

Rothamsted Research Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133 Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Janzen, H. H., Van Groenigen, K. J., Powlson, D. S., Schwinghamer, T. and Van Groenigen, J. W. 2022. Photosynthetic limits on carbon sequestration in croplands. *Geoderma.* 416 (15 June), p. 115810. https://doi.org/10.1016/j.geoderma.2022.115810

The publisher's version can be accessed at:

• https://doi.org/10.1016/j.geoderma.2022.115810

The output can be accessed at:

https://repository.rothamsted.ac.uk/item/9867x/photosynthetic-limits-on-carbonsequestration-in-croplands.

© 15 March 2022, Please contact library@rothamsted.ac.uk for copyright queries.

21/04/2022 15:26

repository.rothamsted.ac.uk

library@rothamsted.ac.uk

1 Supplementary Info

2

3 Photosynthetic limits on carbon sequestration in croplands –

4 a Fermi approach

- 5 H. Henry Janzen, Kees Jan van Groenigen, David S. Powlson, Timothy Schwinghamer,
- 6 and Jan Willem van Groenigen.

8 Detailed description Monte Carlo simulation

9 The parameters used in our Fermi approach are approximate, with acknowledged 10 margins of error. To demonstrate how these uncertainties affect the distributions of carbon volumes, we simulated the parameters of Equations 2 and 4, where parameter 11 values were allowed to vary randomly, according to a Normal distribution, using the 12 13 rnorm function in base R (R Core Team 2020) with the following means and standard 14 deviations: P: mean = 5.25, standard deviation (sd) = 0.46; k1: mean = 0.44, sd = 0.04; 15 k2: mean = 0.15, sd = 0.015; H: mean = 140, sd = 14; R = 500, sd = 200. The standard deviation for P was from Wolf et al. (2015) while the others were estimated by the 16 17 authors. The MonteCarlo function from the MonteCarlo package (Leschinski 2019) 18 handled the generation of loops over the desired parameter grids and the 2 x 500 19 repetitions of the Monte Carlo experiment for each of the parameter constellations. 20 vielding density patterns of the outputs for Equations 2 and 4. To ensure the 21 reproducibility of the results, the Monte Carlo experiment was performed using the 22 set.seed function (seed = 123).

Table S1: Examples of studies, with emphasis on recent findings, demonstrating

25 the prominent influence of plant-derived carbon inputs on carbon stocks in soil.

26 This compilation is not exhaustive nor necessarily representative, but nevertheless

- 27 clearly indicates that soil C stocks (and *change* in soil C stocks) are directly dependent
- 28 on and related to the amount of plant C added
- 29

Source	Study type	Excerpt
Amelung et al. 2020 Nat. Comm. 11:5427	Review article	"Considering the general agreement that the most effective way to accumulate SOC is to increase C inputs"
Baethgen et al. 2021 Soil Sci. Soc. Am. J. 85: 423–437	Long-term experiment, Uruguay	"The model and observed data show that soil respiration, N mineralization, soil C, and crop yields increase with increasing plant-derived C inputs caused by increasing the frequency of pastures in the rotations"
Bell et al. 2012 Agric. Ecosyst. Environm. 158:156-163	Two long-term field studies (Canada)	"Due to higher net primary productivity and higher carbon inputs, particularly below ground, SOC stocks (0–120 cm) were 21–65 t C ha ⁻¹ higher under the re-established grassland than cropping systems at the clay soil site after 18 years, but not at the site with sandy loam soil after 9 years."
Berhane et al. 2020 Glob. Change Biol. 26: 2686-2701	Meta-analysis of long- term field experiments (China)	"the annual soil sequestration rates and annual straw C inputs of the treatments with straw return (NP+S and NPK+S) were significantly positively related."
Bhardwaj et al. 2019. Sci. Rep. 9:9114	10-yr experiment (India)	"Total C input to soil had a direct effect on soil C stock, soil C fractions (maximum in VLc and LLc), yet the responses in terms of biological yield were controlled by the quality of the biomass (C:N ratio, decomposition, etc.) incorporated."
Bitew and Abera. 2019 Ind. J. Ecol. 46: 235-249	review	"Conservation tillage based intercropping (CTBI) gives higher percentage of organic matter and organic carbon as compared to conventional tillage based mono-cropping due [to] addition of carbon input from the intercropped legumes and residues from conservation tillage."
Börjesson et al. 2018 Biol. Fert. Soils 54: 549– 558	Two 35-yr cropping systems experiment (Sweden)	"At both sites, total mean C input from crop residues correlated well with changes in SOC stocks in both the 0- to 20- and 0- to 50-cm layers"
Bruni et al. 2021 Biogeosciences 18: 3981–4004	Modelling study	"We found that, on average among the selected experimental sites, annual C inputs will have to increase by 43.15 ± 5.05 %, with respect to the initial C inputs in the control treatment."

	1	"A Parat Lange Lange and Lange at the
Buyanovsky and Wager	Long-term cropping	"A direct dependence was observed, as one
1998 Glob. Change Biol. 4:	system experiment	would expect, between amounts of carbon returned to the soil during 100 years and soil
131-141	(USA)	organic carbon content"
Cardinael et al. 2018	18-yr study including	"High organic inputs explain shallow and deep
Biogeosciences 15:297-	agroforestry and wheat	SOC storage in a long-term agroforestry system"
31	systems (France)	[title]
		"the increased inputs of fresh biomass to soil
		explained the observed additional SOC storage
Cole et al. 1993	Literature review	in the agroforestry plot" One important result of the steady-state analysis
Wat. Air Soil Poll. 70:		is that total C at steady-state (= maximum soil C
357-371		level) is shown to be directly proportional to the
		rate of C input (Paustian et al., in press). This
		has important implications for C sequestration
		potential
Dalal et al. 2018	12-yr cropping systems	"We found a significant relationship between soil
Soil Res. 56: 429–440	study (Australia)	organic C and root biomass at depths of 0-0.1
Dong at al. 2010. Sa	Field experiment	and 0-1.2 m" "Increased root residue and extra external
Deng et al. 2019. Sc. Rep 9:3090	Field experiment (China)	carbon input to soil under RFFSM directly
Nop 0.0000		contributed to SOC recovery."
Engel et al. 2017	10-yr field study, with	"Among the cropping systems,
Soil Sci. Soc. Am. J. 81:	various tillage and	[change in soil organic carbon adjusted for
404-413	cropping treatments	equivalent mass] was directly related to net
	(USA)	primary productivity (NPP; $r^2 = 0.73$) and total C
		(TC; shoot + root + rhizodeposit) inputs (r ² =
Fan et al. 2018	Long-term maize	0.86). "Stover retention rather than no-till decreases the
Field Crop Res. 219: 14-	experiment (China)	global warming potential of rainfed continuous
23		maize cropland" [title]
		"Our results highlight the importance of C input
		from crop residues for increasing SOC stocks
		and mitigating GHG emissions."
Ferreira et al. 2018. Sci.	Long term field study	"The processes that drove SOC recovery in the
Tot. Envir. 622:735-742	(Brazil)	studied sites were soil fertility management allied with high C input through intense crop rotation."
Franko and Ruehlmann	Long-term experiment	"The prediction of future SOC sequestration rates
2018	(Germany)	has to be based on the characterization of the
Geoderma 321: 15-21		carbon input considering the amount and quality
		of the fresh organic matter, as well as on the
		description of the initial conditions, where not
		only the actual amount of SOC is relevant but
		also its distance to a possible equilibrium as
Fujisaki et al. 2018	Meta-analysis of	determined by the previous management." "The SOC accumulation rates increased linearly
Agric. Ecosyst. Env.	tropical cropping	with C inputs, and the conversion rate of C inputs
259: 147-158	studies, including 214	to SOC was $8.2 \pm 0.8\%$."
	cases in 48 studies (13	
	countries)	
Guo et al. 2021	Long-term field	"The SOC sequestration in the IMsoil increased
Land Degrad Dev. 32: 1274–1286	experiment (China)	by 15.4 Mg C/ha at a rate of 2.20 Mg C ha ⁻¹ yr through large C inputs and high SOC transfer
12/4-1200		efficiencies compared with the beginning of this
		experiment."

	· · · · · ·	
Han et al. 2018. Glob. Change Biol. 24: 987-1000	Extensive regional soil sampling in the 1980s and 2010s (China)	"Successful desalinization and the subsequent increases in carbon (C) inputs, induced by agricultural projects and policies intended to support crop production, combined with improved cultivation practices (i.e. fertilization and straw return) since the early 1980s were the main drivers for the SOC stock increase.
He et al. 2021. Plant Soil Environ 67: 1- 7.	Long-term experiment (China)	"The SSR [SOC sequestration rate] of all treatments ranged from 0.11 to 0.40 t/ha/year, and there was a significant correlation between SSR and the average C-input"
Hobley et al. 2017 Glob. Change Biol. 23: 955-965	Study of organic C in 12 sites under different land-uses and climates (Australia).	"Our results indicate that organic carbon storage in soils is input driven down the whole profile,"
Huang et al. 2020 Plant Soil 454: 299–310	Meta-analysis	"Although our findings require additional confirmation from long-term field experiments, our analysis provides isotopic evidence that N addition stimulates soil C storage both by increasing soil C input and (at high N rates) by decreasing decomposition of old soil C."
Huang et al. 2020 Agr. For. Meteor. 291: 108090	Modelling/field study (USA)	"Simulation results for 1970–2018 show that NT, relative to conventional tillage (CT), led to carbon gains (0.22 Mg C ha ⁻¹ yr ⁻¹) in the topsoil in a CC- inclusive continuing maize system; however, NT per se brought minor net carbon gains. This well captures the field observations. Model factorial analyses reveal that soil carbon sequestration was highly correlated with biomass carbon inputs from both the winter cereal CC and the summer maize."
Jiang et al. 2017 Soil Till. Res. 170:77-84.	Field study with treatments varying in straw amendment (China)	"a significantly linear relationship (SOC sequestration rate=0.29×annualC input–0.57, R ² =0.99, P<0.05) was detected between annual straw C input and SOC sequestration rate over the 5-year cycles"
Karimi et al. 2018. Can. J. Soil Sci. 98: 580–583	Long-term experiment (Canada)	"Analysis of archived samples from a site established on grassland in 1911 showed that SOC, under wheat systems, approached steady state after several decades, and that its amount reflected the inputs of residue C."
Kauer et al. 2019. Agric. Ecosyst. Env. 283: 106562	Long-term field experiment (Estonia)	"SOC changes were highly correlated with estimated C inputs"
Keel et al. 2019. Agric. Ecosyst. Env. 286: 106654	Eleven long-term field experiments on cropland and permanent grassland (Switzerland)	"Based on a linear mixed effects model we showed that SOC change rates (Δ SOC) were driven by C inputs to soil (harvest residues and organic fertilizer), soil cover and initial SOC stocks."
King and Blesh 2018 Ecol. Appl. 28: 249-261	Meta-analysis 27 cropping system sites and 169 cropping systems)	"Our results show that increasing the functional diversity of crop rotations is more likely to increase SOC concentrations if it is accompanied by an increase in C input." "Crop rotations with functional groups of crops that increased total C input (cover cropped and perennial cropped rotations) increased SOC concentrations relative to a control"

	Lange (and California)	(1) All for the start line and the set is (10, 0, 70)
Kong et al. 2005	Long-term field study	"We found a strong linear relationship ($r^2 = 0.70$,
Soil Sci. Soc. Am. J. 69:	(USA)	p = 0.003) between SOC sequestration and
1078-1085		cumulative C input, with a residue-C conversion to SOC rate of 7.6%"
Lal 2018	Research review	
Glob. Change Biol. 24:	Research review	"A positive soil C budget is created by increasing the input of biomass-C to exceed the SOC losses
3285-3301		by erosion and mineralization"
Larson et al. 1972	11-yr field study with	"Organic C, N, S, and P contents of the soils
Agron. J. 64:204-209	various amendments	increased in proportion to the amount of plant
Agron: 3. 04.204-203	(USA)	residues added"
Le-Noë et al. 2019. Env.	Modelling study, 1852	"Our results emphasize the role of crop net
Sci. Pol. 93: 53-65	to 2014 (France)	primary production (NPP) as the main driver of
		changes in SOC stocks through the input of crop
		residues."
Liang et al. 2018	Literature review of	"More replenishment than priming loss of soil
Nat. Comm. 9: 3175	incubation studies	organic carbon with additional carbon input" [title]
	using isotopes	"our findings suggest that increasing C input to
		soils likely promote SOC accumulation despite
		the enhanced decomposition of old C via
		priming."
Li et al. 2019	Field study, paddy rice	"No significant correlation was found between
Soil Till. Res.	(China)	SOC content and yearly carbon inputs."
195: 104428		
Li et al. 2021.	Long-term experiment,	"Principal component analysis (PCA) indicated
Agron. J. 113: 2118–	straw mulching (China)	that organic C input was the key to improving
2131		SOC sequestration, SOC lability, and soil macro-
		aggregation rather than N input,"
		"The increases in SOC stock were primarily
		attributed to large C inputs across different
		treatments,"
		"We also observed a positive correlation between
	Ob ant tanna field	SOC sequestration and cumulative C input"
Li et al. 2021	Short-term field	"Positive relationships (P < .05) existed between
Agron. J. 113: 2150– 2164	experiment (China)	the SOC sequestration and cumulative C input in both [conventional wheat monoculture and green
2104		manure-winter wheat]"
Liu et al. 2021	Field experiment (USA)	"After 8 yr, total C inputs were positively
Soil Sci. Soc. Am. J. 85:		correlated with total soil organic C, the proportion
829–846		of macroaggregates in the whole soil, and the
020 040		mean weight diameter of soil aggregates."
Luo et al. 2017	Review of cropping	"we found that the most influential variables on
Glob. Change Biol. 23:	experiments (90 field	[SOC change rate] were the average C input
4430-4439	trials, 28 sites)	amount and annual precipitation, and the total
	(Australia)	SOC stock at the beginning of the trials."
Martin et al. 2021	Reverse modelling	"Results showed that a 30%–40% increase in C
Glob. Change Biol. 27:	analysis (France)	inputs to soil would be needed to obtain a 4‰
2458–2477		increase per year over a 30-year period."
Mary et al. 2020	Long-term field	"Soil carbon storage and mineralization rates are
Agric. Ecosyst. Env.	experiment (France)	affected by carbon inputs rather than physical
299:106972		disturbance: Evidence from a 47-year tillage
		experiment" [Title]
Matsumoto et al. 2021;	Long-term experiment	"Rice straw mulch increased SOC stock change,
Soil Sci. Plant Nutr. 67:	(Thailand)	which was caused by an increase in the amount
190-196		of organic matter input into the soil"
Nash et al. 2018	Modelling study	Intensifying crop rotations was predicted to have
		a greater impact on SOC stocks than tillage

J. Env. Qual. 47: 654-		(minimum tillage [MT], no-till [NT]) during 2013 to
662		2032, as SOC was highly correlated to biomass
002		input ($= 0.91$, $= 0.00053$)."
Orgill et al. 2017	Long-term laboratory	"This study demonstrated that with sustained C
Geoderma 285: 151-	incubation study	and nutrient inputs, the stable fraction of OC can
163.		increase linearly.
Pareja-Sánchez et al.	Long-term field	"In P1-R and P3-I [selected treatments], C-input
2020	experiment (Spain)	explained 70% of the variability of ΔSOC_{rate} ."
Soil Sci. Soc. Am. J. 84:		
1219-1232		
Paustian et al. 1992	30-yr field experiment	"Most of the treatment differences in SOM could
Soil Sci. Soc. Am. J. 56:	with various	be explained by the rate of organic-matter input,
476-488	amendments (Sweden)	its lignin content, and C/N ratio, plus the effect of
		N fertilizer on belowground C inputs."
Poeplau and Don. 2015.	Meta-analysis and	"the C input driven SOC sequestration with the
Agr. Ecosyst. Env.	modelling study	introduction of cover crops proved to be highly
200: 33-41		efficient."
Poffenbarger et al. 2020	Long-term field trials	"We conclude that adoption of cropping systems
Agr. Ecosyst. Env.	(USA)	with enhanced belowground C inputs may
291: 106810		increase total profile SOC, but the effect is
	Long torm field	minimal and inconsistent"
Qaswar et al. 2020 Soil Till. Res.	Long-term field	"Path analysis showed that long-term fertilizer
198: 104569	experiment (China)	inputs increased soil nutrient contents and C input directly affected soil OC."
Rasmussen et al. 1980.	Long-term cropping	"Changes in soil C correlated highly with the
Soil Sci. Soc. Am. J. 44:	systems experiment	amount of organic C supplied by each treatment,
596-600.	(USA)	regardless of the different kinds of residue
		applied. Thus, changes in soil organic matter
		levels were controlled primarily by the amount of
		organic C supplied in crop residue."
Rasmussen and Collins.	Literature review	"It now appears that residue input plays an
1991.		important role in setting a new organic matter
Adv. Agron. 45: 93-134		equilibrium level in soil. The effect of crop
		residue on soil organic matter content is highly
		related to the amount and only weakly related
		to the type of residue applied"
Rasmussen and Parton	Long-term cropping	"The change in soil C and N with time is nearly
1994 Soil Soil Soo Am	systems experiment (USA)	linear for all treatments, and highly correlated with residue input."
Soil Sci. Soc. Am. J. 85:523-530.	(USA)	
Rasmussen et al. 1998.	Review of long-term	"The major factors influencing changes in organic
Soil Till. Res. 47: 197-	experiments (USA)	C and N were the frequency of summer-fallow
205		and the amount of c input by crop residue."
Riggers et al. 2021	Modelling study	"Depending on the climate scenario, we
Plant Soil 460:417–433	(Germany)	estimated that the OC input to the soil in 2099
		needs to be between 51% (+ 1.3 Mg ha ⁻¹) and
		93% (+ 2.3 Mg ha ⁻¹) higher than today to
		preserve current SOC stock levels.
Rosenzweig et al. 2018	Model, based on	"Overall, the model suggests that cropping
Agr. Ecosyst. Env.	analysis of 96 dryland,	system intensity increases SOC both directly,
258: 14-22	no-till fields (USA)	through greater C inputs to soil, and indirectly, by
Opendamental 0017	Lange terms and a tall	increasing fungal biomass and aggregation"
Sandermann et al. 2017.	Long-term crop rotation	"After > 40 years under consistent management,
Soil 3:1-5	trial (Australia)	topsoil carbon stocks ranged from 14 to 33 Mg C ha ⁻¹ and were linearly related to the mean
		productivity of each treatment."
		productivity of each treatment.

0		
Sarker et al. 2018.	Analysis of soils from	"These findings suggest that reducing soil
Soil Till. Res.	long-term (16–46	disturbance and enhancing crop residue input in
178: 209-223	years) systems	farming systems are important for SOC and
	(Australia)	nutrient storage, particularly in finer aggregate
		fractions."
Smith et al. 1997.	Review article	"These yearly percentage changes in SOC
Glob. Change Biol. 3:		content were then plotted against the amount of
67-79		organic manure added per year Despite very
		different soil types, rotations, climatic
		conditions and durations of experiment, a highly
		significant linear relationship was found"
Tao et al. 2019	Literature review of	"The increase of the SOC stock was attributed to
Soil Till. Res. 186: 70-78	croplands (China)	substantial increase in organic inputs, resulted
		from increased crop productivity, the
		amendments of crop residues and organic
		manure, the increases in synthetic fertilizer
		application and the optimal combination of
		nutrients, as well as adopting no-tillage practice."
Virto et al. 2012	Meta-analysis of soil	"Crop C inputs differences was the only factor
Biogeochemistry 108:	organic carbon (0-30	significantly and positively related to SOC stock
17–26	cm) of 92 no-till vs	differences between [no-till] and [inversion
	inversion tillage pairs	tillage], explaining 30% of their variability."
	(37 studies) in diverse	
	conditions	
Veloso et al. 2018. Agr.	Long-term field	"Overall, the variation in SOC stocks was
Ecosyst. Env. 268: 15-	experiment (Brazil)	explained largely by plant carbon input (R ² =
23		80%) which varied with N fertilization and
		cropping system."
Wang et al. 2017	Global modelling study	"We found that SOC change was significantly
Atm. Chem. Phys.		influenced by
17: 11849-11859		the crop residue retention rate (linearly positive),
		and the edaphic variable of initial SOC content
		(linearly negative)."
Wang et al. 2018. Biol.	Field experiment with	"All C fractions at most depths were correlated
Fert. Soils 54: 423-436	wheat (China)	with the estimated wheat root residue returned to
	wheat (China)	with the estimated wheat root residue returned to the soil"
Wei et al. 2020		with the estimated wheat root residue returned to
	wheat (China)	with the estimated wheat root residue returned to the soil"
Wei et al. 2020	wheat (China) Long-term field	with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)"
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018.	wheat (China) Long-term field	with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531	wheat (China) Long-term field experiment (China)	with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)"
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018.	wheat (China) Long-term field experiment (China)	with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J.	wheat (China) Long-term field experiment (China)	with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J.	wheat (China) Long-term field experiment (China)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J.	wheat (China) Long-term field experiment (China)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J.	wheat (China) Long-term field experiment (China)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region."
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021.	wheat (China) Long-term field experiment (China)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region."
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284:	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks:
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021.	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284:	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks:
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284:	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284:	wheat (China) Long-term field experiment (China) Field experiment (USA)	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time after application, soil depth and type of biosolids.
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284: 112008 Witing et al. 2019	wheat (China) Long-term field experiment (China) Field experiment (USA) Global meta-analysis Regional study	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time after application, soil depth and type of biosolids. The cumulative biosolids C input rate was the most influencing driver."
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284: 112008 Witing et al. 2019 J. Env. Man. 237: 272-	wheat (China) Long-term field experiment (China) Field experiment (USA) Global meta-analysis	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time after application, soil depth and type of biosolids. The cumulative biosolids C input rate was the most influencing driver." "Both the increase in carbon inputs to soil (+8%) and the reduction of carbon turnover rates
Wei et al. 2020 Arch. Agron. Soil Sci. 66: 1520-1531 Weyers et al. 2018. Soil Sci. Soc. Am. J. 82: 878-888 Wijesekara et al. 2021. J. Env. Man. 284: 112008 Witing et al. 2019	wheat (China) Long-term field experiment (China) Field experiment (USA) Global meta-analysis Regional study	 with the estimated wheat root residue returned to the soil" "A significantly positive correlation was observed between the annual SOC sequestration rate and annual carbon input (R 2 = 0.94)" "Animal manure, particularly in combination with high residue inputs, had a positive impact for maintaining SOC." "These findings support the need to develop integrated management strategies that increase residue inputs through amendments as well as yield improvements, particularly for organic production systems in the upper Midwest region." "A meta-regression of 297 treatments found four variables with a relationship with SOC stocks: cumulative biosolids carbon (C) input rate, time after application, soil depth and type of biosolids. The cumulative biosolids C input rate was the most influencing driver."

Xie et al. 2019 J. Plant Nutr. Fert. 25: 1073-1083	Long-term field experiment (China)	" OC contents of all macroaggreagte [sic] fractions were significantly and positively correlated with cumulative C input, especially for
1070 1000		the iPOC content."
Xie et al. 2021 Soil Till. Res. 205: 104763	Large scale field study (China)	"Land use changes and carbon inputs were the main factors for temporal changes of SOC." [Highlights]
Xu et al. 2019. Geoderma 337: 622-629	Field experiment, (China)	"These results demonstrate that soil type, fertilizer application, and a threshold amount of maize straw input are needed to drive net SOC sequestration."
Xu et al. 2020 Carb. Balance Man. 15:2	Meta-analysis	"We propose that natural ecosystems have the capacity to buffer soil C changes and that increasing C inputs is one of the best measures to sequester C."
Xu et al. 2021 Glob. Change Biol. 27: 1170–1180.	Meta-analysis, SOC response to N fertilizer; 369 sites worldwide	"Our findings suggest that SOC increases [with N addition] largely resulted from the enhanced plant C input to soils coupled with reduced C loss from decomposition and amplification was associated with reduced microbial biomass and respiration under long-term N addition. Our study suggests that N addition will enhance SOC sequestration over time and contribute to future climate change mitigation.
Zhang et al. 2018. Geoderma 330: 204-211	12-yr field study, with rotation and tillage systems (China)	"Returning residue to the soil significantly increased SOC storage in all tillage/cropping systems"
Zhao et al. 2018 Proc. Nat. Acad. Sci. USA 115: 4045-4050.	extensive survey of croplands (4,060 soil samples) (China)	"The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy:"
Zhu et al. 2020 Eur. J. Soil Biol. 96: 103146	Eight-year field study (China)	"This study demonstrates the non-linear relationship between carbon inputs and SOC content, and suggests the importance of the trade-off effects between microbial catabolism and anabolism."

analysis (n = 1000) of Equation [2]. Parameter estimates are detailed in Table 2.