1	Development and characterization of microsatellite markers for
2	the rubber tree powdery mildew pathogen Oidium heveae
3	
4	Qiaohui Han ^{a, b} , Yongxiang He ^c , Haiyan Che ^b , Daquan LUO ^b , Jonathan S. West ^d , Xueren Cao ^{b*} ,
5	
6	^a State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineer
7	ing, Research and Development Center for Fine Chemicals, Guizhou University, Gui
8	yang 550025, P.R. China
9	^b Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of
10	Agriculture, Environment and Plant Protection Institute, Chinese Academy of
11	Tropical Agricultural Sciences, Haikou 571001, China
12	^c College of Plant Protection, Hainan University, Haikou 570228, China
13	^d Rothamsted Research, Harpenden, AL5 2JQ, UK
14	
15	
16	*To whom correspondence should be addressed:
17	E-mail: caoxueren1984@163.com
18	

1	Abstract Powdery mildew, caused by Oidium heveae, is a major threat to rubber
2	plantations worldwide. Population studies are scarce for this pathogen due to the lack
3	of polymorphic molecular markers. In this study, sixteen polymorphic microsatellite
4	loci were identified using DNA extracted from single lesions based on the
5	whole-genome sequences of the pathogen. Primers of these loci were applied to 138
6	O. heveae samples from five counties in Hainan, China. The number of alleles per
7	locus ranged from 2 to 11 and the gene diversity varied from 0.014 to 0.728. In total,
8	119 multilocus genotypes (MLGs) were observed for the 138 samples. However, only
9	one sample was significantly distinct from the other samples base on DAPC analysis.
10	Further study indicated that there were three subclusters for the other 137 samples, but
11	no evidence for regional genotypic subdivision was identified. The microsatellite
12	markers developed in this study are very useful to study the genetic structure and
13	dispersal route of O. heveae, especially as it can use DNA extracted directly from
14	infected leaves.
15	
16 17	Keywords Microsatellite markers · O. heveae · Rubber tree · Population structure

1 Introduction

2	Rubber tree (Heveae brasiliensis), a tropical deciduous tree, is economically
3	important for the primary source of natural rubber latex. Rubber trees were
4	successfully planted in South China, mainly in Hainan, Yunnan and Guangdong
5	provinces with plantation area approximately $24.14\times10^4km^2$ by the end of 2015 (Liu
6	et al., 2015). However, these regions were considered as marginal areas for rubber
7	plantations and provided favorable conditions for the proliferation and development
8	of rubber tree diseases such as powdery mildew (Liyanage et al., 2016). Powdery
9	mildew is a major threat to rubber plantations worldwide as the disease can result in a
10	reduction of latex yields of up to 45% (Liyanage et al., 2016). In China, the disease
11	was first reported in Hainan in 1951 and now it occurs annually in all rubber
12	plantations (Wu et al., 2019).
13	Due to lack of a teleomorph, the causal agent of rubber tree powdery mildew is
14	Oidium heveae, which was first described by B. A. Steinmann in 1925. However,
15	based on morphological and phylogenetic data, recent studies suggested that O.
16	heveae is the asexual morph of Erysiphe quercicola using rubber tree powdery
17	mildew sampled from Brazil, Thailand, Malaysia, Vietnam, Sri Lanka and China
18	(Limkaisang et al., 2005; Tam et al. 2016; Limkaisang et al., 2017; Wu et al., 2019).
19	Whether sexual reproduction occurs for the pathogen on rubber tree hosts is still
20	unknown.
21	As an obligate parasite, the pathogen only infects tender tissues of rubber tree i.e.
22	leaves, buds, and inflorescences, so the disease mainly occurs in spring during

1	refoliation season after annual wintering. The fungus survives from one season to the
2	next on young leaves that emerge periodically within the canopy or on tender leaves
3	in rubber nurseries and serve as primary inoculum for epidemics in spring.
4	Population genetics is the study of the distribution of allele frequencies (patterns)
5	in space and time which can be used to infer the origin, migration and evolution of
6	plant pathogens (Grünwald et al., 2017). This information is critical for devising
7	strategies to control the disease. Molecular markers are highly valued in population
8	genetic studies for their capability to distinguish genotypes. Among the numerous
9	marker types available, microsatellite, also known as simple sequence repeats (SSRs),
10	have become most widely used in studies of plant pathogens. Microsatellites are
11	abundant, codominant, universal, easy to automate, reliable and genetic neutrality
12	markers (Grover and Sharma, 2016). Microsatellite markers were developed and used
13	for some powdery mildew pathogens such as <i>E. necator</i> (Frenkel et al., 2012),
14	Blumeria graminis f.sp. tritici (Wang et al., 2014), B. graminis f. sp. hordei (Tucker et
15	al., 2015), E. pulchra (Wyman et al., 2019) and Podosphaera leucotricha (Lederson et
16	al., 2021). However, there was no microsatellite markers developed for O. heveae.
17	One practical issue for population genetic analyses arises with obligate
18	pathogens such as rusts or powdery mildews that cannot be cultured on routine media
19	to obtain sufficient biomass for DNA extraction (Grünwald et al., 2017). One of the
20	approaches to cope with this issue was the direct extraction of fungal and plant DNA
21	from infected leaves and developed PCR primers for amplification of species specific
22	loci. DNA was extracted from infected leaves and then used for SSR genotyping had

1	been reported for some obligate pathogens i.e. Puccinia striiformis f.sp. tritici from
2	single sporulating lesion (Ali et al., 2011; Ali et al., 2014; Khan et al., 2019), E.
3	pulchra from fresh leaves of C. florida (Wyman et al., 2019) and Plasmopara viticola
4	from single oilspots of grapevine (Maddalena et al., 2020).
5	To date, there is currently limited information regarding the genetic diversity of
6	O. heveae. Only ITS and 28S sequences were used for the pathogen identification and
7	phylogenetic analyses (Limkaisang et al., 2017; Wu et al., 2019). The purpose of this
8	study was to (i) develop microsatellite markers based on whole-genome sequence data
9	of O. heveae using DNA extracted from single lesions, (ii) to use the newly developed
10	method to characterize the population structure of this pathogen in Hainan, China.
11	Materials and methods
12	Sample collection and DNA extraction
12 13	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between
12 13 14	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different
12 13 14 15	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations),
12 13 14 15 16	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations), Danzhou (six plantations), Qionghai (three plantations) and Haikou (six plantations).
12 13 14 15 16 17	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations), Danzhou (six plantations), Qionghai (three plantations) and Haikou (six plantations). A single lesion with a 1 cm diameter cork borer per leaf was randomly chosen and
12 13 14 15 16 17 18	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations), Danzhou (six plantations), Qionghai (three plantations) and Haikou (six plantations). A single lesion with a 1 cm diameter cork borer per leaf was randomly chosen and considered to be a sample. Four to six samples were used in each plantation and a
12 13 14 15 16 17 18 19	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations), Danzhou (six plantations), Qionghai (three plantations) and Haikou (six plantations). A single lesion with a 1 cm diameter cork borer per leaf was randomly chosen and considered to be a sample. Four to six samples were used in each plantation and a total of 138 samples were collected in this study (Table S). Furthermore, four samples
12 13 14 15 16 17 18 19 20	Sample collection and DNA extraction Leaves showing powdery mildew symptoms were randomly collected between February and April 2021 from 25 rubber tree plantations located in 5 different counties of Hainan, China: Sanya (five plantations), Qiongzhong (five plantations), Danzhou (six plantations), Qionghai (three plantations) and Haikou (six plantations). A single lesion with a 1 cm diameter cork borer per leaf was randomly chosen and considered to be a sample. Four to six samples were used in each plantation and a total of 138 samples were collected in this study (Table S). Furthermore, four samples

1	extracted using the Tiangen Plant Genomic DNA Kit (Tiangen Biotech, Beijing,
2	China) according to the manufacturer's instructions.
3	Microsatellite development and selection
4	The genome of O. heveae strain HO-73 was downloaded from NCBI database
5	(Accession No: QVIK0000000). Tandem Repeat Finder 4.08 (Benson 1999) was
6	used to identify microsatellite motifs. Only di- to hexanucleotide motifs was included
7	in this study. The copy number criteria were 6 or more repeat units for dinucleotide
8	repeats (DNRs), and 5 or more repeat units for trinucleotiderepeats (TNRs),
9	tetranucleotide repeats (TeNRs), pentanucleotide repeats (PNRs), and hexanucleotide
10	repeats (HNRs).
11	Primers were designed within flanking regions of microsatellite motifs (≥ 10
12	repeat units for DNRs, ≥ 8 repeat units for TNRs, ≥ 6 repeat units for TeNRs, PNRs
13	and HNRs) using PRIMER3 software, with parameters set to primer length from 18 to
14	23 bp, GC content of 35 to 65%, and primer melting temperatures in the range 52 to
15	65°C for amplicons of 140–350 bp. A total of 65 primer pairs were designed initially.
16	Six samples (each two from Hainan, Yunnan and Guangdong, respectively) as well as
17	a positive control (DNA of the pathogen) and a negative control (sterile distilled water)
18	were used for all PCR reactions to ensure validity of our data. Furthermore, to
19	eliminate the possibility of amplifying host DNA, all primers were tested against
20	DNA from uninfected leaves from four rubber tree varieties (CATAS7-33-97,
21	Haikeng 1, PR107 and RRIM600).
22	For each SSR primer pair, PCR was performed with a Veriti [™] Dx 384-well

1	Thermal Cycler (Applied Biosystem, Carlsbad, CA, USA) in a 25 µl reaction volume.
2	The PCR mixtures contained 12.5 μ l of Taq-Plus PCR Forest Mix (GeneTech,
3	GuangZhou Jitaike Gene Sci-Tech Co.,Ltd., Guangdong, China), 1 μ l of 5 μ M of each
4	primer, and 1 μ l of DNA template. A touchdown polymerase chain reaction was
5	employed using the following thermal cycling conditions: 95°C/5 min; (95°C/30 s,
6	62°C/30 s –1°C/ cycle, 72°C/30 s) ×10; (95°C/30 s, 52°C/30 s, 72°C/30 s) ×25,
7	72°C/20 min. PCR products were visualized on 1% agarose gels.
8	DNA sequences (four of the six samples) of the primer pairs with expected
9	product sizes that did not amplified rubber tree DNA or the size of the amplicon for
10	rubber tree were different from those for the samples were obtained to confirm
11	amplification of the targeted motif. DNA was sequenced by SinoGenoMax Co., Ltd.
12	(Chinese National Human Genome Center, Beijing, China). Sixteen microsatellite loci
13	showed different repeat units based on sequences analysis and these sequences were
14	submitted to GenBank (see Table 1).
15	Microsatellite genotyping
16	For the 16 selected primer pairs, the 5' end of the forward primer was labeled with
17	one of the three fluorescent dyes (FAM, HEX and TAMRA; Applied Biosystems,
18	Foster City, CA) and they were used to amplify gDNA from the O. heveae samples in
19	the study. The PCR mix for each primer contained 1ul of template DNA, $5\mu L$
20	2×TaqPCR MasterMix (GeneTech, GuangZhou Jitaike Gene Sci-Tech Co.,Ltd.,
21	Guangdong, China), 0.5µl each of forward and reverse primers (10 µM) and 3 µl of
22	double-distilled H ₂ O. Amplicons were analyzed with an ABI 3730xl DNA Analyzer

1	(Applied Biosystems, Carlsbad, CA, USA) for capillary electrophoresis. Because O.
2	heveae is a haploid, a single peak (amplicon) was expected for each sample near the
3	expected size (Fig. 1). The GeneScan TM 500 LIZ (Thermo Fisher Scientific) was used
4	for the standard dye size. The amplicon sizes were determined using GeneMarker
5	software version 3.0.0 (Applied Biosystems, Foster City, CA).
6	Data analysis
7	To evaluate the 16 selected microsatellite markers, the number of alleles (Na),
8	effective number of alleles (Ne), Shannon's information index (I) and Nei's unbiased
9	gene diversity (h) was computed for each marker based on the data of 138 samples in
10	GenAlEx v. 6.5.2 (Peakall and Smouse, 2012). A genotype accumulation curve was
11	created to determine the threshold required to discriminate among unique MLGs
12	given a random sample of n loci with 1,000 bootstrap replicates using the package
13	poppr.
14	To determine the genetic diversity of different populations defined on the basis
15	of counties, the following statistics were computed with the poppr package (Kamvar
16	et al. 2014) in R 4.1.0, including number of multilocus genotypes (MLGs), the
17	number of expected MLG based on rarefaction (eMLG) to eliminate potential effects
18	different sample sizes, Simpson's index of genotypic diversity (λ), genotypic
19	evenness (E.5) and Nei's gene diversity. The allelic richness (R_a) and private allele
20	richness (R_p) of populations was calculated with the rarefaction approach
21	implemented in the ADZE programme to account for differences in the sampling
22	effort (Szpiech et al. 2008).

1	The population genetic structure of the 138 O. heveae samples was studied using
2	discriminant analysis of principal components (DAPC) in the adegenet package
3	(Jombart et al., 2010). The number of clusters that best fitted the original data was
4	determined using a K-means clustering based on Bayesian information criteria (BIC).
5	Results
6	Characterization and distribution of microsatellites
7	In total, 2720 di- to hexanucleotide motifs were identified (Table 2). Among them, the
8	most common repeat motifs were dinucleotide (1619, 59.52%), followed by
9	trinucleotide (682, 25.07%). The observed frequency for tetranucleotide repeats was
10	12.13% (330), while the proportion for the penta- and hexanucleotide repeats each
11	were below 2%. The number of microsatellite repeat units per locus ranged from 5 to
12	43. Microsatellites with six tandem repeats (27.39%) were the most common types,
13	followed by five tandem repeats (18.60%), seven tandem repeats (13.71%), and eight
14	tandem repeats (9.49%).
15	Evaluation of microsatellite markers
16	Among the 65 microsatellite primer pairs designed, 9 primer pairs did not did not
17	produce an amplification product and the amplicon sizes of another 11 primer pairs
18	were not the same as expected or could not be distinguished from those with rubber
19	tree DNA only. For the other 45 primer pairs with expected product sizes that did not
20	amplify rubber tree DNA, or where the sizes of the amplicon were different from

21 those with rubber tree DNA, 16 microsatellite markers successfully amplified

1	polymorphic PCR products based on the sequences analysis. Based on the data from
2	138 samples from Hainan, the number of alleles per primer pairs ranged from 2
3	(OH-SSR38) to 11 (OH-SSR51). Gene diversity of the 16 loci ranged from 0.014
4	(OH-SSR38) to 0.728 (OH-SSR28) (Table 3).
5	Population structure
6	According to the genotype accumulation curve (Fig. S1), a plateau was reached in the
7	number of each MLG for the number of loci used, which indicated that the 16 loci
8	used were sufficient to discriminate individuals among the tested samples. In total,
9	119MLGs were detected among the 138 samples, among which only 7 MLGs were
10	detected in different samples, whereas the remaining 112 MLGs were observed only
11	once. MLG 87 was detected in 11 samples from 10 plantations in four counties
12	(except Qionghai) while the other 6 shared MLGs were only identified in two or three
13	samples from one or two counties (Tables S1).
14	The number of eMLG was similar for populations from different counties. A
15	high genotypic diversity was observed in all populations as revealed by Simpson's
16	index and genotypic evenness (> 0.91) (Table 4). The Nei's gene diversity ranged
17	from 0.272 to 0.353. Allelic richness (R_a) averaged across all loci ranged from 2.813
18	to 3.813 and the private allele richness (R_p) ranged from 0.248 to 0.685 (Table 4).
19	Based on the lowest BIC value, the k-means method estimated eleven clusters
20	present in the 138 samples; however, only one sample (from Qiongzhong) was
21	significantly separated for the other samples (Fig. 2). Further analysis of for the other
22	samples indicated that nine subclusters were the optimal number to describe the data

1	according to the k-means method. However, the DAPC analysis of the samples
2	indicated that these nine subclusters reduced to three subclusters as the increase of
3	BIC value from $K = 9$ to $K = 3$ was small (Fig. S2). Therefore, three subclusters were
4	used in the DAPC analysis for the other 137 samples (Fig. 3). Each subcluster
5	contained 40, 10 and 87 samples, respectively. Both subcluster 1 and subcluster 3 had
6	samples from all five counties while subcluster 2 had samples from four counties (all
7	counties except Qionghai) (Fig. 4).
8 9	Discussion
10	The whole-genome sequences of fungi allow the identification of microsatellites at
11	genome-wide level and this approach has been applied successfully in other powdery
12	mildew pathogens including B. graminis f. sp. hordei (Tucker et al., 2015), E. pulchra
13	(Wyman et al., 2019) and <i>P. leucotricha</i> (Lederson et al., 2021). In the present study,
14	the genome sequence of a strain of O. heveae was used to develop 16 polymorphic
15	microsatellite markers. Their utility for population studies was demonstrated by
16	assessing samples from Hainan, China.
17	Among the 16 markers, only 8 of them were with the Nei's unbiased gene
18	diversity above 0.25 (Table 3). The main reason may be that the samples were all
19	from a single province of China and the Nei's unbiased gene diversity may be higher
20	if samples had been taken from different provinces. However, the microsatellite
21	markers developed in this study were still useful for studying the genetic diversity and
22	population structure of <i>O. heveae</i> .
23	More importantly, the microsatellite markers developed in this study can be used

1	for DNA extracted from a single lesion and only a single peak (amplicon) near the
2	expected size was observed for each sample used in this study (Fig. 1). This was very
3	important for the genetic structure research of O. heveae because of the difficulty in
4	the preserving and culturing of the pathogen. The pathogen only infects young tissues
5	of rubber tree i.e. leaf, bud and inflorescence and no protective green agent has been
6	reported on rubber tree leaf made it was impossible to culture the pathogen on
7	detached leaves (Tu et al., 2012). As a woody plant, although rubber tree tissue
8	culture of seedlings has been successfully demonstrated (Qin et al. 2017), usually only
9	three small tender leaves are produced per seedling so a lot of seedlings and time
10	would be needed to obtain sufficient powdery mildew biomass for DNA extraction.
11	The technique developed in this study could save time and resources in producing
12	seedlings for population structure research of O. heveae.
12 13	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples
12 13 14	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven
12 13 14 15	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct
12 13 14 15 16	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups
12 13 14 15 16 17	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups (Fig. 2). Whether the individual represented in the sample that clustered distinctly had
12 13 14 15 16 17 18	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups (Fig. 2). Whether the individual represented in the sample that clustered distinctly had originated from another province or region requires further research but dispersal of
12 13 14 15 16 17 18 19	seedlings for population structure research of <i>O. heveae.</i> The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups (Fig. 2). Whether the individual represented in the sample that clustered distinctly had originated from another province or region requires further research but dispersal of airborne conidia of powdery mildew is possible over long distances (Glawe 2008).
12 13 14 15 16 17 18 19 20	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups (Fig. 2). Whether the individual represented in the sample that clustered distinctly had originated from another province or region requires further research but dispersal of airborne conidia of powdery mildew is possible over long distances (Glawe 2008). Further analysis indicated that the 137 samples that were clustered together could be
12 13 14 15 16 17 18 19 20 21	seedlings for population structure research of <i>O. heveae</i> . The 16 markers developed in this study were evaluated based on 138 samples from five counties in Hainan, China. In DAPC analysis of the entire data set, eleven clusters best explained the data. However, only one sample was assigned to a distinct cluster and the other 137 samples were further divided into distinct genetic groups (Fig. 2). Whether the individual represented in the sample that clustered distinctly had originated from another province or region requires further research but dispersal of airborne conidia of powdery mildew is possible over long distances (Glawe 2008). Further analysis indicated that the 137 samples that were clustered together could be grouped into three subclusters but these could not be attributed to sampling counties

1	Similar results were reported about the population structure of apple powdery mildew
2	P. leucotricha in Washington State, USA (Lederson et al., 2021). Also no regional
3	genotypic subdivision was observed in mildew pathogens such as barley powdery
4	mildew B. graminis f. sp. hordei from Australia (Tucker et al., 2015) and the
5	dogwood powdery mildew E. pulchra in the eastern United States (Wyman et al.,
6	2019). Furthermore, MLG 87 was detected in four counties, which also indicated the
7	dispersal of the pathogen within different counties. This is consistent with that
8	powdery mildew fungi can produce huge numbers of spores, which are wind
9	dispersed (Nicolaisen et al., 2017). In spring, the time for rubber trees to produce
10	young leaves varied in different counties where the time for Sanya was usually earlier,
11	followed by Qiongzhong, Qionghai and Danzhou, while Haikou was the latest in the
12	five counties. The time for rubber trees to produce young leaves also varied among
13	plantations in the same county because of the varieties and cultivation measures. This
14	variation in susceptible periods is thought to make it more likely that a new cycle of
15	infection will occur successfully each year in different regions and may influence the
16	dispersal of the pathogen.
17	In conclusion, this study developed 16 microsatellite markers to characterize

genetic variation of *O. heveae* using DNA extracted from single lesions. This can save
a lot of time for the biomass collection for DNA extraction. Furthermore, these
markers can be used to study the population structure of the pathogen at the regional
level for samples from different regions i.e. Guangdong and Yunnan in China or other
countries and may imply the dispersal route of the pathogen. Additionally, whether

1	there could be a sexual stage present from the diversity of the population can be
2	studied using these markers in future research.
3	
4	Funding This work was funded by the National Natural Science Foundation of
5	China (31972212) and Central Public-interest Scientific Institution Basal Research
6	Fund for Chinese Academy of Tropical Agricultural Sciences (No. 1630042017003).
7	The authors have no conflict of interest to declare.
8	
9	Declarations
10	Conflict of interest The authors declare no conflict of interest.
11	Ethical approval This article does not contain any studies with human participants or
12	animals performed by any of the authors.
12 13	animals performed by any of the authors.
12 13 14	animals performed by any of the authors. References
12 13 14 15	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A
12 13 14 15 16	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, <i>Puccinia striiformis</i> f.
12 13 14 15 16 17	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, <i>Puccinia striiformis</i> f. sp. tritici, based on DNA extraction from infected leaf and multiplex PCR
12 13 14 15 16 17 18	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, <i>Puccinia striiformis</i> f. sp. tritici, based on DNA extraction from infected leaf and multiplex PCR genotyping. <i>BMC Research Notes, 4</i> , 240.
12 13 14 15 16 17 18 19	 animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, <i>Puccinia striiformis</i> f. sp. <i>tritici</i>, based on DNA extraction from infected leaf and multiplex PCR genotyping. <i>BMC Research Notes</i>, 4, 240. Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S.,
12 13 14 15 16 17 18 19 20	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f. sp. tritici, based on DNA extraction from infected leaf and multiplex PCR genotyping. BMC Research Notes, 4, 240. Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S., Enjalbert J., & Vallavieille, C. (2014) Origin, migration routes and worldwide
12 13 14 15 16 17 18 19 20 21	animals performed by any of the authors. References Ali, S., Gautier, A., Leconte, M., Enjalbert, J., & de Vallavieille-Pope, C. (2011) A rapid genotyping method for an obligate fungal pathogen, <i>Puccinia striiformis</i> f. sp. tritici, based on DNA extraction from infected leaf and multiplex PCR genotyping. <i>BMC Research Notes</i> , 4, 240. Ali, S., Gladieux, P., Leconte, M., Gautier, A., Justesen, A. F., Hovmøller, M. S., Enjalbert J., & Vallavieille, C. (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen <i>Puccinia</i>

1	Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences.
2	Nucleic Acids Research, 27(2), 573-580.
3	Chen, X.M., Chen, H. L., Li, W. G., & Liu, S.J. (2016) Remote sensing monitoring of
4	spring phenophase of natural rubber forest in Hainan province. Chinese Journal
5	of Agrometeorology, 37(1), 111-116.
6	Frenkel, O., Portillo, I., Brewer, M. T., Pèros, J. P., Cadle-Davidson, L., & Milgroom,
7	M. G. (2012) Development of microsatellite markers from the transcriptome of
8	Erysiphe necator for analyzing population structure in North America and
9	Europe. Plant Pathology, 61, 106-119.
10	Glawe, D. A. (2008) The powdery mildews: a review of the world's most familiar
11	(yet poorly known) plant pathogens. Annual Review Phytopathology, 46, 27-51.
12	Grover, A., & Sharma, P. C. (2016) Development and use of molecular markers: past
13	and present. Critical Reviews in Biotechnology, 36(2), 290-302.
14	Grünwald, N. J., Everhart, S. E., Knaus, B. J., & Kamvar, Z. N. (2017) Best practices
15	for population genetic analyses. Phytopathology, 107(9), 1000-1010.
16	Jombart, T., Devillard, S., & Balloux, F. (2010) Discriminant analysis of principal
17	components: A new method for the analysis of genetically structured populations.
18	BMC Genetics, 11, 94.
19	Kamvar, Z. N., Tabima, J. F., & Grünwald, N. J. (2014) Poppr: An R package for
20	genetic analysis of populations with clonal, partially clonal, and/or sexual
21	reproduction. Peer J, 2, e281.
22	Khan, M. R., Rehman, Z. U., Nazir, S. N., Tshewang, S. & Ali, S. (2019) Genetic

1	divergence and diversity in himalayan Puccinia striiformis populations from
2	bhutan, nepal, and pakistan. Phytopathology, 109(10), 1793-1800.
3	Lederson G. B., Peever, T. L., Evans, K., & Amiri, A. (2021) High genetic diversity
4	in predominantly clonal populations of the powdery mildew fungus Podosphaera
5	leucotricha from U.S. apple orchards. Applied and Environmental Microbiology,
6	<i>87(15)</i> , e0046921.
7	Limkaisang, S., Komun, S., Furtado, E. L., Liew, K. W., Salleh, B., Sato, Y., &
8	Takamatsu, S. (2005) Molecular phylogenetic and morphological analyses of
9	Oidium heveae, a powdery mildew of rubber tree. Mycoscience, 46, 220-226.
10	Liu, S. J., Zhou, G. S., & Fang, S. B. (2015) Climatic suitability regionalization of
11	rubber plantation in China. Scientia Agricultura Sinica, 48, 2335–2345.
12	Liyanage, K. K., Khan, S., Brooks, S., Mortimer, P. E., Karunarathna, S. C., Xu. J., &
13	Hyde, K. D. (2017) Taxonomic revision and phylogenetic analyses of rubber
14	powdery mildew fungi. Microbial Pathogenesis, 105, 185-95.
15	Liyanage, K. K., Khan, S., Mortimer, P. E., Hyde, K. D., Xu, J., Brooks, S., & Ming,
16	Z. (2016) Powdery mildew disease of rubber tree. Forest Pathology, 46, 90-103.
17	Maddalena, G., Delmotte, F., Bianco, P. A., Lorenzis, G. D., & Toffolatti, S. L. (2020)
18	Genetic structure of italian population of the grapevine downy mildew agent,
19	plasmopara viticola. Annals of Applied Biology, 176(3), 257-267.
20	Nicolaisen, M., West, J. S., Sapkota, R., Canning, G. G. M., Schoen, C., & Justesen, A.
21	F. (2017) Fungal communities in near surface air are similar across Northwestern
22	Europe. Frontiers in Microbiology, 8, 1729.

1	Qin, Y.X., Zhou, H.Z., Chen, J., Yang, J.H., Hu, Y.S., & Tang C.R. (2017)
2	Predominant ontamination agents in rubber tree tissue culture and its elimination.
3	Botanical Research, 6(3), 167-174.
4	Szpiech, Z. A., Jakobsson, M., and Rosenberg, A. N. A. 2008. Adze: a rarefaction
5	approach for counting alleles private to combinations of populations.
6	Bioinformatics, 24(21): 2498-2504.
7	Tam, L. T. T., Dung, P. N., & Liem, N. V. (2016) First report of powdery mildew
8	caused by Erysiphe quercicola on mandarin in Vietnam. Plant Disease, 100,
9	1777.
10	Tu, M., Cai, H. B., Hua, Y.W., Sun, A.H., & Huang, H.S. (2012) In vitro culture
11	method of powdery mildew (Oidium heveae Steinmann) of Hevea brasiliensis.
12	African Journal of Biotechnology, 11(68), 13167-13172.
13	Tucker, M. A., Moffat, C. S., Ellwood, S. R., Tan, K. C., & Oliver, R. P. (2015)
14	Development of genetic SSR markers in Blumeria graminis f. sp. hordei and
15	application to isolates from Australia. Plant Pathology, 64(2), 337-343.
16	Wang, M., Xue, F., Yang, P., Duan, X.Y., Zhou, Y.L., Sheng, C.Y., Zhang, G.Z., &
17	Wang B.T. (2014) Development of SSR markers for a phytopathogenic fungus,
18	Blumeria graminis f.sp. tritici, using a fiasco protocol. Journal of Integrative
19	Agriculture, 13(1), 100-104.
20	Wu, H., Pan, Y., Di, R., He, Q., Rajaofera, M. J. N., Liu, W., & Miao, W. (2019)
21	Molecular identification of the powdery mildew fungus infecting rubber trees in
22	China. Forest Pathology, 49, e12519.

1	Wyman, C.R., Hadziabdic, D., Boggess, S. L., Rinehart, T. A., & Trigiano, R. N.
2	(2019) Low genetic diversity suggests the recent introduction of dogwood
3	powdery mildew to north America. Plant Disease, 103(11), 2903-2912.
4	
5	

- **Table 1** Characteristics of 16 polymorphic microsatellite markers developed in this
- 2 study for *Oidium heveae*

Locus	Repeat unit	GenBank accession no.	Primer sequence (5'-3')	GC%	Tm
OH-SSR10	(TC) ₂₂	OK041123-OK041126	F: TGCCATGCCATCAATACGGT	42.8	52.2
			R: TCTCTGTTCCCATCATTGCTT	50	60
OH-SSR11	(GA) ₁₅	OK065947-OK065950	F: GGTGCAGATATGTTCTGGCT	50	60
			R: GTTTAGGGAAGCTCACGGTC	55	62
OH-SSR15	(CT) ₂₇	OK065951-OK065954	F: GGTCGACAGTTTGCCCATCT	55	62
			R: ACATTGGCGTCCTCGTGATT	50	60
OH-SSR17	(TTTGAA) ₈	OK065955-OK065958	F: CGAGTTCCTGTGATAAGCGT	50	60
			R: GGCCACAGTAGTGCAAAAGG	55	62
OH-SSR26	(AGA) ₁₅	OK065959-OK065962	F: GGGTATCCCATTGACCTTGCT	52.3	56.1
			R: ATCTGGTCCCTTCAAAACACCG	50	56.4
OH-SSR28	(GAAAAT) ₁₅	OK065963-OK065966	F: TACCCTACTCCTGAGCGCAT	55	62
			R: CTTCCGTTCAACAGCGCATC	55	62
OH-SSR34	(AC) ₁₈	OK065967-OK065970	F: AAGCTGTTCATTTGCCTCTGC	47.6	54.2
			R: TAGCCTCAAGAACGTCGGAAA	47.6	54.2
OH-SSR36	(GA) ₂₁	OK065971-OK065974	F: TCACAATGGGCCAGCTAACTT	47.6	54.2
			R: GTGCAGTGAAAGTCGTCAATGT	45.4	54.5
OH-SSR38	(TTG)9	OK065975-OK065978	F: TTTCGTACTCGCTTGGGCTT	50	60
			R: GATCCTACTGCACCTTCGCA	55	62
OH-SSR46	(CT) ₃₆	OK065979-OK065982	F: CTGTCCCTCATTGCCATATTCT	45.4	54.5
			R: GAATTCCAAAACCCCTTTTTGC	40.9	52.7
OH-SSR47	(GAA) ₁₈	OK065983-OK065986	F: ACTCCAGCGCCTCAAGATAA	50	60
			R: TCCAGCATCTGATTTTGTGATG	40.9	52.7
OH-SSR48	(TTC) ₂₀	OK065987-OK065990	F: ACCCACGATGCAGATAGACAA	47.6	54.2
			R: CAAATTAAGAGGAATGAGGGCA	39.1	53.1
OH-SSR49	(GA) ₂₀	OK065991-OK065994	F: CCAATCACTCGAAGGCCAGAT	52.3	56.1
			R: GGATCAACCGTTTTTGCCCT	50	60
OH-SSR50	(TTTGA) ₁₈	OK065995-OK065998	F: CGGGAGTCAGCAAATGAGGT	55	62
			R: CAAAGGGTTTCCCCCGTGTA	55	62
OH-SSR51	(TC) ₂₈	OK065999-OK066002	F: CTACCGGCAGTGGCAGTTTA	55	62
			R: ATTCACGCTCGCTCGCTTAT	50	60
OH-SSR63	(CAAT) ₁₁	OK066003-OK066006	F: GCGCCATATCAGGCAGAGTT	55	62
			R: CTGGTCTGGTATGTGGTCCG	60	64

Table 2 Relative frequency, proportion (%), and number of selected repeat-motif

No. of report weit	Motif length						proportion
No. of repeat unit	Di-	Tri-	Tetra-	Penta-	Hexa	Total	%
5	-	284	186	20	16	506	18.60
6	451	177	95	12	10	745	27.39
7	243	96	24	6	4	373	13.71
8	188	51	13	2	4	258	9.49
9	153	28	4	2	1	188	6.91
10	127	18	2	1	0	148	5.44
11	123	9	3	0	2	137	5.04
12	89	6	0	0	1	96	3.53
13	68	2	0	0	0	70	2.57
14	44	2	0	0	0	46	1.69
≥15	133	9	3	2	6	153	5.63
Total	1619	682	330	45	44	2720	
Proportion %	59.52	25.07	12.13	1.65	1.62		

2 types in *Oidium heveae*

- 1 Table 3 Genetic variation of 16 microsatellite loci used to characterize *Oidium heveae*
- 2 from Hainan, China^a

Locus	Product size	Na	1-D	Evenness	He
OH-SSR10	253-259	4	0.111	0.412	0.111
OH-SSR11	202-206	3	0.029	0.329	0.029
OH-SSR15	240-260	7	0.492	0.589	0.496
OH-SSR17	264-276	3	0.070	0.384	0.071
OH-SSR26	250-280	7	0.227	0.387	0.229
OH-SSR28	293-341	8	0.722	0.700	0.728
OH-SSR34	239-249	6	0.512	0.608	0.516
OH-SSR36	251-257	4	0.164	0.415	0.165
OH-SSR38	163-166	2	0.014	0.333	0.014
OH-SSR46	310-320	6	0.461	0.611	0.464
OH-SSR47	264-304	10	0.441	0.418	0.444
OH-SSR48	255-300	9	0.264	0.384	0.266
OH-SSR49	196-202	4	0.233	0.518	0.235
OH-SSR50	232-302	9	0.573	0.530	0.577
OH-SSR51	197-241	11	0.573	0.686	0.577
OH-SSR63	180-212	3	0.029	0.329	0.029

3 Na = Number of alleles; 1-D = Simpson's diversity index; He = Nei's gene diversity.

Table 4 Genetic diversity based on 16 microsatellite markers in *Oidium heveae* populations from Hainan, China^a

populations from Haman, ennia								
Populations	Ν	MLG	eMLG	λ	E.5	He	R_a	R_P
Sanya	26	24	15.3	0.956	0.963	0.296	3.063	0.445
Qiongzhong	28	25	14.9	0.954	0.916	0.353	3.813	0.685
Qionghai	16	15	15.0	0.930	0.967	0.327	2.813	0.534
Haikou	34	31	15.2	0.964	0.927	0.272	2.938	0.248
Danzhou	34	30	15.0	0.962	0.921	0.311	3.375	0.257
Total	138	119	15.3	0.986	0.677	0.309		

3 ^a N = number of isolates, MLG = number of multilocus genotypes, eMLG = number of expected

4 MLG based on rarefaction, λ = Simpson's index of genotypic diversity, E.5 = genotypic

5 evenness, which is the distribution of genotypes within a sample, He = Nei's gene diversity, R_a =

6 allelic richness, R_P = private allelic richness.

7

2	Legend of figures
3	Fig.1 The PCR amplification peaks of some primers determined using
4	GeneMarker software
5	
6	Fig. 2 Discriminant analysis of principal components (DAPC) of the 138 rubber tree
7	powdery mildew samples from Hainan, China. A, Value of Bayesian information
8	criteria (BIC); B, Scatterplot of DAPC.
9	
10	Fig. 3 Scatterplot of three clusters of 137 rubber tree powdery mildew samples from
11	Hainan based on discriminant analysis of principal components (DAPC).
12	
13	Fig. 4 Subclusters of the other 137 rubber tree powdery mildew samples from Hainan,
14	China using discriminant analysis of principal components (DAPC)
15 16	
17	Fig. S1 The genotype accumulation curve for 138 rubber tree powdery mildew
18	samples from Hainan, China. The boxplots represent the range of MLG numbers
19	observed for each random sample of loci.
20	
21	Fig. S2 Discriminant analysis of principal components (DAPC) of the 137 rubber tree
22	powdery mildew samples from Hainan, China. A, Value of Bayesian information
23	criteria (BIC); B, Scatterplot of DAPC.

- -

