

Rothamsted Research Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133 Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

2019. A phylogenetically distinct lineage of Pyrenopeziza brassicae associated with chlorotic leaf spot of Brassicaceae in North America . *Plant Pathology.*

The output can be accessed at: <u>https://repository.rothamsted.ac.uk/item/9705x/a-phylogenetically-distinct-lineage-of-pyrenopeziza-brassicae-associated-with-chlorotic-leaf-spot-of-brassicaceae-in-north-america</u>.

© 1 December 2019, Please contact library@rothamsted.ac.uk for copyright queries.

19/12/2019 13:18

repository.rothamsted.ac.uk

library@rothamsted.ac.uk

Plant Pathology

A phylogenetically distinct lineage of Pyrenopeziza brassicae associated with chlorotic leaf spot of Brassicaceae in North America

Journal:	Plant Pathology
Manuscript ID	PP-19-383.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	03-Dec-2019
Complete List of Authors:	Carmody, Shannon; Washington State University, Department of Plant Pathology King, Kevin; Rothamsted Research, ; Ocamb, Cynthia; Oregon State University, Department of Botany and Plant Pathology Fraaije, Bart; Rothamsted Research West, Jon; Rothamsted Research, Plant Pathology and Microbiology du Toit, Lindsey; Washington State University, Department of Plant Pathology
Topics:	aetiology, taxonomy & phylogenetics
Organisms:	fungi
Other Keywords:	light leaf spot, Pacific Northwest USA, fungicide resistance

1	A phylogenetically distinct lineage of Pyrenopeziza brassicae associated with		
2	chlorotic leaf spot of Brassicaceae in North America		
3			
4	S. M. Carmody, K. M. King, C. M. Ocamb, B. A. Fraaije, J. S. West, and L. J. du		
5	Toit.*		
6	First and sixth authors: Department of Plant Pathology, Washington State University,		
7	Mount Vernon, WA; second, fourth, and fifth authors: Rothamsted Research,		
8	Harpenden, Hertfordshire, United Kingdom; and third author: Department of Botany		
9	and Plant Pathology, Oregon State University, Corvallis, OR.		
10			
11	First and second authors contributed equally to this work.		
12	* Corresponding author: Lindsey J. du Toit, E-mail: dutoit@wsu.edu		
13			
14	Running head		
15	New Pyrenopeziza brassicae lineage in US		
16			
17	Keywords		
18	Brassicaceae, light leaf spot, chlorotic leaf spot, light leaf spot, Pacific Northwest	_	Commented [Anon1]: Key words re-arranged
19	<u>USA, phylogenetic lineage, -</u> Pyrenopeziza brassicae , phylogenetic lineage, Pacific		aipnabetically, as requested.
20	Northwest USA		
21			

1

Abstract

2	Light leaf spot, caused by the ascomycete Pyrenopeziza brassicae Sutton &
3	Rawlinson, is an established disease of Brassicaceae in the United Kingdom (UK).
4	and continental Europe, the European Union (EU), the United Kingdom (UK), and
5	Oceania (OC, including New Zealand and Australia). The disease was reported in
6	North America (NA) for the first time in 2014 on Brassica spp. in the Willamette
7	Valley of western Oregon, followed by detection in Brassica juncea cover crops and
8	on <i>B. rapa</i> weeds in northwestern Washington in 2016. Preliminary DNA sequence
9	data and field observations suggest that isolates of the pathogen present in NA
10	might be distinct from those in the UK, continental Europe, the EU, UK, and OC.
11	Comparisons of isolates from these regions genetically (multilocus sequence
12	analysis, MAT gene sequences, and rep-PCR DNA fingerprinting), pathogenically (B.
13	rapa inoculation studies), biologically (sexual compatibility), and morphologically
14	(colony and conidial morphology) demonstrated that there are two sexually-
15	incompatiblegenetically distinct -evolutionary lineages. Lineage 1 comprised isolates
16	from tthe UK, continental Europe, EU, UK, and OC isolates, and included the P.
17	brassicae type specimen. Lineage 2 contained the NA isolates associated with
18	recent disease outbreaks in the Pacific Northwest region of the USA. Symptoms
19	caused by isolates of the two lineages on <i>B. rapa</i> and <i>B. juncea</i> differed, so 'chlorotic
20	leaf spot' is proposed for the disease caused by lineage 2 isolates of <i>P. brassicae</i> .
21	Isolates of the two lineages differed in genetic diversity as well as sensitivity to the
22	fungicides carbendazim and prothioconazole.
23	

24

1

Introduction

Carmody et al.

2

1	Light leaf spot, caused by the ascomycete Pyrenopeziza brassicae Sutton &	
2	Rawlinson (anamorph Cylindrosporium concentricum Grev.), is an economically	
3	important disease of many Brassicaceae [Rawlinson et al. 1978; Centre for	
4	Agriculture and Biosciences International (CABI) 2015]. The pathogen is widespread	
5	geographically, having been reported in Asia (Japan and the Philippines), continental	
6	Europe the European Union (EU, including France, Germany, and Poland), the	
7	United Kingdom (UK), and Oceania (OC, including Australia and New Zealand).	
8	Light leaf spot is one of the most important diseases of Brassica napus (oilseed	
9	rape) in the UK and northern parts of continental Europe (Boys et al. 2007).	
10	However, excluding a single unconfirmed record from Oregon State in 1998	
11	(Phytosanitary Alert System 2015), light leaf spot had not previously been	
12	documented in North America (NA). The disease was first found on Brassica juncea,	
13	B. napus, and Brassica rapa in six counties in the Willamette Valley of western	
14	Oregon in 2014 (Ocamb et al. 2015), and subsequently has been detected in	
15	additional counties on multiple Brassicaceae genera and species in western Oregon	
16	(Claassen 2016). In 2016, light leaf spot was detected in <i>B. juncea</i> cover crops and	
17	on <i>B. rapa</i> weeds (birdsrape mustard) in three counties in northwestern Washington	
18	(Carmody et al. 2016). Isolates of P. brassicae obtained off diverse Brassicaceae	
19	genera and species in Oregon and Washington were confirmed to be pathogenic on	
20	B. juncea, B. napus, B. oleracea, and B. rapa (Carmody 2017; Claassen 2016). Light	
21	leaf spot can cause reduced photosynthesis, stunting, pod shatter (for seed crops),	
22	and associated declines in yield (Claassen 2016; Karandeni Dewage et al. 2018).	
23	Thus, the relatively recent appearance of light leaf spot in Oregon and Washington	
24	could pose a threat to production of economically important crops of the many	
25	diverse types of Brassicaceae grown in the Pacific Northwest USA, including B.	

3

napus, B. oleracea, and B. rapa crops (Inglis et al. 2013; Phytosanitary Alert System 1 2 2015). 3 Light leaf spot appears to have undergone very recent, rapid, and invasive 4 spread in the US Pacific Northwest given that: i) the disease was not observed in 5 surveys of Brassica and Raphanus crops in Oregon from 2010 to 2013 (Ocamb 6 2014), ii) light leaf spot was first reported in Oregon in 2014 (Ocamb et al. 2015) and 7 is now widespread across parts of western Oregon (Claassen 2016), and iii) the 8 disease was found in three counties in northwestern Washington in 2016 (Carmody 9 2017). The origins of the isolates associated with these recent outbreaks in NA are 10 not yet known. As is the case with many newly emerging plant diseases, the 11 outbreaks in NA might have resulted from introduction of the pathogen (Anderson et 12 al. 2004) into the Pacific Northwest US, perhaps via infected planting material, given 13 evidence for the seedborne and seed transmitted nature of the fungus (Carmody 14 2017; Carmody & du Toit 2017). If the pathogen was introduced recently to NA, 15 candidate regions of origin of the pathogen include areas where the disease has 16 long been reported, such as the UK, continental Europe, and the EU, OC, and UK 17 (CABI 2015; Rawlinson et al. 1978]. However, a preliminary comparison of 18 sequences of the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA) of five NA isolates suggested that they were distinct genetically from European and 19 20 UK EU isolates as the sequences only had 95% nucleotide similarity (Carmody 21 2017). The β -tubulin gene sequences of the same NA isolates had 98% nucleotide 22 similarity to isolates of P. brassicae from the EU and UK and continental Europe 23 (Carmody 2017). This initial evidence that the light leaf spot pathogen isolates in NA 24 might be distinct genetically from those from continental Europe in the EU and the

Carmody et al.

4

1	UK highlighted the need to assess the pathogen on a larger temporal and spatial	
2	scale.	
3	Dispersal of <i>P. brassicae</i> inoculum during the growing season in areas where	
4	this pathogen is established is considered mainly to be by short distance splash-	
5	dispersal of asexual conidia, with multiple (polycyclic) rounds of host infection (Gilles	
6	et al. 2001; Karandeni Dewage et al. 2018). In addition, wind-dispersed ascospores	
7	are released into the air forcibly from apothecia that form on infected host debris,	
8	typically in late summer and autumn (Cheah et al. 1982; Gilles et al. 2001).	
9	Ascospores are thought to act as primary sources of inoculum that initiate light leaf	
10	spot outbreaks in <u>the UK and continental Europe the EU and UK (</u> Karolewski <i>et al.</i>	
11	2012). Sexual reproduction by <i>P. brassicae</i> has long been documented in the UK	
12	and continental Europe EU and UK (Lacey et al. 1987) as well as OC (Cheah et al.	
13	1982). Isolates of complementary MAT1-1 and MAT1-2 types are required for sexual	
14	reproduction (Foster <i>et al.</i> 2002; llott <i>et al.</i> 1984). Apothecia have not been found in	
15	association with outbreaks of light leaf spot in NA, and it is not known whether a	
16	sexual cycle occurs in NA. However, this information is important to underpin	
17	management strategies for light leaf spot as populations with both sexual and	
18	asexual reproduction tend to have greater evolutionary potential than those that are	
19	exclusively asexual (McDonald & Linde 2002). Such populations also present a	
20	greater risk of failures in disease management strategies, e.g., if strains of the	
21	pathogen overcome host resistance genes (Boys et al. 2007) or develop resistance	
22	to fungicides commonly used in brassica crops, as has occurred in the UK and	
23	continental Europe the EU and UK (Carter et al. 2013; 2014).	
24	Effective management of light leaf spot in areas where this disease has	
25	established has necessitated the integration of planting cultivars with resistance to	

1	the disease, applying fungicides with efficacy against the pathogen, and
2	implementing cultural practices such as incorporation of infected crop residues into
3	the soil and/or crop rotation (Karandeni Dewage et al. 2018). Host resistance alone
4	has been insufficient to control economically damaging outbreaks of light leaf spot in
5	B. napus crops as there are no fully resistant commercial cultivars available currently
6	(Boys et al. 2007; 2012). Thus, management of this disease in conventional crops
7	has depended on applications of fungicides, including methyl benzimidazole
8	carbamates [MBCs, Fungicide Resistance Action Committee (FRAC) Group 1] and
9	azoles [sterol 14α-demethylation inhibitors (DMIs), FRAC Group 3] (Carter <i>et al.</i>
10	2013; 2014). However, reduced sensitivity to these fungicides has been reported for
11	some <u>UK and continental European isolates_EU and UK isolates</u> of <i>P. brassicae</i> ,
12	and the molecular mechanisms of resistance have been characterized (Carter et al.
13	2013; 2014). Genotypic and phenotypic data on fungicide sensitivity of NA isolates of
14	the light leaf spot pathogen are needed to monitor the current and future potential
15	efficacy of fungicide applications for control of this disease in NA.
16	Given the increasing losses associated with light leaf spot in areas where this
17	disease is well established, and preliminary evidence of genetic differentiation of
18	isolates of the fungus causing this disease in NA from isolates in the the UK and
19	continental EuropeEU and UK, there is a need to characterize these pathogen
20	populations. The primary objective of this study was to compare isolates of the light
21	leaf spot pathogen from regions where <i>P. brassicae</i> has long been established, i.e.,
22	the <u>the UK and continental Europe and OC EU, OC, and UK (</u> Majer <i>et al.</i> 1998), with
23	isolates from NA, where light leaf spot was found recently. The isolates evaluated in
24	this study were obtained from a range of Brassicaceae genera and species, and

6

1	morphological, ecological, biological, and genetic (phylogenetic) data (Crous et al.	
2	2015).	
3		
4	Materials and methods	
5	Pyrenopeziza isolates and herbarium specimens. Details of the light leaf	
6	spot fungal isolates used in this study, including isolates and herbarium specimens	
7	of infected leaves submitted to the Westerdijk Fungal Biodiversity Institute in the	
8	Netherlands, isolates deposited in the CABI [International Mycological Institute (IMI)]	
9	collection in the UK, and GenBank accession numbers for fungal DNA sequences,	
10	are listed in Table 1. The GenBank accession numbers listed in Table 1 were all	
11	generated as part of this study. For each UK, continental Europe, or OC EU, OC, or	
12	UK-isolate, infected leaves from a collection at Rothamsted Research were	
13	examined with a stereomicroscope, and a single pustule was placed into a drop of	
14	sterilized distilled water (SDW) using a sterilized needle. The conidial suspension	
15	was spread onto a plate of 3% malt extract agar using a sterilized disposable loop,	
16	and incubated at 15°C for 10 days. Single colonies were then used to establish	
17	single-spore cultures. For each NA isolate, small pieces (up to 5 mm²) of	
18	symptomatic leaf and stem tissue were surface-sterilized in 1.2% NaOCI for up to 2	
19	minutes, and rinsed three times in SDW; or sterilized in 70% ethyl alcohol for 5 secs,	
20	dried on sterilized blotter paper, and plated onto clarified V8 (cV8) agar amended	
21	with chloramphenicol (100 mg/litre) (Carmody 2017). The leaf pieces were incubated	
22	under a day/night cycle at 15°C with cool white fluorescent light and near-ultraviolet	
23	(NUV) light for 8 h/day, and 10° C in the dark for 16 h/day. The cultures were used to	
24	generate single-spore isolates by streaking a spore suspension of each isolate onto	
25	water agar (WA) and picking individual colonies. A single Australian isolate of P.	

7

1	brassicae (CBS 157.35) was obtained from the Westerdijk Fungal Biodiversity
2	Institute. Single-spore isolatescultures were maintained in the at Rothamsted
3	Research (UK) culture collection in 88% glycerol suspensions at -80°C in the
4	Rothamsted Research (UK) culture collection, and at the Washington State
5	University (WSU) Mount Vernon Northwestern Washington Research & Extension
6	Center (NWREC) on dried, colonized filter disks stored at -20°C with desiccant.
7	Additional herbarium specimens were obtained from the CABI collection (IMI81823,
8	IMI204290, and IMI 233715-7) and the Westerdijk Fungal Biodiversity Institute
9	(CBS157.35).
10	DNA extraction. At Rothamsted Research, genomic DNA was extracted from
11	lyophilized mycelium of each isolate using a MasterPure Yeast DNA Purification kit
12	(Epicentre). DNA concentration was then quantified using a Nanodrop
13	photospectrometre, and diluted to the required concentration using PCR grade
14	water. At the WSU Mount Vernon NWREC, genomic DNA was extracted from
15	mycelium harvested from potato dextrose broth liquid cultures using a DNeasy Plant
16	Mini Kit (Qiagen). DNA concentration was then quantified using a Qubit Fluorometer,
17	and diluted to the required concentration using PCR grade water.
18	Genus confirmation and multilocus sequence analysis. To verify identity
19	of the genus of the NA isolates as <i>Pyrenopeziza</i> , phylogenetic analyses were
20	completed for the partial ITS rDNA of 30 isolates of the light leaf spot pathogen (12
21	from NA-isolates, and 138 from the UK, 4 from continental EuropeanEU, and 2 from
22	OC_ , and UK isolates) along with ITS rDNA sequences of isolates of 57 related fungi,
23	including sequences available in GenBank for seven other Pyrenopeziza species (P.
24	ebuli, P. eryngii, P. petiolaris, P. plicata, P. revincta, P. subplicata, and P.
25	velebitica), nine Cadophora species, two Graphium species, Hormodendrum pyri,

8

1	two Hymenoscyphus species, Leptodontidium orchidicola, five Mollisia species, three
2	Oculimacula species, four Phialophora species, two Phialocephala species, two
3	Rhynchosporium species, and Tapesia cinerella (Table 1, Supplementary Table 1,
4	Figure <u>1</u> $3A$). The ITS rDNA sequence obtained from a genome of <i>Botryosphaeria</i>
5	<i>dothidea</i> served as the outgroup (Supplementary Table 1). In addition, the β -tubulin
6	and <i>translation elongation factor 1-</i> α (<i>TEF1-</i> α) genes were amplified from <u>the same</u>
7	<u>30 isolates of P. brassicae</u> isolates from the <u>UK and continental Europe</u> EU, OC, UK,
8	and NA as well as from closely related fungi (Table 1 and Supplementary Table 1),
9	for completing individual phylogenetic analyses of each DNA region as well as
10	multilocus sequence analysis (MLSA) of concatenated sequences of the three DNA
11	regions. Relevant sequences from <i>B. dothidea</i> served as outgroups for these
12	analyses (Crous <i>et al.</i> 2003) (Supplementary Table 1; Figure <u>1</u> 3B, <u>1</u> 3C, and <u>1</u> 3D).
13	Primers used for the amplification of various DNA sequences are detailed in
14	Table 2. The ITS rDNA was amplified as described by Bakkeren et al. (2000) in a
15	total reaction volume of 30 μI that included 1x buffer (Invitrogen Life Technologies),
16	1.5 mM MgCl ₂ , 0.20 mM of each dNTP, 0.4 mM of each primer, 1.5 Units of <i>Taq</i>
17	DNA polymerase (Invitrogen Life Technologies), and 2 μ l of genomic DNA. The eta -
18	tubulin gene was amplified as detailed by Einax & Voigt (2003) in a total reaction
19	volume of 25 μl , including 1x buffer, 1.5 mM MgCl_2, 0.4 mM of each dNTP, 0.24 mM
20	of each primer, 1.25 Units of Taq DNA polymerase, and 1 μl of genomic DNA. The
21	<i>TEF1-</i> α gene was amplified using the protocol described by Taşkin <i>et al.</i> (2010) in a
22	total reaction volume of 20 $\mu I,$ which included 1x buffer, 1.5 mM MgCl_2, 0.15 mM of
23	each dNTP, 0.15 mM of each primer, 1 Unit of Taq DNA polymerase, and 2 μl of
24	genomic DNA. PCR reactions were done in a Thermohybaid PCR Express
25	Thermocycler (ThermoFisher Scientific) using the following cycles:
	Carmody <i>et al.</i> 9 Plant Pathology

I	94°C for 3 min; 31 cycles of 92°C for 45 s, 60°C for 45 s, and 72°C for 1 min;	
2	and 72°C for 10 min for ITS rDNA amplification;	
3	94°C for 3 min; 35 cycles of 92°C for 45 s, 55°C for 45 s, 72°C for 1 min; and	
4	72°C for 10 min for <i>β-tubulin</i> amplification; and	
5	95°C for 2 min; 35 cycles of 95°C for 15 s, 58°C for 45 s, and 72°C for 45 s;	
6	and 72°C for 5 min for <i>TEF1-</i> α amplification.	
7	After running the amplified products on <u>1.5%</u> agarose gels to confirm single bands,	
8	PCR products were cleaned using an ExoSAP-IT kit (ThermoFisher Scientific) and	
9	sent to Elim Biopharmaceuticals, Inc. for bi-directional sequencing. Primers used for	
10	PCR amplification were also used in the sequencing reactions (Table 2). The DNA	
11	sequences were processed using MEGA 7 (Kumar et al. 2016), and deposited in	
12	GenBank (Table 1).	
13	Phylogenetic analyses. Partial sequences from the ITS rDNA region, β -	
14	<i>tubulin</i> gene, and <i>TEF1-</i> α gene, along with concatenated sequences of the three	
15	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and	
15 16	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt	
15 16 17	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012).	
15 16 17 18	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte	
15 16 17 18 19	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for <i>β-tubulin</i> , and 535 nt for <i>TEF1-α</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated	
15 16 17 18 19 20	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial	
 15 16 17 18 19 20 21 	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial burn-in and chains sub-sampled every 500 generations. The best-fit model used for	
 15 16 17 18 19 20 21 22 	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial burn-in and chains sub-sampled every 500 generations. The best-fit model used for each analysis was GTR+I+G, except for the <i>TEF</i> 1- α <i>gene</i> for which the GTR+G	
 15 16 17 18 19 20 21 22 23 	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial burn-in and chains sub-sampled every 500 generations. The best-fit model used for each analysis was GTR+I+G, except for the <i>TEF</i> 1-a <i>gene</i> for which the GTR+G model was selected. The MCMC output was inspected to confirm acceptable burn-in	
 15 16 17 18 19 20 21 22 23 24 	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-</i> α . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial burn-in and chains sub-sampled every 500 generations. The best-fit model used for each analysis was GTR+I+G, except for the <i>TEF</i> 1- α <i>gene</i> for which the GTR+G model was selected. The MCMC output was inspected to confirm acceptable burn-in length and chain convergence (stationarity), and the consensus trees were viewed in	
 15 16 17 18 19 20 21 22 23 24 25 	regions were aligned using ClustalW in Geneious 10.2.3 (Biomatters Ltd.), and trimmed to equal lengths of 485 nt for the ITS rDNA, 662 nt for β -tubulin, and 535 nt for <i>TEF1-a</i> . Model selection was done using jModelTest 2.1.1.0 (Darriba <i>et al.</i> 2012). Bayesian analyses were completed using MrBayes 3.2.6 (x64). The Monte Carlo Markov Chain (MCMC) analyses for individual genes and the concatenated alignment were run for 10 ⁶ generations, with the first 25% discarded in the initial burn-in and chains sub-sampled every 500 generations. The best-fit model used for each analysis was GTR+I+G, except for the <i>TEF</i> 1-a <i>gene</i> for which the GTR+G model was selected. The MCMC output was inspected to confirm acceptable burn-in length and chain convergence (stationarity), and the consensus trees were viewed in TreeView V.1.6.6. The phylogenetic trees for individual DNA sequences and the	

1 concatenated sequences (Figure 13A to 13D) were submitted to Treebase 2 (TB2:S24431). In addition, maximum likelihood analyses were completed with the 3 same CLUSTALW alignments as for the Bayesian analyses, using the PHMYL 4 (3.3.20180621) plugin in Geneious. For all analyses, the GTR model was selected 5 and bootstrapping was based on 100 replications. The consensus trees were rooted 6 with B. dothidea sequences and viewed using TreeView, 7 Mating type screening, distribution, and phylogeny. Sequences of the 8 Phylogenetic analyses of the MAT1-1 and MAT1-2 genes sequences also were 9 amplified from 40 isolates of *P. brassicae* (Table 1) to enable phylogenetic analyses 10 of these mating type genescompleted. Sequences were obtained from a selection 11 ofthe isolates (Table 1) using the Foster et al. (2002) multiplex PCR assay. 12 Reactions were done in 20 µl volumes, each containing 10 µl MegaMix-Blue 13 (Microzone); 1 µl each of primers PbM-1-3, PbM-2, and the reverse primer Mt3 14 (Table 2), with each primer at a final concentration of 0.5 µm; 5 µl PCR grade water; 15 and 2 µl unquantified DNA extract. Amplicons were resolved on a 2% agarose gel 16 and sent to MWG Eurofins for sequencing with primer Mt3. 17 Rep-PCR DNA fingerprinting. Rep-PCR fingerprinting of a selection of nine isolates of the light leaf spot pathogen from NA and 10 isolates from the UK, 18 19 continental Europe, and OC (Table 1, Figure 4) was done using the protocols and 20 primers described by Versalovic et al. (1994). Each reaction was completed in a 20 21 µl volume containing 10 µl JumpStart REDTaq ReadyMix (Sigma Aldrich), 2 to 4 µl 22 of each primer (see details below), 6 µl PCR grade water, and 2 µl DNA (20 ng total 23 per reaction). Three variants of rep-PCR fingerprinting were done: 1) BOX PCR for 24 which each reaction included 4 µl of primer BOXAIR at a final 1 µM final 25 concentration; 2) ERIC PCR for which each reaction included 2 µl each of primers

Carmody et al.

ERIC1R/ERIC2 with each primer at a 0.5 µM final concentration; and 3) GTG⁵ PCR
 for which each reaction included 4 µl of primer GTG⁵ at a 1 µM final concentration.
 Reaction conditions were: 96°C for 2 min; 35 cycles of 94°C for 30 s, 52°C for 1 min,
 and 65°C for 5 min; and a final step at 65°C for 8 min. PCR products (8 µl) were
 subsequently visualized on a 2% agarose gel (110 volts for 3 h) with ethidium
 bromide.

7 Pathogenicity of NA isolates on brassicas. B. rapa turnip plants (cv. 8 Hakurei; Osborne International Seed Co.) and B. juncea mustard plants (cv. Caliente 9 199; High Performance Seeds, Inc.) were used to test pathogenicity of 17 NA 10 isolates of the light leaf spot pathogen (Table 1). Seed of each cv. were sown in 11 RediEarth Seedling Starter Mix (SunGro) in 72-cell flats (2 seed/cell, with each cell 12 3.8 cm diameter x 5.7 cm deep) in a greenhouse at $20 \pm 3^{\circ}$ C by day and $15 \pm 3^{\circ}$ C by night with supplemental lighting for 12 h/day, at the WSU Mount Vernon NWREC. 13 14 Three weeks later, the seedlings were transplanted into Sunshine Mix #1 (SunGro) 15 in 15-cm diameter plastic pots. Plants were inoculated with the light leaf spot isolates 16 six weeks after transplanting. The day prior to inoculation, the plants were incubated 17 overnight in polyethylene bags under a greenhouse bench that was covered with two layers of Remay cloth for shading to prevent plants overheating in the bags. 18 19 Based on limited availability of space, tThe <u>17</u>NA isolates were tested for 20 pathogenicity in groups over a total of three trials (four isolates in trial 1, 2 isolates in 21 trial 2, and 11 isolates in trial 3) at the WSU Mount Vernon NWREC (Table 1). A 22 conidial suspension was prepared for each isolate using 6- to 8-week-old colonized 23 plates of V8 agar medium by adding 20 ml SDW onto the surface of each plate and 24 gently rubbing the surface of the culture using a sterilized, bent glass rod. Each 25 spore suspension was filtered through two layers of cheesecloth, and the

Carmody et al.

12

concentration adjusted to 1 x 10⁶ conidia/ml, to which Tween 20 was added (0.01%). 1 2 Four replicate plants each of *B. rapa* and *B. juncea* were inoculated with either: 1) a 3 tester NA isolate, 2) a NA isolate previously demonstrated to be pathogenic on 4 brassicas (Cyc001, the positive control treatment), or 3) SDW (negative control treatment). Each treatment was applied using an atomizer (Rescende Model 175, 5 6 Badger Air-Brush Co.) until the leaves were coated with fine droplets. Plants were 7 then placed back in the polyethylene bags under greenhouse benches covered in 8 Remay for 48 h to promote fungal infection, removed from the bags, and laid out on 9 greenhouse benches in a randomized complete block (RCB) design. 10 Each inoculation trial was set up as a two-factor factorial treatment design 11 consisting of the two Brassica species (B. juncea and B. rapa) inoculated with the test isolates and control treatments. Three leaves of each plant were rated 14 and 21 12 13 days after inoculation (dai) for the type of symptoms (chlorosis and/or necrosis) and 14 the percentage of leaf area with symptoms. Those pPlants on which veinal browning 15 was the primary symptom were rated as having 1% severity of symptoms. The mean 16 severity ratings of three leaves/plant for each replication of each treatment 17 combination were subjected to analyses of variance (ANOVA), with replication treated as a random effect, and plant species and isolates as fixed effects. Data from 18 19 the SDW-treated control plants were excluded from the ANOVA because symptoms 20 did not develop on those plants. Assumptions of normality and equal variance were 21 tested. Treatment means were compared using Fisher's protected least significant 22 difference (LSD) at P < 0.05. Lesions that developed were examined microscopically 23 21 dai to confirm the presence of acervuli and conidia of the pathogen. Isolations 24 from lesions caused by each of the 17 isolates were completed as described above

Carmody et al.

13

1	for the original light leaf spot samples collected in NA, and ITS rDNA and β -tubulin
2	sequences were generated from the re-isolates as described above.
3	Comparative symptomology caused by isolates from the UK and
4	continental Europe EU and UK vs. isolates from NA. To compare symptoms
5	ology caused by isolates frorm the UK and continental Europe vs. EU and UK vs.
6	isolates from NA-isolates, B. rapa turnip seedlings (cv. Hakurei) were grown in a
7	greenhouse as described above. Four replicate plants were inoculated with each of
8	11 light leaf spot isolates (10 from the UK and continental EuropeEU and UK isolates
9	as well as NA isolate Cyc001) or SDW as described above, with the plants laid out in
10	a RCB design. By 14 dai, plants inoculated with the NA isolates displayed very
11	different symptoms from those inoculated with UK and continental Europe_EU and
12	UK isolates (see Results) and, thus, had to be rated differently. Plants inoculated
13	with the NA isolate were assessed for percentage of leaf area with symptoms by
14	rating three leaves/plant, as described above. Plants inoculated with <u>UK or</u>
15	continental Europe EU or UK isolates were scored for the presence or absence of
16	circular patches of white conidiomata on three leaves/plant at 28 dai (Figure 2A and
17	2B4). The number of inoculated leaves that were chlorotic, necrotic (senesced), or
18	had patches of white conidiomata were rated 21 and 28 dai (based on the total
19	number of leaves present at the time of inoculation). Re-isolations of fungi were done
20	from leaf spot lesions for the NA isolate, from sections of leaves with white
21	conidiomata for <u>UK and continental Europe the EU and UK i</u> solates, or from
22	asymptomatic tissue for control plants treated with SDW, as described previously. In
23	addition, leaf sections were examined microscopically for Pyrenopeziza acervuli and

24 conidia.

Carmody et al.

1	Leaf rating data were subjected to ANOVA for the number of inoculated
2	leaves with white conidiomata/plant, the number of inoculated necrotic leaves/plant,
3	and the number of inoculated chlorotic leaves/plant 28 dai. Replications were treated
4	as a random effect and isolates as a fixed effect in the model. Control plants treated
5	with SDW were excluded from the analyses because symptoms did not develop on
6	those plants. Plants inoculated with the NA isolate were excluded from the ANOVA
7	for the number of inoculated leaves with white conidiomata, as none was observed
8	on those plants. Disease severity ratings 28 dai were used for ANOVAs because the
9	number of necrotic leaves was much greater than at 21 dai. Assumptions of
10	normality and equal variance were tested. Assumptions for parametric analysis were
11	met for the number of inoculated leaves with white conidiomata and the number of
12	inoculated leaves that turned necrotic, while data for the number of inoculated leaves
13	that turned chlorotic had to be analyzed using Friedman's non-parametric rank test.
14	Treatment means were compared using Fisher's protected LSD at <i>P</i> <0.05. The
15	pathogenicity test was repeated.
16	Sexual compatibility testing. Twenty light leaf spot isolates, 10 from NA
17	(five <i>MAT1-1</i> and five <i>MAT1-2</i>) and 10 from the <u>UK or continental Europe EU or UK</u>
18	(five <i>MAT1-1</i> and five <i>MAT1-2</i>), were grown from -80°C glycerol stocks onto 3%
19	MEA plates, incubated in the dark at 18°C, and used to attempt sexual crosses
20	(Tables 1 and 3). After six weeks, 1 mL of SDW water was added to the surface of
21	each stock plate and the colonies agitated using a sterilized bent glass rod. The
21 22	each stock plate and the colonies agitated using a sterilized bent glass rod. The conidial suspension was filtered through a double layer of sterilized cheesecloth and
21 22 23	each stock plate and the colonies agitated using a sterilized bent glass rod. The conidial suspension was filtered through a double layer of sterilized cheesecloth and adjusted to 1×10^6 conidia/ml. A 40 µl aliquot of conidial suspension from each of the
21222324	each stock plate and the colonies agitated using a sterilized bent glass rod. The conidial suspension was filtered through a double layer of sterilized cheesecloth and adjusted to 1×10^6 conidia/ml. A 40 µl aliquot of conidial suspension from each of the two isolates used for each attempted sexual cross was placed onto a plate of 3%
 21 22 23 24 25 	each stock plate and the colonies agitated using a sterilized bent glass rod. The conidial suspension was filtered through a double layer of sterilized cheesecloth and adjusted to 1×10^6 conidia/ml. A 40 µl aliquot of conidial suspension from each of the two isolates used for each attempted sexual cross was placed onto a plate of 3% MEA and the two aliquots spread across the agar surface using a sterilized bent

glass rod. Plates were sealed with Parafilm and incubated for a further 9 weeks in
 the dark at 18°C, after which plates were examined microscopically at weekly
 intervals for the presence or absence of apothecial initials, mature apothecia, and
 asci with ascospores (the latter determined microscopically from thin apothecial
 sections examined at ≤100 x magnification). Each sexual cross was attempted using
 three replicate plates of MEA.

7 **Morphological comparison.** Light leaf spot isolates, 10 from NA and 10 from 8 the UK and continental EuropeEU and UK, were compared morphologically in vitro 9 and in planta (Table 1). For in vitro comparison, cultures were initiated from -80°C 10 glycerol stocks onto three replicate 3% MEA plates for each of four isolates from the 11 EU/UK and continental Europe compared toand 10 NA isolates. T, and the plates were incubated at 18°C in the dark for four months, at which time the plates were 12 photographed. For comparison of conidial morphologies in vitro, 10 UK and 13 14 continental Europe EU and UK isolates, and eight NA isolates (all isolates listed in 15 Table 3 excluding two of the 10 NA isolates which sporulated poorly) were grown for 16 six weeks on 3% MEA as detailed above, after which conidia were harvested and 17 examined microscopically. Conidial shape was examined for each isolate, and the 18 length and diameter of 25 conidia/isolate were measured using a digital CCD camera (Hamamatsu C8484 05G01) and HCimage software (Hamamatsu Photonics K.K.). 19 20 Conidial dimensions for the UK and continental European EU and UK isolates were 21 compared with those of the NA isolates using Student's t test (Graphpad Software). 22 For examination of conidial morphology in planta, conidia were washed from 23 inoculated, symptomatic leaves of *B. rapa* turnip (cv. Hakurei) plants that had been 24 inoculated 28 days previously with 20 isolates of the light leaf spot pathogen (10 continental EuropeU and UK isolates, and 10 NA isolates; Table 1). The length and 25

Carmody et al.

width, and the presence or absence of a septum were recorded for each of 60 1 2 conidia per isolate. Photographs of conidia were taken with a Leica camera 3 (DFC295, Wetzlar) and Leica Application Software Version 3.8 (Leica 4 Microsystems). An ANOVA was used to compare conidial dimensions of UK and 5 continental Europe EU and UK isolates with those of NA isolates (geographic 6 location), and among isolates within the two major geographic regions. Geographic 7 region was treated as a fixed effect and isolates as a random effect in the models. 8 Symptomatic leaves infected with each of the 10 UK and continental Europe isolates 9 EU or UK and the 10 NA isolates were harvested from the same plants and pressed 10 at the time conidia were washed from the leaves. The pressed leaves were 11 submitted to the Westerdijk Fungal Biodiversity Institute along with agar cultures of 12 each isolate (Table 1). Live cultures of representative isolates were also deposited into the CABI (IMI) collection (Table 1). 13 14 Fungicide sensitivity testing and molecular analyses. Ten isolates of the light leaf spot pathogen, including four reference UK and continental European EU 15 16 and UK isolates with different sensitivity profiles to carbendazim and 17 prothioconazole, and six NA isolates that had not previously been tested for 18 sensitivity to these fungicides (Tables 1 and 4), were initiated from -80°C glycerol stocks onto 3% MEA plates. After three weeks, 1 ml of SDW was added to the 19 20 colony surface of each isolate and agitated using a sterilized, bent glass rod. Each 21 conidial suspension was filtered through sterilized cheesecloth and adjusted to 1 x 22 10⁵ conidia/ml. A 10 µl droplet of conidial suspension was placed on the centre of a 23 plate of PDA (60 mm diameter x 15 mm deep, with 10 ml of medium per plate) 24 containing: 1) no fungicide, 2) 0.39 µg carbendazim/ml, or 3) 1.56 µg 25 prothioconazole/ml. Each isolate was tested on three amended agar plates for each

Carmody et al.

1	of the three treatments. Plates were dried in a laminar flow hood for 10 min, sealed
2	with a double layer of Parafilm, incubated for 18 days in the dark at 18°C, and
3	examined for the presence or absence of visible fungal colonies. In addition, the β -
4	tubulin gene sequences from 12 NA isolates (Table 1) were examined for the
5	presence of key amino acid substitutions that have previously been correlated with
6	resistance to MBC fungicides in some EU and UK isolates from the UK and
7	continental Europe (Carter et al. 2013).
8	
9	Results
10	Genus confirmation. Phylogenetic analysis of the ITS rDNA of 18 UK,
11	continental European and EU, OC, and UK isolates of <i>P. brassicae</i> obtained from <i>B.</i>
12	napus, B. oleracea, and B. rapa plants; 12 NA isolates obtained from B. juncea, B.
13	napus, B. rapa, and Raphanus spp.; and 57 isolates of closely related fungi revealed
14	the NA isolates to group most closely with isolates of <i>P. brassicae</i> (Figure <u>1</u> 3A).
15	None of the ITS rDNA sequences of the seven other Pyrenopeziza species or other
16	closely related fungal genera grouped with the NA isolates. Thus, the NA isolates
17	were confirmed to be a <i>Pyrenopeziza</i> sp. most closely related to <i>P. brassicae</i> .
18	Multilocus sequence analyses. Bayesian phylogenetic analyses of the ITS
19	rDNA (Figure <u>1</u> 3A), β -tubulin (Figure <u>1</u> 3B), and TEF1- α sequences (Figure <u>1</u> 3C) as
20	well as the concatenated sequences (Figure $\underline{1}$ 3D) all revealed the \underline{UK} , continental
21	European and OC EU, OC, and UK isolates of <i>P. brassicae</i> formed a genetically
22	distinct lineage, henceforth referred to as lineage 1, from the NA isolates, henceforth
23	referred to as lineage 2. Maximum likelihood analyses of the same sequences (ITS
24	rDNA in Supplementary Fig 1A, β -tubulin in Supplementary Figure 1B, TEF1- α
25	sequences in Supplementary Figure 1C, and the concatenated sequences in
	Carmody <i>et al.</i> 18 Plant Pathology

1 Supplementary Figure 1D) gave very similar results. Both Bayesian and maximum 2 likelihood analyses supported two distinct lineages that were defined solely by geographic origin, with no evidence for additional grouping based on the Brassica or 3 4 Raphanus species from which the isolates originated. These two lineages were more 5 similarly related to each other than to sequences of any other related fungal genera 6 examined for all DNA regions evaluated (Figure 13; Supplementary Figure 1). The 7 partial ITS rDNA sequence (GenBank Accession No. MN028386) obtained from the 8 type herbarium specimen of P. brassicae (IMI81823), showed this isolate grouped 9 into lineage 1. Mating type screening, distribution, and phylogeny. All of the light leaf 10 11 spot isolates produced a single amplicon when screened with the multiplex mating 12 type diagnostic PCR assay developed by Foster et al. (2002). Lineage 1 isolates produced amplified DNA fragments of either 687 bp for the MAT1-1 isolates or 858 13 14 bp for the MAT1-2 isolates. In contrast, for lineage 2 isolates, MAT1-1 isolates 15 yielded a smaller, ~786 bp product, which was smaller than the 687 bp product for 16 lineage 1 isolates, whereas MAT1-2 isolates produced a ~858 bp fragment of similar 17 size to that of the lineage 1 isolates. Sequence analyses revealed that the larger 18 product size for MAT1-1 in lineage 2 isolates was due to a 99 bp indel that coded for 19 an additional 33 amino acids (aa) targeted by the primers (Singh & Ashby 1998); no 20 reading frame disruption or premature stop codons were observed in the translated 21 aa sequence. 22 Examination of mating type distributions did not reveal statistically significant 23 deviations from a 1:1 ratio for the 33 lineage 1 isolates of P. brassicae (15:18 MAT1-

24 1:MAT1-2 isolates: $X^2 = 0.273$, 1 df, P = 0.6015) or the 16 lineage 2 isolates (8:8)

25 MAT1-1:MAT1-2 isolates: X² = 0, 1 df, P = 1.000). Both MAT1-1 and MAT1-2 type

Carmody et al.

1 isolates of lineage 2 were present in each of Oregon and Washington. Inspection of 2 sequences of the MAT1-1-3 gene from MAT1-1 isolates and MAT1-2-1 gene from 3 MAT1-2 isolates also clearly resolved the two lineages, with 90.36% similarity for 4 MAT1-1 isolates and 93.24% for MAT1-2 isolates (data not shown). 5 Rep-PCR DNA fingerprinting. All three rep-PCR variants tested (BOX, ERIC 6 and GTG⁵) consistently resolved lineage 1 isolates of the light leaf spot pathogen 7 from lineage 2 isolates (Figure 5). Evidence for high genotypic variability was also 8 observed for the ERIC and GTG⁵ data, with unambiguous bands scored as 9 present/absent for each isolate (Figure 5 bands scored with arrows). Based on 10 scoring of bands, 3 of 10 lineage 1 isolates (30%), and 7 of 9 lineage 2 isolates 11 (78%) had unique genotypes. 12 Pathogenicity of lineage 2 isolates on brassicas. The 17 isolates from lineage 2 that were tested for pathogenicity on the turnip (B. rapa cv. Hakurei) and 13 14 mustard (B. juncea cv. Caliente 199) plants all caused chlorotic, rapidly expanding, 15 foliar lesions on both hosts (Figure 24C). Symptoms were not observed on SDW-16 treated control plants of either species. Data met assumptions for parametric 17 analysis in pathogenicity tests 1 and 2, but data for pathogenicity test 3 had to be 18 square root-transformed to meet assumptions of equal variance. Based on the 19 ANOVAs, significant differences in disease severity were detected 21 dai between 20 the turnip and mustard plants (P = 0.0004, P < 0.001, and P < 0.001 for tests 1, 2, and 21 3, respectively). The turnip plants developed more severe symptoms (100, 99.7 ± 0.3, and 84.1 ± 3.8% of the leaf area with symptomsseverity in tests 1, 2, and 3, 22 23 respectively) than the mustard plants (84.8 \pm 3.7, 77.0 \pm 4.0, and 21.5 \pm 2.9% 24 severity, respectively). In addition, turnip plants developed symptoms earlier thaen 25 mustard plants, with pale brown streaks on the stems and veinal browning on the

Carmody et al.

leaves that darkened over time. Veinal browning was followed by development of 1 2 small (<5 mm diameter), chlorotic leaf spots, that became diffuse and expanded 3 rapidly, coalescing and covering most of the leaf surface by 21 dai (Figure 24C). 4 Symptoms were similar but developed more slowly on mustard leaves (3 to 5 days more slowly). Hyaline, smooth, cylindrical, mostly aseptate and eguttulate conidia 5 6 were observed on short, non-branching conidiophores in pale acervuli (Figure 24D) 7 on symptomatic leaves of plants inoculated with each of the lineage 2 isolates. The 8 white, subcuticular conidiomata described by Rawlinson et al. (1978) and Fitt et al. 9 (1998) as being produced in patches on leaves of plants infected with P. brassicae in 10 the UK and continental EuropeEU and UK (Figure 21A and 1B) were not observed 11 on any of the turnip or mustard plants inoculated with the lineage 2 isolates. Koch's 12 postulates were completed by re-isolating the fungus from symptomatic leaves of all 13 inoculated plants of each species. The fungus could not be re-isolated from the 14 control plants of each species. Sequencing the ITS rDNA and β tubulin regions 15 confirmed that all the re-isolates matched the original lineage 2 isolates (data not 16 shown). 17 Comparative symptomology caused by isolates of the two lineages. Very 18 different symptoms were observed on turnip plants of the cv. Hakurei inoculated with lineage 1 isolates compared with those inoculated with lineage 2 isolate Cyc001. All 19 20 10 lineage 1 isolates produced patches of white conidiomata on leaves, that were 21 first observed 11 dai (Figure 21A and 21B photos taken 14 dai). Patches of white 22 cConidiomata were not observed on any of the plants inoculated with the lineage 2 23 isolate. Instead, the conidiomata observed were pale tan to brown acervuli and, 24 sometimes, black stromatal knots, that developed when leaves infected with the 25 lineage 2 isolate were incubated on agar plates or in moist chambers (Figure 24D).

Carmody et al.

1	By 21 dai, leaves with white conidiomata of the lineage 1 isolates had senesced	
2	more rapidly than plants treated with SDW. The general chlorosis that developed on	
3	leaves inoculated with the 10 lineage 1 isolates -differed from the bright yellow	
4	chlorotic spots observed on plants inoculated with the lineage 2 isolate (Figure $\underline{2}$ 4C).	
5	In the first pathogenicity test, there were significant differences among	
6	isolates for all three variables measured. For the number of inoculated leaves that	
7	turned necrotic, there was a significant main effect of isolates (P < 0.0001). However,	
8	there were no significant differences in the mean number of necrotic inoculated	
9	leaves caused by <u>9 the</u> 10 of the 11 lineage 1 isolates of <i>P. brassicae</i> and the	
10	lineage 2 isolate, Cyc001 <u>, by 28 dai</u> (4.50 to 5.75 necrotic leaves/plant, <i>P</i> >0.05;	
11	Supplementary Figure 2A). Only isolate 2016-5 caused fewer necrotic leaves	
12	(4.50/plant) than that caused by lineage 2 isolate Cyc001. The control plants	
13	averaged 2.50 \pm 0.29 necrotic leaves/plant, which was less than that of any of the	
14	inoculated plants. In the repeat test, the main effect of isolates was again significant	
15	($P < 0.0001$). Tthe lineage 2 isolate Cyc001 caused the greatest number of necrotic	
16	leaves (4.00 \pm 0.41/plant), followed by the lineage 1 isolate 2016-34 (2.75 \pm 0.63	
17	necrotic leaves/plant). Three of the lineage 1 isolates and the control plants all had	
18	<1 necrotic leaf/plant.	
19	The main effect of isolates also significantly affected the number of chlorotic	
20	leaves/plant (P = 0.012 in trial 1). Lineage 2 isolate Cyc001 caused the greatest	
21	number of leaves to turn chlorotic by 28 dai (1.8 \pm 0.3 and 2.5 \pm 0.7 leaves/plant in	
22	the trials 1 and 2, respectively) (Supplementary Figure 2B). This did not, however,	
23	differ significantly from that caused by four lineage 1 isolates in the first trial and two	
24	lineage 1 isolates in the repeat trial (means separation based on non-parametric	
25	rank analyses). All other lineage 1 isolates caused fewer chlorotic leaves to	

22

1	develop/plant than that caused by lineage 2 isolate Cyc001 in both trials. None of the
2	control plants developed chlorotic leaves. For the number of leaves with patches of
3	white conidiomata, the negative control plants and plants inoculated with Cyc001
4	were excluded from the ANOVA as white conidiomata did not develop on those
5	plants (Supplementary Figure 2C). Of the 10 lineage 1 isolates of P. brassicae
6	tested, there was a significant effect of isolates (P = 0.005). Isolate 2016-26 caused
7	the greatest number of leaves to produce patches of white conidiomata (4.25 \pm 0.63
8	leaves/plant), while UK73 caused the fewest leaves to develop white conidiomata
9	$(0.50 \pm 0.29 \text{ leaves/plant})$. The other isolates did not differ significantly. Very similar
10	results for number of chlorotic leaves/plant and number of leaves with white
11	conidiomata/plant were observed in the repeat trials (data not shown). Koch's
12	postulates were completed by re-isolating the fungus (confirmed by sequencing)
13	from foliar lesions of plants inoculated with the lineage 2 isolate or from white
14	conidiomata that developed on leaves of plants inoculated with the lineage 1
15	isolates. Fungi were not re-isolated from <u>any of the control plants.</u>
16	Sexual compatibility testing. In vitro crosses on plates of 3% MEA between
17	lineage 1 isolates of P. brassicae of MAT1-1 and MAT1-2 types resulted in mature
18	apothecia developing for 22 of the 25 crosses (88%) (Table 3). Asci and ascospores
19	subsequently were confirmed in 19 of these 25 crosses (76%) after nine weeks. By
20	contrast, attempts at inducing sexual reproduction under similar conditions were
21	unsuccessful between lineage 2 isolates of opposite MAT1-1 and MAT1-2 types, and
22	between lineage 1 and lineage 2 isolates of opposite MAT types. Structures that
23	appeared to be apothecial initials were observed in some crosses of lineage 1 x
24	lineage 2 isolates but none of these developed into mature apothecia with

23

1	ascospores (Table 3). Apothecial initials did not develop in any of the attempted
2	MAT1-1 and MAT1-2 crosses among lineage 2 isolates.
3	Morphological analyses. Considerable colony variation was evident among
4	the 10 lineage 2 isolates of the light leaf spot pathogen, with diverse pigment colours
5	(black, brown, grey, pink, red, and yellow) (Figure $\underline{3}\underline{2}A$). For all lineage 2 isolates
6	examined (except Cyc023A), the observed phenotype was consistent among the
7	three replicate cultures on MEA. Additional comparisons of the 10 lineage 2 isolates
8	with four representative lineage 1 isolates of <i>P. brassicae</i> revealed no obvious
9	differences in colony phenotype that distinguished isolates from the two major
10	geographic regions (Figure <u>3</u> 2A and <u>3</u> 2B).
11	Examination of conidia produced in vitro by colonies growing on 3% MEA for
12	6 weeks revealed it was not possible to distinguish between the 10 lineage 1 and
13	eight lineage 2 isolates based on shape of the conidia. All 18 isolates produced
14	hyaline, usually aseptate, and cylindrical conidia. Moreover, there was no significant
15	difference among the lineage 1 vs. lineage 2 isolates for conidial length [lineage 1
16	isolates averaged 8 \pm 0.13 um (mean \pm standard error) for 250 conidia, and lineage
17	2 isolates averaged 7.80 \pm 0.12 um for 200 conidia; Student's <i>t</i> test = 1.23, df = 448,
18	P = 0.262] or diameter (lineage 1 isolates averaged 2.23 ± 0.03 um for 250 conidia,
19	and lineage 2 isolates averaged 2.18 \pm 0.03 um for 200 conidia; Student's <i>t</i> test =
20	1.11, df = 448, <i>P</i> = 0.268).
21	In contrast, when conidia were washed directly from symptomatic leaves of
22	the turnip cv. Hakurei 28 dai of the plants with 10 lineage 1 isolates and 10 lineage 2
23	isolates, significant differences were observed in morphology of conidia produced by

24 $\,$ $\,$ isolates from the two major geographic regions. A single septum was observed in

25 some conidia collected from leaves inoculated with most (9 of 10) lineage 2 isolates

Carmody et al.

1	but only from leaves inoculated with 1 of the 10 lineage 1 isolates. The number of
2	conidia with a septum averaged 5.3 \pm 1.1 for 60 conidia measured/isolate for the 10
3	lineage 2 isolates compared to 0.1 ± 0.1 for 60 conidia/isolate for the lineage 1
4	isolates ($P < 0.0001$). Conidial width did not differ significantly ($P = 0.1300$, $R^2 = 0.39$)
5	among all 20 isolates, but was significantly greater for the 10 lineage 1 isolates
6	(average of 4.41 \pm 0.02 μm) than for the 10 lineage 2 isolates (3.14 \pm 0.17 $\mu\text{m};$ P
7	<0.0001, $R^2 = 0.60$). Conidial length differed significantly among the 20 isolates ($P =$
8	0.0135, $R^2 = 0.47$), and between the 10 lineage 1 isolates compared to the 10
9	lineage 2 isolates ($P < 0.0001$, $R^2 = 0.60$, respectively). Conidial length averaged
10	10.08 \pm 0.07 μm for the 10 lineage 2 isolates vs. 11.70 \pm 0.06 μm for the 10 lineage
11	1 isolates. In summary, the 10 lineage 2 isolates produced slightly shorter and
12	narrower conidia in planta than the 10 lineage 1 isolates, and 90% of the lineage 2
13	isolates produced a few septate conidia in planta whereas only one of the 10 lineage
14	1 isolates formed septate conidia in planta.
15	Fungicide sensitivity testing and molecular analyses. In vitro testing
16	showed the six lineage 2 isolates to be very sensitive to carbendazim as no fungal
17	growth was observed on any of the agar plates amended with 0.39 μg
18	
	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i>
19	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB,
19 20	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB, respectively. Subsequent inspection of the β -tubulin aa sequences from 12 lineage 2
19 20 21	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB, respectively. Subsequent inspection of the β -tubulin aa sequences from 12 lineage 2 isolates revealed none contained the E198A, E198G, F220Y, or L240F substitutions
19 20 21 22	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB, respectively. Subsequent inspection of the β -tubulin aa sequences from 12 lineage 2 isolates revealed none contained the E198A, E198G, F220Y, or L240F substitutions that have been associated with MBC resistance in some UK <i>P. brassicae</i> isolates
 19 20 21 22 23 	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB, respectively. Subsequent inspection of the β -tubulin aa sequences from 12 lineage 2 isolates revealed none contained the E198A, E198G, F220Y, or L240F substitutions that have been associated with MBC resistance in some UK <i>P. brassicae</i> isolates (Carter <i>et al.</i> 2013). Additional sensitivity testing revealed the six lineage 2 isolates to
 19 20 21 22 23 24 	carbendazim/mL (Table 4). This contrasted with lineage 1 isolates of <i>P. brassicae</i> known to be moderately and highly resistant to carbendazim, UK73 and 8CAB, respectively. Subsequent inspection of the β -tubulin aa sequences from 12 lineage 2 isolates revealed none contained the E198A, E198G, F220Y, or L240F substitutions that have been associated with MBC resistance in some UK <i>P. brassicae</i> isolates (Carter <i>et al.</i> 2013). Additional sensitivity testing revealed the six lineage 2 isolates to be sensitive to prothioconazole as no fungal growth was observed on agar medium

1	isolate Cyc013A, on which a single colony <1 mm in diameter was observed. This	
2	contrasted with the growth observed for UK isolates UK73 and 8CAB, for which EC_{50}	
3	values had previously been determined to be \geq 1.23 µg/ml (Carter <i>et al.</i> 2014).	
4		
5	Discussion	
6	In this study, isolates of the light leaf spot pathogen from three major	
7	geographic regions were resolved into two closely related but genetically distinct	
8	phylogenetic lineages. The first (lineage 1) contained isolates from the UK,	
9	continental Europe, and EU, OC, and UK isolates that originated from <i>B. napus</i> , <i>B.</i>	
10	oleracea, and B. rapa plants, and included the type specimen of P. brassicae,	
11	IMI81823 (Rawlinson et al. 1978) for which only a partial ITS rDNA sequence could	
12	be generated from the herbarium specimen. The second (lineage 2) included NA	
13	isolates that originated from <i>B. juncea</i> , <i>B. napus</i> , <i>B. rapa</i> , and <i>Raphanus</i> spp. from	
14	western Oregon and western Washington. The two lineages were distinguished	
15	consistently based on: 1) Bayesian and maximum likelihood analyses of individual	
16	sequences and MLSA of concatenated sequences of the ITS rDNA as well as the eta -	
17	<i>tubulin</i> and <i>TEF1-</i> α genes; 2) phylogenetic analyses of <i>MAT1-1</i> and <i>MAT1-2</i>	
18	sequences; and 3) rep-PCR DNA fingerprinting (including BOX, ERIC, and GTG^5	
19	variants). In addition, MAT1-1 type lineage 2 isolates contained a 99 bp indel in the	
20	MAT1-1-3 gene that was not present in any of the lineage 1 isolates of P. brassicae	
21	examined. The two lineages were discriminated exclusively based on geographic	
22	origin, with no additional subdivision based on original host species.	
23	Pathogenicity tests in greenhouse and growth chamber conditions revealed	
24	strikingly different foliar symptoms on <i>B. rapa</i> seedlings inoculated with lineage 1 vs.	
25	lineage 2 isolates. All 10 lineage 2 isolates caused bright yellow chlorotic spots, each	

of which developed a necrotic center and veinal browning. These yellow spots 1 2 expanded rapidly, remaining chlorotic and leading to leaf chlorosis and eventual 3 necrosis of entire inoculated leaves. Pale tan to light brown acervuli formed in the 4 chlorotic and necrotic leaf tissue, in which conidia were observed when examined 5 microscopically. In contrast, the 10 lineage 1 isolates resulted in formation of white 6 conidiomata on otherwise 'healthy' green leaves, followed by rapid leaf necrosis 7 (sometimes with leaf distortion and crinkling, but never with bright yellow chlorotic 8 lesions). Overall, these results are consistent with the different symptoms observed 9 on naturally infected plants under field conditions on the continents from which the 10 original fungal isolates were obtained (Carmody 2017; Karandeni Dewage et al. 11 2018).

12 Isolates of MAT1-1 and MAT1-2 types were found for both lineage 1 and lineage 2. In vitro crosses between lineage 1 isolates of MAT1-1 and MAT1-2 types 13 14 resulted in development of mature apothecia with asci and ascospores for a majority 15 of the crosses (76%) within nine weeks of pairing the isolates, which is consistent 16 with previous studies (llott et al. 1984). Conversely, mature sexual structures were 17 not observed in similar crosses between lineage 2 isolates of opposite MAT type, i.e., no sexual cycle could be confirmed. A few of the attempted sexual crosses 18 between lineage 1 and lineage 2 isolates of opposite MAT type did result in what 19 20 appeared to be apothecial initials, but these structures did not develop into mature 21 apothecia with asci and ascospores. One possibility is that the apothecial initials observed in these inter-lineage crosses could have resulted solely from the lineage 1 22 23 isolate, as llott et al. (1984) reported that some UK isolates produced what appeared 24 to be apothecial initials even in single-isolate cultures. The inability to confirm 25 sexual reproduction between the two lineages of opposite mating type might be

Carmody et al.

27

1	explained by the sequence divergence observed at the MAT1-1 locus, i.e., the 99 bp	
2	indel detected in the MAT1-1 lineage 2 isolates but not in lineage 1 isolates of this	
3	mating type. Further work is now required needed to investigate the possibility of	
4	sexual compatibility between isolates of lineages 1 and 2, and the The present	
5	results of this study should be interpreted with caution, however, given the limited	
6	number of isolates tested and the limited conditions under which the isolates were	
7	tested for sexual compatibilitycrossing. It is possible that lineage 2 isolates may have	
8	different in vitro development requirements for induction of a sexual cycle, given that	
9	no sexual stage has yet been identified in the Pacific Northwest region of the USA	
10	where this pathogen was first detected in NA.	
11	The lineage 2 isolates of the light leaf spot pathogen exhibited several	
12	'signatures of sexuality' that are indicative of cryptic sexual potential. First, the ratio	
13	of MAT1-1:MAT1-2 type isolates did not deviate significantly from a 1:1 distribution,	
14	as is typically the case under frequency-dependent selection operating on MAT	
15	genes (Milgroom 1996). Second, the lineage 2 isolates exhibited high genotypic	
16	(based on rep-PCR DNA fingerprinting) and phenotypic (based on colony	
17	morphology on 3% MEA) diversity, as is usually observed with sexually outcrossing	
18	populations (McDonald & Linde 2002). The lineage 2 isolates appeared more diverse	
19	(7 of 9 isolates had a unique rep-PCR genotype) than the lineage 1 isolates (3 of 10	
20	isolates had a unique genotype). Further work is required to investigate possible	
21	cryptic sexuality in lineage 2 isolates, including more extensive attempts at sexual	
22	crossing, e.g., in planta on senescing host debris (Gilles et al. 2001). The presence	
23	of a sexual cycle in lineage 2 could affect pathogen dispersal and, potentially,	
24	increase the risk of breakdown in effectiveness of some disease management	
25	strategies, e.g., from development of fungicide resistance and/or the presence of	

1	virulence genes in the pathogen population that overcome host plant resistance
2	(McDonald & Linde 2002).
3	Morphologically, it was possible to distinguish between conidia of lineage 1
4	and 2 isolates produced on infected <i>B. rapa</i> plants. Lineage 2 isolates produced
5	slightly shorter and narrower conidia [10.08 \pm 0.07 (mean \pm standard deviation) x
6	3.14 \pm 0.17 $\mu m]$ than lineage 1 isolates (11.70 \pm 0.06 μm x 4.41 \pm 0.02 μm). In
7	addition, a limited number of conidia produced by lineage 2 isolates formed a single
8	septum as the conidia aged, whereas only a single isolate of lineage 1 (of the 10
9	examined) occasionally produced conidia that developed a septum. By contrast, no
10	differences in conidial dimensions or colony colour were observed between the
11	lineage 1 and 2 isolates when grown on 3% MEA. Isolates from both lineages
12	formed a range of black, brown, grey, pink, or yellow pigmentation on this medium.
13	The difference in spore dimensions observed for spores of lineages 1 and 2
14	generated in vitro vs. in vivo could reflect the well-documented potential impact of
15	substrate (3% MEA vs. live plants in this case) on spore production by many fungi.
16	However, the measurement of spores produced in vitro was done at Rothamsted
17	Research whereas the measurement of spores produced in vivo was done at WSU,
18	which confounded any potential effects of the location and method with differences in
19	spore dimensions among isolates. Given these difficulties with morphological
20	discrimination in vitro between isolates of the two lineages, specific PCR assays
21	have since been designed by King and West at Rothamsted to enable rapid lineage
22	discrimination (data not shown). Such PCR assays could be used to differentiate
23	isolates of the two lineages, including isolates of the two lineages present in infected
24	leaves, seed, etc.

1 The first report of light leaf spot in NA was in Oregon in 2014, with subsequent 2 widespread distribution of the disease discovered across western Oregon and, more 3 recently, in three counties in Washington State, which suggests fairly rapid spread of 4 the causal agent within the Pacific Northwest USA. Indeed, based on the lineage 2 isolates evaluated in this study, the pathogen was confirmed as far north as 5 6 Whatcom Co., WA and as far south as Douglas Co., OR. The geographic origin of 7 lineage 2 isolates in the USA remains unclear. However, based on this study, 8 lineage 2 isolates appear not to have originated from the UK, continental Europe, or 9 EU, OC, or the UK as isolates from those regions were in the genetically distinct 10 lineage 1. One possible source of lineage 2 isolates is Asia. Light leaf spot outbreaks 11 have been reported in Japan and Thailand (CABI 2015; Rawlinson et al. 1978). 12 Future work to characterize Asian isolates should provide insight on a more global scale of the potential origin of the NA isolates. 13 14 Currently, the two lineages appear to be restricted geographically to either the 15 UK, continental Europe, and or OCthe EU, OC, and UK (lineage 1) or to NA (lineage 16 2). Therefore, appropriate precautions are needed to prevent movement of isolates 17 from the different lineages between se-regions and to other parts of the world. This 18 includes transfer of potentially infected plants or seed (Carmody & du Toit 2017) on 19 which the pathogen might be present symptomatically or asymptomatically. More 20 comprehensive testing of the responses of B. napus, B. oleracea, B. rapa and other 21 Brassicaceae germplasm to isolates from the two lineages is needed to assess 22 potential differences in susceptibility of plant germplasm (Boys et al. 2012). Although 23 this study indicated that isolates from lineages 1 and 2 are sexually incompatible, 24 there remains a risk of hybridization or somatic recombination between isolates of 25 the two groups. Given the recent rapid spread of lineage 2 across western Oregon

Carmody et al.

1 and western Washington, there is also a risk of spread into Canada, the world's third 2 largest producer of canola (B. napus), and other regions of the USA as well as 3 Mexico. 4 Management of light leaf spot in the <u>UK and continental Europe EU and UK is</u> 5 based primarily on timely applications of efficacious fungicides. Prior to this study, 6 data were not available on the sensitivity of lineage 2 isolates of the light leaf spot 7 pathogen to fungicides used to control this disease in the UK and continental 8 Europe. EU and UK. Phenotypic screening of six lineage 2 isolates revealed all to be 9 sensitive to both carbendazim and prothioconazole. Examination of the β-tubulin aa 10 sequences of lineage 2 isolates revealed 100% identity to that of a UK isolate 11 previously classified as sensitive to MBC fungicides (KC342227; Carter et al. 2013), 12 with no evidence for the key substitutions (e.g., E198A or L240F) that have been correlated with MBC resistance in lineage 1 isolates (Carter et al. 2013). Although 13 14 more isolates should be tested, it appears likely that lineage 2 isolates might be 15 controlled effectively with applications of MBC and DMI fungicides, as demonstrated 16 recently with MBC and DMI fungicide seed treatments evaluated with a mustard 17 seed lot infected with a lineage 2 isolate (Carmody & du Toit 2017). However, given the emergence of resistance to both fungicide groups in some lineage 1 isolates 18 (Carter et al. 2013; 2014), implementation of fungicide resistance management 19 20 strategies by NA brassica growers will be important to extend the effective life of 21 these fungicides against the pathogen (e.g., using mixtures or rotations of fungicides with different modes of action). 22 23 In conclusion, based on the CSC that combines morphological, ecological, 24 biological, and genetic (phylogenetic) data (Crous et al. 2015), convincing evidence 25 was generated in this study for two genetically distinct evolutionary lineages of P.

Carmody et al.

1	brassicae, with lineage 1 comprising isolates from the UK, continental Europe, and
2	OC, EU, OC, and UK and including the type specimen, IMI81823 (Rawlinson <i>et al</i> .
3	1978); and lineage 2 comprising NA isolates. More detailed morphological, genetic,
4	and biological assessment of a broader collection of isolates from additional
5	geographic locations and other Pyrenopeziza species should enable determination
6	of whether the NA isolates represent a new species. Furthermore, given distinct
7	differences in symptoms and signs (types of conidiomata) observed on <i>B. rapa</i> and
8	<i>B. juncea</i> plants inoculated with isolates of the two lineages, and also disease
9	symptoms observed on both inoculated and naturally infected plantshosts of(e.g. B.
10	juncea, B. napus, B. oleracea, B. rapa, and Raphanus sativus (Carmody 2017;
11	<u>Claassen 2016)</u> , we propose the common name, 'chlorotic leaf spot', be used to
12	describe the disease caused by lineage 2 isolates in order to differentiate this
13	disease from classic light leaf spot symptoms caused by isolates of lineage 1 of P.
14	brassicae.
14 15	brassicae.
14 15 16	brassicae. Acknowledgements
14 15 16 17	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation
14 15 16 17 18	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and
14 15 16 17 18 19	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the
14 15 16 17 18 19 20	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick
14 15 16 17 18 19 20 21	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick Scholarship in Rural Community Service & Development; and the Department of
 14 15 16 17 18 19 20 21 22 	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick Scholarship in Rural Community Service & Development; and the Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences,
 14 15 16 17 18 19 20 21 22 23 	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick Scholarship in Rural Community Service & Development; and the Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, Hatch Projects WPN00595 and WPN05595,
 14 15 16 17 18 19 20 21 22 23 24 	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick Scholarship in Rural Community Service & Development; and the Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, Hatch Projects WPN00595 and WPN05595, Washington State University, Pullman, 99164-6430 (PPNS 0767). Research at
 14 15 16 17 18 19 20 21 22 23 24 25 	brassicae. Acknowledgements The WSU authors acknowledge funding from the Clif Bar Family Foundation Seed Matters Initiative; the USDA Western Sustainable Agriculture Research and Education Fellowship No. GW16-055; the Lisa Shepherd Travel Award from the American Phytopathological Society Foundation; the Alexander A. Smick Scholarship in Rural Community Service & Development; and the Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, Hatch Projects WPN00595 and WPN05595, Washington State University, Pullman, 99164-6430 (PPNS 0767). Research at Rothamsted was supported by the Smart Crop Protection (SCP) strategic program

1	(BBS/OS/CP/000001) funded through the Biotechnology and Biological Sciences
2	Research Council's Industrial Strategy Challenge Fund. The authors acknowledge
3	the Herbarium of Royal Botanic Gardens Kew (UK) for permission to sample the P.
4	brassicae type specimen (IMI81823). Excellent technical support was provided by M.
5	L. Derie, B. J. Holmes, and H. Fukada at WSU; and valuable input was received
6	from N. J. Hawkins at Rothamsted. The authors thank L. Carris and T. Paulitz for
7	internal review of the manuscript. In-kind support was provided by High Mowing
8	Seed Co., Puget Sound Seed Growers' Association, brassica farmers in the
9	Willamette Valley of Oregon and western Washington, and the Western Washington
10	Small Seed Advisory Committee. The authors have no conflicts of interest to declare.
11	The data that support the findings of this study are available from the corresponding
12	author upon reasonable request.
13	
13 14	References
13 14 15	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004.
 13 14 15 16 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and
 13 14 15 16 17 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19 :535-44.
 13 14 15 16 17 18 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19 :535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints
 13 14 15 16 17 18 19 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i>
 13 14 15 16 17 18 19 20 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i> 92:510-521.
 13 14 15 16 17 18 19 20 21 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i> 92:510-521. Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West
 13 14 15 16 17 18 19 20 21 22 	 References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i> 92:510-521. Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West JS, Fitt BDL, 2007. Resistance to infection by stealth: <i>Brassica napus</i> (winter
 13 14 15 16 17 18 19 20 21 22 23 	References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i> 92:510-521. Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West JS, Fitt BDL, 2007. Resistance to infection by stealth: <i>Brassica napus</i> (winter oilseed rape) and <i>Pyrenopeziza brassicae</i> (light leaf spot). <i>European Journal</i> of
 13 14 15 16 17 18 19 20 21 22 23 24 	 References Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P, 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. <i>Trends in Ecology & Evolution</i> 19:535-44. Bakkeren G, Kronstad JW, Levesque CA, 2000. Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilagomycetes. <i>Mycologia</i> 92:510-521. Boys EF, Roques SE, Ashby AM, Evans N, Latunde-Dada AO, Thomas JE, West JS, Fitt BDL, 2007. Resistance to infection by stealth: <i>Brassica napus</i> (winter oilseed rape) and <i>Pyrenopeziza brassicae</i> (light leaf spot). <i>European Journal</i> of <i>Plant Pathology</i> 118:307-21.

1	Boys EF, Roques SE, West JS, Werner CP, King GJ, Dyer PS, Fitt BDL, 2012.
2	Effects of <i>R</i> gene-mediated resistance in <i>Brassica napus</i> (oilseed rape) on
3	asexual and sexual sporulation of Pyrenopeziza brassicae (light leaf spot). Plant
4	Pathology 61 :543-54.
5	Carmody SM, Ocamb CM, du Toit LJ, 2016. Potential seed transmission of
6	Pyrenopeziza brassicae and Mycosphaerella capsellae in brassicas in the Pacific
7	Northwest USA. Phytopathology 106:S4.196 (Abstr.).
8	Carmody SM, 2017. Light Leaf Spot and White Leaf Spot of Brassicaceae in
9	Washington State. Pullman, WA, USA: Washington State University, MS thesis.
10	217 рр.
11	Carmody SM, du Toit LJ, 2017. Seed treatments to eradicate Pyrenopeziza
12	brassicae from infected mustard (Brassica juncea) seed. Phytopathology
13	107 :S5.76. (Abstr.)
14	Carter HE, Cools HJ, West JS, Shaw MW, Fraaije BA, 2013. Detection and
15	molecular characterisation of Pyrenopeziza brassicae isolates resistant to methyl
16	benzimidazole carbamates. <i>Pest Management Science</i> 69 :1040-48.
17	Carter HE, Fraaije BA, West JS, Kelly SL, Mehl A, Shaw MW, Cools HJ, 2014.
18	Alterations in the predicted regulatory and coding regions of the sterol 14α -
19	demethylase gene (CYP51) confer decreased azole sensitivity in the oilseed rape
20	pathogen Pyrenopeziza brassicae. Molecular Plant Pathology 15 :513-22.
21	Centre for Agriculture and Biosciences International, 2015. Pyrenopeziza brassicae.
22	Crop Protection Compendium. Wallingford, UK.
23	[http://www.cabi.org/cpc/datasheet/46123] Accessed 5 January 2017.
24	Cheah H, Hartill WTF, Corbin BJ, 1982. Ascospore release in Pyrenopeziza
25	brassicae. Transactions of the British Mycological Society 79 :536-39.

1	Claassen BJ, 2016. Investigations of Black Leg and Light Leaf Spot on Brassicaceae
2	Hosts in Oregon. Corvallis, OR, USA: Oregon State University, MS thesis. 80 pp.
3	Crous PW, Groenewald JZ, Gams W, 2003. Eyespot of cereals revisited: ITS
4	phylogeny reveals new species relationships. European Journal of Plant
5	Pathology 109 :841-50.
6	Crous PW, Hawksworth DL, Wingfield MJ, 2015. Identifying and naming plant-
7	pathogenic fungi: past, present, and future. Annual Review of Phytopathology
8	53:247-67.
9	Darriba D, Taboada GL, Doallo R, Posada D, 2012. jModelTest 2: more models, new
10	heuristics and parallel computing. Nat. Methods 9:772.
11	Einax E, Voigt K, 2003. Oligonucleotide primers for the universal amplification of β -
12	tubulin genes facilitate phylogenetic analyses in the regnum Fungi. Organism
13	Diversity and Evolution 3 :185-94.
14	Fitt BDL, Doughty KJ, Gladders P, Steed JM, Sutherland KG, 1998. Diagnosis of
15	light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus)
16	in the UK. Annals of Applied Biology 133:155-66.
17	Foster SJ, Ashby AM, Fitt BDL, 2002. Improved PCR-based assays for pre-
18	symptomatic diagnosis of light leaf spot and determination of mating type of
19	Pyrenopeziza brassicae on winter oilseed rape. European Journal of Plant
20	Pathology 108:379-83.
21	Gilles T, Fitt BDL, Jeger MJ, 2001. Effects of environmental factors on development
22	of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris.

- 23 *Phytopathology* **91**:392-98.

1	Inglis DA, du Toit LJ, Miller TW, 2013. Production of Brassica Seed Crops in
2	Washington State: A Case Study on the Complexities of Coexistence. Pullman,
3	WA, USA: Washington State University Extension Manual EM062E.
4	llott TW, Ingram DS, Rawlinson CJ, 1984. Heterothallism in Pyrenopeziza brassicae,
5	cause of light leaf spot of brassicas. Transactions of the British Mycological
6	Society 82 :477-83.
7	Karandeni Dewage CS, Klöppel CA, Stotz HU, Fitt BDL, 2018. Host–pathogen
8	interactions in relation to management of light leaf spot disease (caused by
9	Pyrenopeziza brassicae) on Brassica species. Crop and Pasture Science 69:9-
10	19.
11	Karolewski Z, Kaczmarek J, Jedryczka M, Cools HJ, Fraaije BA, Lucas JA, Latunde-
12	dada AO, 2012. Detection and quantification of airborne inoculum of
13	Pyrenopeziza brassicae in Polish and UK winter oilseed rape crops by real-time
14	PCR assays. Grana 51:270-79.
15	Kumar S, Stecher G, Tamura K, 2016. MEGA7: Molecular evolutionary genetics
16	analysis version 7.0 for bigger datasets. Molecular Biology & Evolution 33:1870-
17	74.
18	Lacey ME, Rawlinson CJ, McCartney HA, 1987. First record of the natural
19	occurrence in England of the teleomorph of <i>Pyrenopeziza brassicae</i> on oilseed
20	rape. Transactions of the British Mycological Society 89:135-140.
21	Majer D, Lewis BG, Mithen R, 1998. Genetic variation among field isolates of
22	Pyrenopeziza brassicae. Plant Pathology 47 :22-28.
23	McDonald BA, Linde C, 2002. Pathogen population genetics, evolutionary potential,

and durable resistance. *Annual Review of Phytopathology* **40**:349-79.

Carmody et al.

36

1	Milgroom M, 1996. Recombination and the multilocus structure of fungal populations.
2	Annual Review of Phytopathology 34 :457-77.
3	Ocamb CM, 2014. Disease Alert – Light Leaf Spot in Crucifer Seed Fields in the
4	Willamette Valley. Corvallis, OR, USA: Oregon State University.
5	[http://mtvernon.wsu.edu/path_team/Light%20leaf%20spot%20OSU%20Disease
6	%20Alert%20in%20crucifers%2017%20June.pdf] Accessed 5 January 2017.
7	Ocamb CM, Mallory-Smith C, Thomas WJ, Serdani M, Putnam ML, 2015. New and
8	re-emerging fungal pathogens affecting Brassicaceae plants in western Oregon:
9	black leg, light leaf spot, and white leaf spot. Phytopathology 105:542-P. (Abstr.)
10	Phytosanitary Alert System, 2015. Pyrenopeziza brassicae (light leaf spot fungus) -
11	confirmed in Oregon. North American Plant Protection Organization
12	Phytosanitary Alert System. [http://www.pestalert.org/oprDetail.cfm?oprID=621]
13	Accessed 5 January 2017.
14	Rawlinson CJ, Sutton BC, Muthyalu G, 1978. Taxonomy and biology of
15	Pyrenopeziza brassicae sp. nov. (Cylindrosporium concentricum), a pathogen of
16	winter oilseed rape (Brassica napus spp. oleifera). Transactions of the British
17	Mycological Society 71:425-39.
18	Singh G, Ashby AM, 1998. Cloning of the mating type loci from Pyrenopeziza
19	brassicae reveals the presence of a novel mating type gene within a discomycete
20	MAT1-2 locus encoding a putative metallothionein-like protein. Molecular
21	Microbiology 30 :799-806.
22	Taşkin H, Büyükalaca S, Doğan HH, Rehner SA, O'Donnell K, 2010. A multigene
23	molecular phylogenetic assessment of true morels (Morchella) in Turkey. Fungal
24	Genetics and Biology 47 :672-82.

- Versalovic J, Schneider M, de Bruijn FJ, Lupski JR, 1994. Genomic fingerprinting of 1
- 2 bacteria using repetitive sequence-based polymerase chain reaction. Methods in
- 3 Molecular and Cellular Biology 5:25-40. Korper Review
- 4
- 5

38

1 Figure legends

Carmody et al.

2 Figure 1. Phylogenetic trees from Bayesian analysis of multiple gene sequences 3 obtained from Pyrenopeziza brassicae isolates from the United Kingdom (UK), 4 continental Europe (EU), North America (NA), and Oceania (OC) as well as other 5 fungal genera and species. Trees were constructed with partial sequences from (a) 6 the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), (b) the β -7 tubulin gene, (c) the translation elongation factor (TEF) 1-α gene, and (d) the 8 concatenated sequences from all three regions. Bayesian posterior probabilities are 9 indicated at the nodes (BPP). The outgroup sequence used for each analysis was 10 from Botryosphaeria dothidea. Refer to Table 1 and Supplementary Table 1 for 11 details of the isolates and sequences. 12 13 Figure 24. Light leaf spot signs (patches of white conidiomata) produced by isolates 14 2016-26 of Pyrenopeziza brassicae from the United Kingdom and continental 15 European European Union and United Kingdom isolates (lineage 1), of Pyrenopeziza 16 brassicae-14 days after inoculation (dai) of 'Hakurei' turnip (Brassica rapa) plants (a 17 and b). Close-up image of white conidiomata produced by 2016-26, a lineage 1 isolate of *P. brassicae* on a turnip leaf (b). Symptoms of light leaf spot caused by 18 19 isolate Cyc001 (lineage 2) of P. brassicae from Benton Co., Willamette Valley, 20 Oregon, USA-21 dai, were typical of those observed for other isolates collected in 21 Washington and Oregon, i.e., coalescing chlorotic spots and veinal browning without 22 any white conidiomata (c). Typical pale tan to brown, circular acervuli and black 23 stromatal knots observed on turnip leaves infected with Cyc001, a lineage 2 North 24 American isolate, afterand incubatinged the leaf section on V8 agar mediuma on a 25 lab bench at room temperature for approximately 7 days (d).

39

2 Figure 32. Variation in colony morphology of isolates of Pyrenopeziza brassicae 3 associated with brassica light leaf spot that were grown on 3% malt extract agar for 4 four months. (a) Ten North American (NA) isolates of lineage 2 (three replicates of 5 each shown); note the phenotypic variation among isolates, which was consistent 6 among replicate plates with the exception of Cyc023A. (b) Four United Kingdom and 7 continental European European (EU) and United Kingdom (UK) isolates of lineage 1 of *P. brassicae* showing overlapping colony morphology with that of NA isolates. 8 9 Isolates from NA, the UK, and continental European (EU) EU, and UK isolates could 10 not be distinguished based on colony appearance. 11 12 Figure 3. Phylogenetic trees from Bayesian analysis of multiple gene sequences

13 obtained from Pyrenopeziza brassicae isolates from the United Kingdom (UK), 14 continental Europe European Union (EU), United Kingdom (UK), North America 15 (NA), and Oceania (OC) as well as other fungal genera and species. Trees were 16 constructed with partial sequences from (a) the internal transcribed spacer (ITS) 17 region of ribosomal DNA (rDNA), (b) the β-tubulin gene, (c) the translation elongation 18 factor (TEF) 1-α gene, and (d) the concatenated sequences from all three regions. 19 Bayesian posterior probabilities are indicated at the nodes (BPP). The outgroup 20 sequence used for each analysis was from Botryosphaeria dothidea. Refer to Table 21 1 and Supplementary Table 1 for details of the isolates and sequences. 22 23 Figure 4. Rep-PCR DNA fingerprinting of 19 isolates of Pyrenopeziza brassicae associated with brassica light leaf spots on brassicas. Three variants of the rep-PCR 24

Carmody et al.

1

40

1 assay were used: (a) BOX PCR, (b) GTG⁵ PCR, and (c) ERIC PCR. The isolates in 2 lanes 1 to 19 are: PB12, 8CAB, E3A, UK73, a UK field isolate, 17KALE02, 2016-09, 2016-34, 2016-50, CBS157.35, Cyc013A, Cyc015, Cyc017, Cyc025, 14CC2, 3 4 14CC4A, 14CC6, 14CC8A, 15LS13B (see Table 1 for isolate details). Geographic 5 origin of the isolates (EU/OC = continental Europe, UK, and Oceaniaan Union, NA = 6 North America; OC = Oceania, UK = United Kingdom) is noted at the base. Lanes 1 7 - 10 = lineage 1 isolates, lanes 11 - 19 = lineage 2 isolates, lane 'L' = Hyperladder 1 8 (Bioline), and lane 'W' = no-template water (control) sample. Differences between 9 the two groups of isolates based on DNA fingerprint bands areis indicated with white 10 arrowheads. 11 12 Supplementary Figure 1. Phylogenetic trees based on maximum likelihood analyses 13 of multiple gene sequences obtained from Pyrenopeziza brassicae isolates from the United Kingdom (UK), continental Europe (EU), North America (NA), and Oceania 14 15 (OC) as well as other fungal genera and species. Trees were constructed with partial 16 sequences from (a) the internal transcribed spacer (ITS) region of ribosomal DNA 17 (rDNA), (b) the β -tubulin gene, (c) the translation elongation factor (TEF) 1- α gene, 18 and (d) the concatenated sequences from all three regions. The consensus trees 19 shown are based on 1,000 bootstrap replicates with only support values >70% 20 shown for clarity. Analyses were rooted using Botryosphaeria dothidea sequences. 21 Refer to Table 1 and Supplementary Table 1 for details of the isolates and 22 sequences. 23 24 Supplementary Figure 2. Results of a pathogenicity test of isolates of Pyrenopeziza 25 brassicae from continental Europe -and the United Kingdom (UK) on 'Hakurei' turnip

Carmody et al.

- 1 (Brassica rapa) compared to North American isolate Cyc001. Plants treated with
- 2 water served as a control treatment. Ratings were done 28 days after inoculation,
- 3 including the number of necrotic leaves (a), number of chlorotic leaves (b), and
- 4 number of leaves that developed white conidiomata of *P. brassicae* (c). Each bar
- 5 represents the mean ± standard error of four replicate plants. Means with different
- 6 letters are significantly different based on Fisher's protected least significant
- 7 difference at P < 0.05. Data were rank-transformed although original means are
- 8 shown. The control treatment was removed from the analysis for number of chlorotic
- 9 leaves and number of leaves with white conidiomata as none of the leaves of those
- 10 plants was chlorotic or developed white conidiomata. Results of the repeat trial were
- 11 <u>similar (data not shown), as detailed in the main text.</u>

42

Plant Pathology

TABLE 1. Isolate accession numbers and herbarium accession numbers for infected turnip leaves submitted to the Westerdijk Fungal Biodiversity Institute (WFBI), International Mycological Institute (IMI) isolate accession numbers, and GenBank DNA sequence accession numbers for isolates of *Pyrenopeziza* associated with light leaf spot of brassicas in <u>the United Kingdom</u>, <u>continental Europe</u> the European Union, Oceania, (Australia and New Zealand), United Kingdom, and North America that were

evaluated in this study.

			0			WFBI	WFBI	IMI live				
Continent /			Original host			rium	culture	culture	GenBanl	k accession no.	of DNA regior	n or gene ^{aa}
isolate		Year	Brassica or			acce-	acce-	acce-				U
code		collec-	Raphanus	MAT	Original	ssion	ssion	ssion				
(lineage)	Isolate origin	ted	species	type ^{bb}	collector	no.	no.	no.	ITS rDNA	β-tubulin	TEF1- α	MAT
<u>Continental</u>	_European Union (EU) o	or United	Kingdom (UK)	(Lineage								
1)												
PC13	Rostock, Germany, EU	1995	B. napus	MAT1-1	D. Majer				MF187545	MF314352	MF314381	
PC17	Cambridge, England, UK	1994	B. napus	MAT1-2	D. Majer				MF187536	MF314353	MF314380	
PC18	Aberdeen, Scotland, UK	1994	B. napus	MAT1-2	D. Majer				MF187547	MF314354	MF314379	
PC19	Rostock, Germany, EU	1995	B. napus	MAT1-1	D. Majer				MF187546	MF314355	MF314378	MF314436
PC20	Edinburgh, Scotland, UK	1994	B. napus	MAT1-2	D. Majer				MF187539	MF314356	MF314377	
PC22	Cambridge, England, UK	1994	B. napus	MAT1-2	D. Majer				MF187535	MF314357	MF314376	
PC23	Rostock, Germany, EU	1995	B. napus	MAT1-1	D. Majer				MF187543	MF314358	MF314375	MF314432
PC28	Edinburgh, Scotland, UK	1994	B. napus	MAT1-1	D. Majer				MF187538	MF314359	MF314374	MF314437
PC30	Cambridge, England, UK	c. 1994	B. napus	MAT1-2	D. Majer				MF187531	MF314360	MF314373	MF314417

PC32	Cambridge, England, UK	1994	B. napus	MAT1-2	D. Majer				MF187537	MF314361	MF314372	MF314418
PC35	Le Rheu, France, EU	1995	B. napus	MAT1-1	D. Majer				MF187534	MF314362	MF314371	MF314430
PC38	Cambridge, England, UK	c. 1994	B. napus	MAT1-2	D. Majer				MF187544	MF314363	MF314370	MF314419
PC39	Aberdeen, Scotland, UK	1994	B. napus	MAT1-1	D. Majer				MF187541	MF314364	MF314369	MF314433
PC45	Yorkshire, England, UK	1996	B. oleracea	MAT1-2	P. Gladders				MF187542	MF314365	MF314368	MF314420
PC50	Aberdeen, Scotland, UK	1998	B. napus	MAT1-1	D. Majer				MF187540	MF314366	MF314367	MF314434
17KALE02	Lincolnshire, England, UK	2017	<i>B. oleracea</i> (kale)	MAT1-1	K. M. King			IMI506 783				
2016-5 (S.CO) ^c	Northumberland, England, UK	2016	B. napus	MAT1-2	N. J. Hawkins	CBS23 334	CBS14 3753	IMI506 784				MF314404
2016-9 (S.M.CO)°	Northumberland, England, UK	2016	B. napus	MAT1-1	N. J. Hawkins	CBS23 335	CBS14 3754	IMI506 785				MF314442
2016-26	Northumberland,	2016	B. napus	MAT1-1	N. J. Hawkins	CBS23	CBS14					MF314441
2016-34	Northumberland,	2016	B. napus	MAT1-1	N. J. Hawkins	CBS23	CBS14	IMI506 787				
2016-50	Northumberland, England, UK	2016	B. napus	MAT1-2	N. J. Hawkins	CBS23	CBS14	IMI506 788				MF314405
4e	Northumberland,	2013	B. napus	MAT1-1	N. J. Hawkins	000		100	MF187532	MF314350	MF314394	MF314431
5a <u>(S,CO)</u>	Northumberland, England, UK	2013	B. napus	MAT1-2	N. J. Hawkins	CBS23	CBS14 3758	IMI506	MF187533	MF314362	MF314371	MF314430
Pb12	Scotland, UK	2008	B. napus	No data	J. A. Lucas	000	0100	101				
8CAB	East Lothian.	2011	B. oleracea	MAT1-1	P. Gladders	CBS23	CBS14	IMI506				
<u>(S,M,CO)</u>	Scotland, UK		(broccoli)			340	3759	782				
E3A	Hertfordshire, England LIK	2007	B. napus	MAT1-2	E. Boys	CBS23 341	CBS14 3760	IMI506 798				MF314407
FR2 (S M CO)	Le Rheu, France, EU	1995	B. napus	MAT1-1	D. Majer	CBS23	CBS14 3761	IMI506				-
JT2A <u>(S)</u>	Hertfordshire,	2009	<i>B. rapa</i>	MAT1-2	J. S. West	072	0/01	100				MF314412
UK73 (<u>S,CO)</u>	Angus, Scotland, UK	2005	B. napus	MAT1-2	No data	CBS23 343	CBS14 3762	IMI506 800				MF314421

IMI204290	Oxfordshire, England, UK	1975	B. napus	MAT1-2	C. J. Rawlinson							MF314408
IMI81823 ^e	Worcestershire, England, UK	1956	B. oleracea	No data	C. J. Hickman				MN028386			
Oceania (Li	neage 1)											
CBS157.35	Victoria, Australia	1935	B. oleracea	MAT1-1	E. McLennan				MH855615			MF314438
IMI233715	New Zealand	1978	B. oleracea	MAT1-2	W. F. Harthill, C. J. Rawlinson							MF314409
IMI233716	New Zealand	1978	B. oleracea	MAT1-2	W. F. Harthill, C. J. Rawlinson				MF187548	MF314351	MF314395	MF314410
IMI233717	New Zealand	1978	B. oleracea	MAT1-2	W. F. Harthill, C. J. Rawlinson							MF314411
North Amer	ica (Lineage 2)											
Cvc001	Benton Co., OR, USA	2015	B. rapa	MAT1-2	S. M.	CBS23	CBS14	IMI506	MF143610	MF314337	MF314392	MF314396
<u>(S,M,CO)</u>			(Barkant turnip)		Carmody	324	3743	789				
Cyc007	Skagit Co., WA, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-2	S. M. Carmody			IMI506 790	MF143611	MF314338	MF314391	MF314397
Cyc009A (<u>M,CO)</u>	Mount Vernon, Skagit Co., WA, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-2	S. M. Carmody	CBS23 325	CBS14 3744		MF143613	MF314339	MF314390	MF314398
Cyc011A (<u>M,CO)</u>	Edison, Skagit Co., WA, USA	2016	<i>B. rapa</i> (birds-rape	MAT1-1	S. M. Carmody	CBS23 326	CBS14 3745	IMI506 791	MF143615	MF314340	MF314389	MF314425
Cyc013A (<u>M,CO)</u>	Skagit Co., WA, USA	2016	B. rapa (birds-rape mustard)	MAT1-2	S. M. Carmody	CBS23 327	CBS 143746	IMI506 792	MF143617	MF314341	MF314388	MF314399
Cyc015 (<u>M,CO)</u>	Skagit Co., WA, USA	2016	<i>B. juncea</i> (mustard cover crop)	MAT1-1	S. M. Carmody	CBS23 328	CBS 143747	IMI506 793	MF143619	MF314342	MF314387	MF314422
Cyc017 (M,CO)	Skagit Co., WA, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-1	S. M. Carmody	CBS23 329	CBS 143748	IMI506 794	MF143620	MF314343	MF314386	MF314423

Cyc023A (M,CO)	Corvallis, Benton Co., OR, USA	2016	<i>B. rapa</i> (Purple top globe turnip)	MAT1-1	L. J. du Toit	CBS23 330	CBS 143749		MF143621	MF314344	MN044437	MF314424
Cyc024A	Whatcom Co., WA, USA	2016	B. rapa	MAT1-2	S. M. Carmody	CBS23 331	CBS 143750		MF143622	MF314345	MF314385	MF314400
Cyc025 (M,CO)	Snohomish Co., WA, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-2	S. M. Carmody	CBS23 332	CBS 143751	IMI506 796	MF143623	MF314346	MF314384	MF314401
Cyc029 (M,CO)	Snohomish Co., WA, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-2	S. M. Carmody	CBS23 333	CBS 143752		MF143627	MF314347	MF314383	MF314402
Cyc031	Corvallis, Benton Co., OR, USA	2016	B. rapa	No data	L. J. du Toit				<u>MK995633</u>	MF314349	MF314382	
14CC2B (M,CO)	Polk Co., OR, USA	2014	<i>B. napus</i> (canola)	MAT1-1	B. Claassen							MF314426
14CC4A	Polk Co., OR, USA	2014	<i>B. napús</i> (canola)	MAT1-1	B. Claassen							MF314427
14CC8A	Polk Co., OR, USA	2014	Raphanus sp. (wild radish)	MAT1-1	B. Claassen							MF314428
15LS13B	Benton Co., OR, USA	2015	<i>B. juncea</i> (red mustard)	MAT1-1	B. Claassen							MF314429
223	Douglas Co., OR, USA	2016	<i>B. rapa</i> (birds-rape mustard)	MAT1-2	B. Claassen							MF314403

^a ITS rDNA = internal transcribed spacer (ITS) region of ribosomal DNA (rDNA); β -tubulin = beta-tubulin gene; TEF1- α = translation elongation factor 1- α

gene; MAT = mating type genes of the light leaf spot pathogen (llot et al. 1984; Foster et al. 2002). All sequences with accession numbers in this table were

generated in this study.

^b Isolates confirmed as MAT1-1 or MAT1-2 type using the multiplex PCR assays of Foster et al. (2001). All mating type sequences with accession numbers

n this table were generated as part of this study.

- bc S = isolates from continental Europe and UK (n = 10) inoculated onto Brassica rapa cv. Hakurei to compare symptomology with that caused by North American isolate Cyc001, as detailed in the main text. M = isolates from continental Europe and UK (n = 4) compared with isolates from North America (n = 10) for morphology on malt extract agar, as detailed in the main text. CO = isolates used to compare conidial morphology *in vitro* and *in vivo*, as detailed I in the main text.
- ^{ed}DNA extracted from conidia washed from an infected *B. rapa* leaf as detailed in the main text.
- ••_Type specimen of *P. brassicae* examined in the form of apothecia in dried culture (Rawlinson *et al.* 1978). Only a partial ITS rDNA sequence (MN028386) could be amplified from the herbarium specimen.

TABLE 2. Primers used in polymerase chain reaction (PCR) assays to amplify the internal transcribed spacer (ITS) ribosomal DNA

(rDNA) region, β -tubulin gene, TEF1- α gene, MAT1-1-3 gene, and MAT1-2-1 gene of isolates of Pyrenopeziza from the European

Union (EU), United Kingdom (UK), continental European, Oceanian, (OC), and North American that were n (NA) isolates of

Pyrenopeziza associated with light leaf spot of brassicas, for phylogenetic comparisons of isolates from these geographic regions.^a

		Primers	
DNA target	Primer name	Sequence (5' – 3')	Reference
ITS rDNA	Forward primer UNUP18S42	CGTAACAAGGTTTCCGTAGGTGAAC	Bakkeren <i>et al.</i> (2000)
	Reverse primer UNLO28S576B	GTTTCTTTTCCTCCGCTTATTAATATG	
β-tubulin	Forward primer F-Btub3	TGGGCYAAGGGTYAYTAYAC	Einax and Voigt (2003)
	Reverse primer F-Btub2r	GGRATCCAYTCRACRAA	
TEF1- α	Forward primer EF5AR	CCAGCAACRTTACCACGACG	Taşkin <i>et al.</i> (2010)
	Reverse primer EF2F	AACATGATSACTGGTACYTCC	
MAT1-1 and MAT1-2	PbM-1-3	GATCAAGAGACGCAAGACCAAG	Foster <i>et al.</i> (2002)
	PbM-2	CCCGAAATCATTGAGCATTACAAG	
	Reverse primer Mt3	CCAAATCAGGCCCCAAAATATG	

^a Refer to the main text for details of each PCR assay, and to Table 1 for details of the fungal isolates used for each PCR assay.

Plant Pathology

TABLE 3. Attempted sexual crosses of <u>isolates of Pyrenopeziza brassicae (lineage 1) from the European (EU) and</u> United Kingdom (UK) <u>and continental European (EU) isolates of Pyrenopeziza brassicae (lineage 1)</u> with <u>isolates (lineage 2) from</u> North American (NA) <u>isolates (lineage 2)</u> associated with light leaf spot, using isolates of opposite mating (*MAT*) type paired on 3% malt extract agar.^a

							MAT1-1	type ^{ab}				
				EU and UK isolates (Lineage 1)					NA is	olates (Lin	eage 2)	
			2016-9	2016-26	2016-34	8CAB	Fr2	14CC2	Cyc011A	Cyc015	Cyc017	Cyc023A
		2016-5	As ^{3,<u>b</u>a}	As ³	As ³	As ³	As ¹	-	-	Ai	Ai	Ai
	Ύς Ύς	2016-50	Ap ¹	-	As ¹	As ²	-	-	-	-	-	-
	& L ate ag	5a	As ³	As ²	As ³	As ²	As ²	Ai	-	-	Ai	-
6 <mark>ab</mark>	EU a isol (Linea	E3A	As ³	As ³	Ai ¹ , As ²	As ²	As ²	-	-	Ai	-	-
type		UK73	Ai ¹ , Ap ¹	As ²	Ap ¹	Ap ¹ , As ²	Ai ¹	-	-	-	-	-
2-1-		I										
A T	$\overline{\mathbf{N}}$	Cyc001	-	Ai	-	Ai	-		-	-	-	-
Ň	e s	Cyc009A	Ai	-	Ai	Ai	-		-	-	-	-
	NA isolat ineag	Cyc013A	-	-	-	-	-	- /	-	-	-	-
		Cyc025	-	-	-	-	-	-	-	-	-	-
		Cyc029A	-	-	-	-	-	-	-	-	-	-

a Isolates were confirmed as either MAT1-1 or MAT1-2 types using the multiplex PCR assays of Foster et al. (2002).

^{ab} Three replicate pairings were established for each attempted sexual cross. The superscript number denotes the number of replicate plates on which apothecial initials (Ai), apothecia (Ap), or asci and ascospores (As) were observed. '-' indicates no sexual structures were observed. Results shown were after the isolates had been paired on 3% malt extract agar for nine weeks. Refer to Table 1 for details of each isolate.

^b-Isolates were confirmed as either MAT1-1 or MAT1-2 types using the multiplex PCR assay of Foster et al. (2002).

For peer Review

Plant Pathology

TABLE 4. Discriminatory dose testing of isolates of Pyrenopeziza from the European Union (EU), United Kingdom (UK), continental

European, and North American isolates of Pyrenopeziza associated with brassica light leaf spot to assess sensitivity to the

fungicides carbendazim and prothioconazole.

			Fungal colonies	present or absent on e	ach of three replicate
Geographic region/isolate		Original		plates ^a	
code (lineage) and isolate		Brassica	No fungicide	0.39 µg	1.56 µg
code	Geographic origin	host	(control)	carbendazim/mL	prothioconazole/mL
Continental EU and UK					
(Lineage 1):					
FR2 ^b	Le Rheu, France	<u>B. napus</u>	+/+/+	<u>-/-/-</u>	<u>-/-/-</u>
UK73 ^b	Angus, Scotland 🔨 💦	B. napus	+/+/+	+/+/+	P/P/P
FR2 ^b	Le Rheu, France	B. napus	+/+/+	-/-/-	_/_/_
_8CAB ^b	East Lothian, Scotland	B. oleracea	+/+/+	+/+/+	+/+/+
2016-50	Northumberland, England	B. napus	+/+/+	+/+/+	P/P/P
North America (Lineage 2):	_	10.			
Cyc001	Benton Co., OR, USA	B. rapa	+/+/+	-/-/-	-/-/-
_Cyc011A	Skagit Co., WA, USA	B. rapa	+/+/+	-/-/-	-/-/-
_Cyc013A	Skagit Co., WA, USA	B. rapa	+/+/+	-/-/-	-/-/p
_Cyc015	Skagit Co., WA, USA	B. juncea	+/+/+	-/-/-	-/-/-
_Cyc017	Skagit Co., WA, USA	B. rapa	+/+/+	-/-/-	-/-/-
Cyc025	Snohomish Co., WA, USA	B. rapa	+/+/+	-/-/-	-/-/-

^a Isolates were grown for 18 days in the dark on 3% malt extract agar plates that contained either no fungicide, 0.39 µg carbendazim/mL, or 1.56 µg

prothioconazole/mL. EachAll isolates wasere tested in triplicate for each treatment. Results were scored as follows: '+' = large colonies visible (>1 cm

diameter); '-' = no colony of any size visible; 'P' = multiple pinhead colonies (each ≤ 1 mm diameter) visible; '<u>p</u>' = a single pinhead colony (≤ 1 mm diameter)

visible.

^b_Reference isolates previously characterized as sensitive (FR2), moderately resistant (UK73), or resistant (8CAB) to carbendazim. EC₅₀ values for sensitivity of these reference isolates to prothioconazole had previously been determined to be 0.14 (FR2), 1.23 (UK73), and 3.00 (8CAB) µg/mL (Carter *et al.* 2013).

For peer Review

SUPPLEMENTARY TABLE 1. GenBank accession numbers for the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), *beta tubulin* (β -tubulin) gene, and translation elongation factor 1-alpha (TEF1- α) gene sequences used to examine the phylogenetic relationship of isolates of *Pyrenopeziza* associated with light leaf spot in the <u>UK, continental Europe, European Union</u>, North America, and Oceania, and North America with related fungal genera and species.

		Genban	k accession number	er ^a
Isolate/sample code	Fungal species and lineage	ITS rDNA	β-tubulin	TEF1- α
PC13	P. brassicae – lineage 1	MF187545	MF314352	MF314381
PC17	P. brassicae – lineage 1	<u>MF187536</u>	<u>MF314353</u>	<u>MF314380</u>
PC18	P. brassicae – lineage 1 👘 🚫 🔄	<u>MF187547</u>	<u>MF314354</u>	<u>MF314379</u>
PC19	P. brassicae – lineage 1	MF187546	<u>MF314355</u>	<u>MF314378</u>
PC20	P. brassicae – lineage 1	MF187539	<u>MF314356</u>	<u>MF314377</u>
PC22	<i>P. brassicae</i> – lineage 1	MF187535	<u>MF314357</u>	<u>MF314376</u>
PC23	<i>P. brassicae</i> – lineage 1	<u>MF187543</u>	<u>MF314358</u>	<u>MF314375</u>
PC28	<i>P. brassicae</i> – lineage 1	<u>MF187538</u>	<u>MF314359</u>	<u>MF314374</u>
PC30	<i>P. brassicae</i> – lineage 1	MF187531	MF314360	MF314373
PC32	<i>P. brassicae</i> – lineage 1	<u>MF187537</u>	<u>MF314361</u>	<u>MF314372</u>
PC35	<i>P. brassicae</i> – lineage 1	<u>MF187534</u>	MF314362	<u>MF314371</u>
PC38	<i>P. brassicae</i> – lineage 1	<u>MF187544</u>	<u>MF314363</u>	<u>MF314370</u>
PC39	<i>P. brassicae</i> – lineage 1	<u>MF187541</u>	<u>MF314364</u>	<u>MF314369</u>
PC45	<i>P. brassicae</i> – lineage 1	<u>MF187542</u>	<u>MF314365</u>	<u>MF314368</u>
PC50	<i>P. brassicae</i> – lineage 1	<u>MF187540</u>	<u>MF314366</u>	<u>MF314367</u>
4E	<i>P. brassicae</i> – lineage 1	<u>MF187532</u>	<u>MF314350</u>	<u>MF314394</u>
5A	<i>P. brassicae</i> – lineage 1	<u>MF187533</u>	<u>MF314362</u>	<u>MF314393</u>
FR2 (PbFr002)	<i>P. brassicae</i> – lineage 1		KC342227	
CBS157.35	<i>P. brassicae</i> – lineage 1	MH855615		
IMI233716	P. brassicae – lineage 1	<u>MF187548</u>	<u>MF314351</u>	<u>MF314395</u>
Cyc001	<i>P. brassicae</i> – lineage 2	<u>MF143610</u>	<u>MF314337</u>	<u>MF314392</u>

Cyc007	P. brassicae – lineage 2	MF143611	MF314338	MF314391
Cvc009	P. brassicae – lineage 2	MF143613	MF314339	MF314390
Cyc011	P. brassicae – lineage 2	MF143615	MF314340	MF314389
Cyc013A	P. brassicae – lineage 2	MF143617	MF314341	MF314388
Cvc015	P. brassicae – lineage 2	MF143619	MF314342	MF314387
Cyc017	P. brassicae – lineage 2	MF143620	MF314343	MF314386
Cyc023A	P. brassicae – lineage 2	MF143621	MF314344	MN044437
Cyc024A	P. brassicae – lineage 2	MF143622	MF314345	MF314385
Cyc025	P. brassicae – lineage 2	MF143623	MF314346	MF314384
Cyc029A	P. brassicae – lineage 2	MF143627	MF314347	MF314383
Cyc031A	P. brassicae – lineage 2	MK995633	MF314349	MF314382
Genome	Botryosphaeria dothidea	Version 1.0 ^c	Version 1.0 ^c	Version 1.0 ^c
Bt4-1	Botrytis cinerea		MG949125	
A168	Cadophora fastigiata	AY249073		
CBS444.86	Cadophora finlandia	AY249074		
P19	Cadophora gregata	AY249070		
P21	C. gregata	AY249071		
GB5129	Cadophora hiberna	AF530461		
GB5560	C. hiberna	AF530463		
CBS141.41	Cadophora luteo-olivacea	AY249066		
A208	C. luteo-olivacea	AY249067		
A174	C. luteo-olivacea	AY249068		
A171	C. luteo-olivacea	AY249069		
20	C. luteo-olivacea	DQ404349		
MM471	C. luteo-olivacea	HM116747		
RR 87-50	Cadophora malorum	AF083201		
A173	C. malorum	AY249062		
A172	C. malorum	AY249063		
A170	C. malorum	AY249061		
A169	C. malorum	AY249060		
A167	C. malorum	AY249059		
A165	C. malorum	AY249058		

A163	C. malorum	AY249057		
A166	C. malorum	AY249064		
A164	Cadophora melinii	AY249072		
SHIGO-5	C. melinii	AF083205		
Genome	Cadophora sp.	PRJNA243951	PRJNA243951	PRJNA243951
REF020	Cadophora sp.	JN859240		
C1223	Graphium rubrum	AF198245		
C1221	Graphium silanum	AY249065		
CBS233.39	Hormodendrum pyri	MH855992		
Ber_02	Hymenoscyphus albidus	GU586877		
Genome	Hymenoscyphus fraxineus		PRJEB21027	PRJEB21027
Oth_01	H. fraxineus	<u>GU586904</u>		
UAMH5628	Leptodontidium orchidicola 🤇	AF214578		
CBS412.81	Mollisia cinerea	AY259135		
ARON3129.P	M. cinerea	AJ430222		
CBS401.78	Mollisia dextrinospora	AY259134		
CBS401.78 (type)	M. dextrinospora	NR119489		
ARON3154.H	Mollisia fusca	AJ430229		
CBS234.71	M. fusca	AY259138		
CBS486.48	M. fusca	AY259137		
CBS589.84	Mollisia melaleuca	AY259136		
ARON3139.H	M. minutella	AJ430223		
105	Monilinia fructicola		HQ709265	
YM09-1b	M. fructicola		HQ908770	
MLH5	Monilinia linhartiana		LN908904	
CBS194.69	Neofabraea actinidiae		KR859286	
CBS102871	Neofabraea alba		<u>KR866089</u>	
22-443	Oculimacula acuformis		<u>MN044435</u>	<u>MN044438</u>
CBS 495.80	O. acuformis	<u>MH861289</u>		
RAC44	O. acuformis	AY266146		
RAE22	Oculimacula aestiva	AY266145		
22-433	Oculimacula yallundae	AY713294		

CBS128.31	O. yallundae	MH855154		
CBS282.39	Pezicula sp.		KR859308	
A178	Phialophora brunnescens	AY249079		
A177	Phialophora calyciformis	AY249077		
CBS418.50	Phialophora cinerescens	MH856696		
A176	Phialophora richardsiae	AY249078		
CBS300.62	Phialocephala dimorphospora	AY249075		
CBS443.86	Phialocephala fortinii	AY249076		
CBS328.58	Pyrenopeziza ebuli	MH857802		
CBS329.58	Pyrenopeziza eryngii	MH857803		
CBS335.58	Pyrenopeziza petiolaris	MH857804		
CBS336.58	Pyrenopeziza plicata	MH857805		
ARON3150.P	Pyrenopeziza revincta	AJ430224		
CBS338.58	Pyrenopeziza subplicata 🧹 📉 🥿	MH857806		
CNF:2/10097	Pyrenopeziza velebitica	NR158942		
CNF 2/10097 (type)	P. velebitica	MF593628		
Genome	Rhynchosporium commune		PRJEB12897	
H25 (Haplotype 25)	R. commune	HM627492		
27DG09	Rhynchosporium orthosporum		<u>MN044436</u>	<u>MN044439</u>
H4 (Haplotype 4)	R. orthosporum	<u>HM627471</u>		
TZ25	Sclerotinia sclerotiorum		AY312374	
ARON3188.H	Tapesia cinerella	AJ430228		

^a ITS rDNA = internal transcribed spacer (ITS) region of ribosomal DNA (rDNA); β -tubulin = beta-tubulin gene; TEF1- α = translation elongation factor 1- α

gene. Only a partial ITS1 rDNA sequence could be amplified from the type herbarium specimen of *P. brassicae* (IMI81823),_-and was deposited in

GenBank as Accession MN028386. Underlined sequences were used for the concatenated analyses of all three loci.

^b Botryosphaeria dothidea genome available at <u>https://genome.jgi.doe.gov/Botdo1_1/Botdo1_1.home.html</u> (accessed 21 May 2019).

Figure 1. Phylogenetic trees from Bayesian analysis of multiple gene sequences obtained from *Pyrenopeziza* brassicae isolates from the United Kingdom (UK), continental Europe (EU), North America (NA), and Oceania (OC) as well as other fungal genera and species. Trees were constructed with partial sequences from (a) the internal transcribed spacer (ITS) region of ribosomal DNA (rDNA), (b) the β -tubulin gene, (c) the translation elongation factor (TEF) 1-a gene, and (d) the concatenated sequences from all three regions. Bayesian posterior probabilities are indicated at the nodes (BPP). The outgroup sequence used for each analysis was from Botryosphaeria dothidea. Refer to Table 1 and Supplementary Table 1 for details of the isolates and sequences.

189x242mm (150 x 150 DPI)

Figure 1b. See caption to Figure 1 submitted with Figure 1a.

180x126mm (150 x 150 DPI)

Figure 1c. See caption to Figure 1 submitted with Figure 1a.

181x170mm (150 x 150 DPI)

149x209mm (150 x 150 DPI)

Figure 2. Light leaf spot signs (patches of white conidiomata) produced by isolate 2016-26 of *Pyrenopeziza* brassicae from the United Kingdom (lineage 1), 14 days after inoculation (dai) of 'Hakurei' turnip (*Brassica* rapa) plants (a and b). Close-up image of white conidiomata produced by 2016-26, a lineage 1 isolate of *P.* brassicae on a turnip leaf (b). Symptoms of light leaf spot caused by isolate Cyc001 (lineage 2) of *P.* brassicae from Benton Co., Willamette Valley, Oregon, USA 21 dai, were typical of those observed for other isolates collected in Washington and Oregon, i.e., coalescing chlorotic spots and veinal browning without any white conidiomata (c). Typical pale tan to brown, circular acervuli and black stromatal knots observed on turnip leaves infected with Cyc001, a lineage 2 North American isolate, after incubating the leaf section on V8 agar medium on a lab bench at room temperature for approximately 7 days (d).

179x198mm (150 x 150 DPI)

Figure 3. Variation in colony morphology of isolates of *Pyrenopeziza brassicae* associated with brassica light leaf spot that were grown on 3% malt extract agar for four months. (a) Ten North American (NA) isolates of lineage 2 (three replicates of each shown); note the phenotypic variation among isolates, which was consistent among replicate plates with the exception of Cyc023A. (b) Four United Kingdom and continental European isolates of lineage 1 of *P. brassicae* showing overlapping colony morphology with that of NA isolates. Isolates from NA, the UK, and continental Europe (EU) could not be distinguished based on colony appearance.

182x178mm (150 x 150 DPI)

Figure 4. Rep-PCR DNA fingerprinting of 19 isolates of *Pyrenopeziza brassicae* associated with brassica light leaf spot. Three variants of the rep-PCR assay were used: (a) BOX PCR, (b) GTG5 PCR, and (c) ERIC PCR. The isolates in lanes 1 to 19 are: PB12, 8CAB, E3A, UK73, a UK field isolate, 17KALE02, 2016-09, 2016-34, 2016-50, CBS157.35, Cyc013A, Cyc015, Cyc017, Cyc025, 14CC2, 14CC4A, 14CC6, 14CC8A, 15LS13B (see Table 1 for isolate details). Geographic origin of the isolates (EU/OC = continental Europe, UK, and Oceania; NA = North America) is noted at the base. Lanes 1 – 10 = lineage 1 isolates, lanes 11 – 19 = lineage 2 isolates, lane 'L' = Hyperladder 1 (Bioline), and lane 'W' = no-template water (control) sample. Differences between the two groups of isolates based on fingerprint bands are indicated with white arrowheads.

163x152mm (150 x 150 DPI)