop yield, weed diversity and abundance
and profitability. Developing methodologies for comparing the economic costs of IWM is
particularly important as combining multiple, non-chemical weed management options
has the potential to be more expensive than a strategy based on herbicides alone. The
European Union is committed to increasing the uptake of IPM with the aim of reducing
the reliance on chemical crop protection products. Realising this aim may involve making
available subsidies for incentivizing non-chemical approaches; a scheme of this type will
require an objective measure of the extent of uptake of integrated approaches.

As well as providing a means of empirically comparing farming systems, a new con-
ceptual framework of this type would serve a second purpose. The number of possible
combinations of management interventions in the IWM approach mean that the potential
for optimising systems using a traditional experimental approach is limited. Simulation
models of weed growth, competition, and community dynamics, therefore, have an impor-
tant role to play in supporting the uptake of IWM by predicting the outcome of alternative
scenarios [5,6]. Over recent years, these models have also been extended to include evolu-
tionary processes (genetic variation, recombination and selection) to model the evolution
of resistance and predict the impact of alternative management scenarios on resistant and
susceptible weed populations [7]. Where weed population models exist, however, they are
generally local in scope and use context specific parameterisation and input variables to
define the management system. There would be value in combining weed populations
dynamics models on a larger scale in a similar way as has been done for crop growth
models in Europe [8]. A standardised approach to including management interventions in
different combinations would serve as an ‘input template’ that could potentially reduce
the need for parameterisation and allow the output of different models to be compared for
a given scenario using this ‘Ensemble’ approach.

Here we present a novel conceptual framework that uses the logic of ‘object-oriented
programming’ (OOP) to define and compare alternative IWM systems. OOP reduces a
complex system by assigning components of the system to ‘classes’ within which each
class member, or ‘object’, shares common ‘properties’. In the arena of weed population
dynamics modelling, the now widely adopted functional trait-based method for studying
the assembly of weed communities [9] effectively takes this approach. A class, ‘annual
weed’, is defined within which individual species are objects that all share a common set
of traits, or properties (for example, maximum height, seed mass and flowering time).
Studying the impact of management at the level of functional traits, as opposed to studying
the response of every species individually is a pragmatic way of predicting the response
of the whole weed community without the need for detailed parameterisation of every
species [10].

We explored whether a similar approach could be used to distil the large number
of weed management options into a tractable set of classes within which all the objects
impact the weed community via the same processes. This is presented as a data model that
could serve as an input template for simulation models of weed community dynamics or
herbicide resistance. To our knowledge, this is the first time an attempt has been made to
define IWM objectively in a way that can be used in quantitative analyses.
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2. Materials and Methods

This study was part of a large collaborative European Union Horizon 2020 funded
project on IWM: “Integrated Weed Management: Practical implementation and solutions
for Europe (IWMPraise)” [11]. The project brought together weed scientists from eight
European countries (Denmark, France, Italy, Netherlands, Slovenia, Spain, Switzerland
and United Kingdom) to explore the full range of weed management options that could be
combined in IWM strategies relevant to their own cropping systems ranging from narrow
row annual crops to vineyards and olives. Through an iterative design and evaluation cycle
involving farmers and advisors, three years of field trials and demonstrations were run
across Europe between 2018 and 2020. The treatments and weed management combinations
used in these trials, therefore, captured much of the range of feasible IWM scenarios in
Europe. The management information from these trials was used as a resource to design
and populate the novel IWM framework.

The rationale for grouping weed management options into classes was that it was
possible to define interventions that acted on the same biological processes within the weed
community and so their impacts could be modelled using the same model functions. In de-
termining classes, we started from the viewpoint of how an individual weed ‘experiences’ a
management intervention in the context of its timing. The timing of weed management can
thus be understood in terms of five ‘windows of opportunity’ determined by the cropping
cycle (Figure 1) and the life stage of the weeds. Before a crop is drilled, non-selective
herbicides and tillage can be used to control weeds in the seed bank or emerging seedlings
(Window 1). Following drilling, but before crop emergence, pre-emergence herbicides
(‘PRE herbicides’), cover crops or mulches can be used that selectively suppress weed emer-
gence because weed seeds tend to be smaller and shallower in the soil profile than those of
the crop (Window 2). Selective herbicides and mechanical weed control can be used while
weed seedlings are small enough to control and before they begin to compete with the crop
(Window 3). Once weeds begin competing for resources, increasing the competitiveness of
the crop canopy can reduce yield loss and weed seed return (Window 4). Recent advances
in post-harvest weed seed control [12] have also recently raised the possibility of reducing
weed populations by destroying fresh seed (Window 5); this finally class is not currently
included in our framework owing to the novelty of the technology in Europe compared to
the well-established interventions that are routinely used in Windows 1–4.
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as seed mills attached to combine harvesters to destroy weed seed [12]) are yet to be used 
extensively in Europe. We, therefore, identified four classes, which map directly to each 
window, in this first version of our framework, with the potential to add a fifth class in 
the future (Table 1). These classes are now discussed in turn. 

Table 1. Summary of classes associated with the first four control windows. 

Class Management Option Weed Life Stage Object Properties 

1. Tillage 

Seedbed preparation and use 
of stale seed beds including 
ploughing, harrowing and 
drilling. 

Seed 
Emerging seedlings 

Parameters that predict the 
pattern and depth of seed 
mixing in the soil profile. 
 
Estimate of seedling mortal-
ity. 

2. Suppression 

All soil applications with ‘re-
sidual’ activity including liv-
ing (cover crops) and dead 
mulches and PRE herbicides. 

Seed 
Emerging seedlings 

Parameters that predict 
mortality of germinated 
seeds based on dose–
response curves (lethal 
germination). 
 
Mode of action. 
 
Estimate of inhibition of ger-
mination. 

3. Direct control 
Contact herbicides, mechani-
cal weed control including 
tines and hoes. 

Established seedlings 

Parameters that predict 
mortality of established 
seedlings based on dose–
response curves and timing. 
 
Mode of action. 

Figure 1. Illustration of five windows of opportunity for IWM options and the weed life stages impacted. These windows
largely determine the classes of weed management options as they act on different life stages of the weeds. Tillage events
are associated with Window 1, germination suppression events with Window 2, direct control events with Window 3 and
competition events with Window 4. Recent advances in post-harvest weed control raise the possibility of an additional class
associated with Window 5 that is not currently included in our framework.

The processes that determine the impact of management interventions in population
dynamics model will largely be determined by the weed life stage at which they are
targeted (seeds, emerging seedlings, established seedlings, competing plants, fresh seed),
Figure 1. For example, extensive soil cultivation is not possible in a mature crop canopy,
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so a ‘tillage class’ can be defined that only acts on seeds or emerging weed seedlings.
The impact of all objects in a class on weed population dynamics will, therefore, be
mediated by the same biological processes and predicted by the same model functions.
A common set of model parameters can, therefore, be assigned to each class with objects
varying in their specific values. These principles were used to define the classes of IWM
management options and the properties of their objects using the IWMPraise management
information. Each IWMPraise experiment or demonstration trial was defined as a ‘system’
and detailed information was obtained on experimental design and treatment structure.
Each management intervention that would be expected to impact the weeds (even those not
directly targeted at weed control such as seedbed preparation and drilling) were identified
as ‘events’. These ‘events’ were then used to design the framework of classes and objects
such that every system could be interpreted as a sequence of events mapped onto associated
objects on each of the classes. An overarching principle of our framework is that a large
number of events can be distilled down to a smaller number of objects, reducing the need
for parameterisation and facilitating its applicability across multiple models.

3. Results and Discussion

The experiments and demonstrations covered by the IWMPraise meta-data covered a
wide range of management interventions associated with Windows 1–4. However, data
were limited on post-harvest weed control options (Window 5) as these techniques (such
as seed mills attached to combine harvesters to destroy weed seed [12]) are yet to be used
extensively in Europe. We, therefore, identified four classes, which map directly to each
window, in this first version of our framework, with the potential to add a fifth class in the
future (Table 1). These classes are now discussed in turn.

Table 1. Summary of classes associated with the first four control windows.

Class Management Option Weed Life Stage Object Properties

1. Tillage

Seedbed preparation and use
of stale seed beds including
ploughing, harrowing
and drilling.

Seed
Emerging seedlings

Parameters that predict the
pattern and depth of seed
mixing in the soil profile.

Estimate of seedling mortality.

2. Suppression

All soil applications with
‘residual’ activity including
living (cover crops) and dead
mulches and PRE herbicides.

Seed
Emerging seedlings

Parameters that predict
mortality of germinated seeds
based on dose–response
curves (lethal germination).

Mode of action.

Estimate of inhibition of
germination.

3. Direct control
Contact herbicides,
mechanical weed control
including tines and hoes.

Established seedlings

Parameters that predict
mortality of established
seedlings based on
dose–response curves
and timing.

Mode of action.

4. Competition

Crop type and cultivar,
seed rate, time of sowing,
spatial arrangement of seeds
(row width), intercropping.

Competing plants
Parameters that predict the
growth of crop green area
and height.
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3.1. Tillage Class

We identified a class of mechanical farm operations that can only be performed before
a crop is sown (Window 1)—the ‘tillage class’—with objects that share common properties
to do with the action of soil cultivation equipment (for example mouldboard plough, power
harrow or combination drill). Tillage events associated with this class are primarily to
do with seedbed preparation for the following crop but can have large effects on weed
community dynamics [13]. In the case of stale seedbeds, they can also be targeted directly
at controlling weeds. If we assume there are no surviving mature weed plants following
the harvest of the previous crop, tillage events will only act on weeds in the seedbank and
emerging seedlings (Figure 1) and will determine the proportion of seeds that successfully
establish as seedlings in the crop and the remaining viable seedbank. The processes that
determine the effect of tillage events on the fate of seeds in the seedbank are complex
and mediated by biochemical responses of seeds to the environmental signals of light,
temperature, moisture, oxygen, nitrogen and pH [14]. The combination of these signals is
indicative of the favourability of the local environment for a weed to successfully germinate
and establish and will determine the probability of a seed germinating, becoming dormant
or dying. Tillage events, therefore, need to be modelled in terms of how they modify
this local environment and this will determine the properties assigned to objects in the
tillage class.

Tillage can modify the local environment of a weed seed in two ways. Firstly, it can
impact soil structure, effecting distribution of pore sizes, aeration and moisture content
of the soil. Secondly, it can change the depth profile of the seedbank, moving individual
seeds closer to or further from the soil surface. The effects of different tillage implements
on soil structure and weed emergence have been included in a process based model [15]
using estimates of clod size and seedbed porosity. However, these effects will be dependent
on local soil properties and weather conditions at the time of the operation. For example,
the effect of a tillage event on a clay soil under wet conditions will be very different from
a dry, sandy soil. This context dependency means it was difficult to derive properties
that could be assigned to objects in the tillage class that would consistently predict their
relative effect on soil structure. However, we were able to identify properties that predicted
the differences between tillage implements in the depth and intensity of soil disturbance
and the effect on the distribution of seeds through the soil profile [16]. We predict these
contrasts will be conserved across environments.

The system is made more tractable if the soil profile is split into three layers (a
common approach in population dynamics models) defined on the basis of the environment
encountered by weed seeds: (1) the surface (vulnerable to desiccation and predation), (2)
the shallow layer (ideal environment for germination) and (3) the deep layer with increasing
inhibition of germination and promotion of secondary dormancy. If a model has functions
that predict the fate of weed seeds in these different layers, tillage objects can be defined
in terms of how they move seeds between the layers. In effect, soil depth is being used
as a proxy for the environmental signals that drive the processes determining the fate
of the seedbank. For example, germination is high in the surface layer because seeds
experience fluctuating temperatures, moisture and are exposed to light (all factors that
promote germination) and secondary dormancy will be induced at depth because of low
temperatures and oxygen. We defined three properties of tillage objects that predict its
effect on the distribution of seeds in the soil profile (Figure 2): (1) depth of soil disturbance
(<5 cm, 5–10 cm, >10–20 cm, >20 cm), (2) degree of soil inversion, defining extent of mixing
between soil layers (complete, intermediate, none) and (3) intensity of soil disturbance,
defining the proportion of seeds that are moved (high, medium, low). Extreme examples
would be the mouldboard plough (assigned to an object with high disturbance to >20 cm
and with complete inversion) compared to a direct drilling (low disturbance at <5 cm with
no soil mixing).
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Figure 2. Illustration of three properties assigned to objects in the tillage class. These relate to (1) the
depth of tillage, (2) degree of mixing or soil inversion and (3) intensity of tillage (width of the arrow).
Objects that differ in these properties will act differentially on the distribution of weed seeds between
the soil layers: surface, shallow and deep.

Required information for a tillage event would be the description of tillage implement
(that is mapped onto an object in the tillage class using look-up tables) and timing-this is
relevant if multiple tillage events were implemented for example in a stale seedbed system.

Finally, as well as acting on the soil seedbank, a tillage event will also impact any
seedlings that emerge prior to the crop being drilled. This is the principle on which non-
chemical stale seedbeds are based, repeated cultivations prior to drilling both stimulate
aflush of weeds and kill the emerged seedlings by uprooting and/or burial. We hypothesise
that objects with different combinations of properties defined above will differ along similar
lines in their efficacy in controlling emerged seedlings but this will need to be validated
using the literature on the effect of specific tillage implements [17].

3.2. Suppression Class

Following the drilling of a crop, there is a short window for weed control that also acts
on weed seeds and emerging seedlings (Window 2) but management options implemented
in this window act on weeds via a different pathway to tillage events [18]. Rather than
physically moving seeds, these options create an additional (chemical or non-chemical)
barrier to weed emergence reducing the recruitment of seedlings from the seedbank —we,
therefore defined a separate ‘suppression class’ containing objects with a different set of
properties. This class includes PRE herbicides, cover crops (living mulches), crop residues,
other organic dead mulches such as bark and polyethylene barriers. We identified common
properties of objects in this class that can be used to predict the effect of a ‘suppression
event’ on the transition of the seedbank to established seedlings for both chemical and non-
chemical options. These will include the parameters that define dose–response curves; for
PRE herbicides, percentage reduction in surviving seedlings can be expressed against the
proportion of the field rate. These parameters will be specific to an active ingredient/weed
species combination. We suggest that for non-chemical suppression, including, for example,
living mulches or crop residues, the same properties can be derived from an estimation of
the maximum suppressive effect that can be achieved at realistic rates of application. There
is a growing literature on the effect of different cover types or management of mulches and
residues that could be used to populate these fields [19].

Our aim was to develop a framework that could be used as an input template for
models that predict the risk of the evolution of herbicide resistance under contrasting weed
management scenarios. These models predict the relative prevalence of resistance genes in
a population based on evolutionary processes and the selection pressure associated with
herbicide use (see fuller discussion under ‘direct control class’). The selection pressure
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is related to the dose rate and mode of action of the herbicide; as PRE herbicides are
included in the suppression class, objects in the class also require a property defining the
chemical mode of action defined by the Herbicide Resistance Action Committee (HRAC,
www.hracglobal.com). For non-chemical options in the suppression class, it is possible
to define three additional generic modes of action: (1) creation of a physical barrier to
weed emergence, (2) alteration of wavelength of light (shading by cover crops) and (3)
allelopathy from cover crops or residues. We do not anticipate that these additional modes
of action will be relevant to resistance models but could be used in community dynamics
models to select between species on the basis of traits. For example, large seeded weeds
would be predicted to be less impacted by a mulch creating a physical barrier.

3.3. Direct Control Class

The primary objective of IWM is to protect crop yield in a way that is agronomically
and environmentally sustainable. Following the emergence of the crop there is a window
of opportunity to control weeds before they begin to compete for resources and potentially
reduce yield (Window 3). This is equivalent to the established concept of the ‘critical
period for weed control’ [20]. The management options available in this window all act on
established seedlings by killing plants or inflicting damage that reduces their competitive
impact and are grouped in the ‘direct control’ class. In the case of non-selective herbicides,
such as glyphosate, they are mainly used in Window 1 before the crop has emerged, as part
of seedbed preparation, a stale seedbed strategy or to destroy cover crops.

The properties of objects in the direct control class are similar to those in the sup-
pression class but do not impact the transition from seedbank to seedlings and so do not
include an estimate of the suppression of germination. Most herbicides are included in
this class and modelling their impact requires data on dose–response curves derived from
herbicide bioassays [21]. These parameters will be specific to each combination of weed
species and active ingredient (treating susceptible and resistant population separately)
and will also be affected by the size of the weed at the time of application. Unlike tillage
implements, therefore, where there was potential to distil many specific manufacturers’
pieces of equipment to a small number of objects, in this class, each active ingredient x
weed x application timing (autumn vs. spring) needs to be represented by a separate
object in our framework. However, our framework does facilitate the comparison of IWM
systems across Europe where herbicides with the same active ingredients are marketed
with different product names. Each herbicide product will be mapped onto a direct control
object defined by the active ingredients.

The use of herbicides in Window 3 is the most important part of the system for
managing the risk of the evolution of herbicide resistance (resistance is yet to become a
major problem in PRE herbicides used in Window 2). Numerous studies have shown
that over-use of the same mode of action of contact herbicides increases the chance of
resistance building up [22]. This is certainly the case for target site resistance (TSR) [23] and
there is increasing evidence that this also leads to the build up of non-target site resistance
(NTSR) [24]. Both TSR and NTSR can occur within the same plant and confer resistance to
a wide range of modes of action [25]. The only true way to stop resistance to herbicides is
not to use them. However, due to weed pressure in most situations, this is currently not a
viable option. The best way to employ herbicides is in a diverse rotation with numerous
types of crops, meaning herbicides from a wide range of modes of action are applied and
no one or two groups of mode of action are relied upon. The HRAC mode of action is
included as a property of herbicides in the direct control class and there is the opportunity
to use our framework to derive a metric of ‘herbicide diversity’ for a given IWM strategy
as well as using it to predict the risk of resistance evolving using simulation models. Could
a low dose of herbicide give sufficient control and not select for resistance? This has long
been discussed and researched [26] and by other groups. The consensus is that low doses
select for general resistance mechanisms (NTSR) while high doses select for TSR, but this is

www.hracglobal.com
www.hracglobal.com
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still not fully understood and could be explored in resistance models-any direct control
event in our framework must therefore include the dose of each application.

As with the suppression class, we aimed to derive the same set of properties for
chemical and non-chemical options in the direct control class. For mechanical weed control,
we identified four modes of action: (1) uprooting (hoes/tines/finger weeders), (2) removal
of top growth (blades), (3) burning and 4) electrocution. We expect these different modes of
action to impact weed species differentially depending on the location of the meristem, life
form and growth habit [17]. We suggest that the equivalent of a dose–response curve can
be estimated for non-control options using speed of operation as a surrogate for the dose
of a chemical. While this would maintain the integrity of our framework in that all objects
in the direct control class would have the same set of properties, this approach needs to be
validated either from the literature or new experimentation.

3.4. Competition Class

The negative impact of weeds that survive direct control options can be mitigated by
shifting the competition balance for resources in favour of the crop. There are different ways
in which this can be performed: (1) selecting a more competitive crop or crop cultivar [27],
(2) increasing the seed rate, (3) changing the spatial arrangement of sowing [28] and (4)
using a companion or intercrop [29]. The impact of crop competition on weeds is generally
modelled using functions that describe the distribution of resources between competing
species and parameters of resource use efficiency [30]. The pattern of resource competition
is determined by the eco-physiological characteristics of the crop including phenology,
specific leaf area and partitioning parameters. These parameters will also be related to the
local environment and be specific to different crop cultivars bred for individual European
countries. One objective of the management template we develop here is to facilitate the
application of models developed in one country to be used more widely in an Ensemble
approach to compare systems on a European scale. It would, therefore, not be appropriate
to use country specific eco-physiological parameters to model crop competition in other
countries and a more pragmatic approach is required.

Our solution is to define a ‘competition class’ that combines the various IWM options
for manipulating the crop canopy, listed above, in objects with properties that predict
the growth curve of the crop empirically (as opposed to mechanistically). If we assume
in fertilised systems, the main limiting resource for weed growth is light, the relevant
characteristics that a model requires to predict the impact of crop competition on the weeds
is green area and height. The properties of an object in the competition class are, therefore,
the parameters for the logistic functions fitted to green area index and height: (1) initial
value, (2) maximum rate of increase, (3) point of inflection and (4) maximum value. Weed
competition models would ordinarily fit these functions against a measure of biological
time (thermal time or photo-thermal time). However, again, the parameterisation of these
metrics (base temperatures and photoperiod) will be crop and country specific and (even
disregarding processes such as vernalisation) for the most part, these data are not available.
The aim of this study was to develop a generic management template that could be used
to compare a wide range of cropping systems and IWM approaches. Our solution was to
draw on local agronomic knowledge to construct ‘typical’ growth curves based on Julian
calendar days. By asking simple agronomic questions, such as ‘when do your winter
wheats typically reach their maximum height and how tall are they?’ of agronomists in
different countries, it is straightforward to construct sets of growth curves based on the
cropping calendar in each country.

The parameters for these growth curves for height and GAI for a typical seed rate,
cultivar and row width will define a set of ‘default’ objects in the competition class covering
a range of crops and countries. If no IWM options are used to modify the crop canopy or
no information is available on a given system, these objects can be used to construct a ‘crop
rotation template’ in which other weed management options can be modelled. Where the
crop canopy has been manipulated as part of an IWM strategy, for example by increasing
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the seed rate or using a competitive cultivar, we propose adjusting the typical values
according to evidence from the literatures to create new objects in the competition class.
For example, maximum height could be increased by 10% if a competitive cultivar is used
or initial green area increased by 100% if the seed rate is doubled. While the data required
for these adjustments may be available in the literature, there is also the opportunity to use
simulation models of crop growth to derive them (Figure 3) [31].
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Figure 3. Example crop growth curves that can be used as model input to quantify the competitive
ability of a crop canopy. We propose deriving a standard set of logistic curves for Green Area Index
(GAI) and height for each country x crop combination plotted against calendar days after the earliest
sowing date using parameters for a typical seed rate and cultivar. The parameters of the curves can
subsequently be modified to account for changes in sowing date, seed rate, sowing arrangement
and cultivar competitiveness either using empirical data or simulation models. This is illustrated
using the example of winter wheat GAI in the UK sown early at a high seed rate and using a cultivar
with more prostrate leaves (blue line) compared to a late sown crop with a low seed rate and using
a cultivar with more erect leaves (orange line). Curves have been fitted to predicted data from a
simulation model [31].

3.5. Implementation of the Framework

The objective of our framework was to develop a scaffold for building management
scenarios on, which could be used as input for weed population dynamics models. We
aimed to achieve this by creating a data-model that allows different ‘events’ to be mixed and
matched in alternative scenarios or ‘weed management systems’ (Figure 4). A management
scenario could be populated using actual management data from farms or field experiments
or as a theoretical exercise to study novel systems. The management information would
serve as a list of ‘events’ associated with each of the windows of opportunity (Figure 1).
Each event would be associated with an object in the corresponding class which, when
called by a model, would provide the parameters predicting the response of weeds to
that event. Objects would have additional properties assigned to them, including mode
of action, that would be supported by a suite of look-up tables (for example of herbicide
products, active ingredients and modes of action or dose–response curves). The exception
is the competition class that is not related to a list of events but rather determines the effect
of the crop canopy on weed growth over the period of resource competition.
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The combination of objects defines the IWM system. The use of a common, generic
framework raises the possibility of deriving additional metrics that could be used to
compare across systems. For example, the properties of direct control events can be used to
quantify herbicide diversity and an index of treatment frequency, both important factors for
managing the evolution of herbicide resistance and mitigating the negative environmental
impacts of herbicides. These derived variables could then be used in meta analyses that
compare the outcomes of an IWM system either from empirical data or model predictions,
for example, crop yield loss, weed abundance and diversity and herbicide resistance.

4. Conclusions

A significant challenge for the study and implementation of IWM is how to quan-
titatively characterise and compare alternative systems in an objective way. We have
developed a framework that facilitates the combination of large numbers of specific weed
control options into a smaller number of objects with properties defined by the stage they
impact the weed life cycle and the processes that determine their behaviour in population
dynamics models. Where adopted, presenting management scenarios in such a framework
should make it easier to test the same scenarios between different simulation models, and
compare previously published explorations of management effects. Here, we present the
conceptual framework, work is currently ongoing to associate weed control with classes
and objects using meta-data from IWMPraise. This is resulting in a growing number of
data look-up tables that will serve as a resource for populating the framework for the wider
community. A valuable piece of further work would be to derive a way of quantitatively
comparing systems in terms of the diversity of management. One option would be to
apply metrics commonly used to quantify biological diversity, for example Shannon or
Simpsons indices [32], by treating objects as species. The framework could facilitate the
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future uptake of IWM in several ways. Firstly, it could be used to further confirm the
hypothesis that diversity of management interventions is correlated with weed diversity
which, in turn, is related to crop yield loss [33] by combining multiple experiments or
systems in a meta-analysis. Secondly, if the framework could be presented in a way that
was accessible to farmers and advisors, it could serve as a decision support tool to guide
the movement of cropping systems along a gradient of IWM and towards more sustainable
solutions. Finally, it could provide an objective measure for defining IWM to support
financial subsidies to compensate farmers for increased costs and to incentivise uptake.
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