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Exploiting genetic variation in nitrogen use efficiency
for cereal crop improvement
Malcolm J Hawkesford1 and Simon Griffiths2

Cereals are the most important sources of calories and nutrition

for the human population, and are an essential animal feed.

Food security depends on adequate production and demands

are predicted to rise as the global population rises. The need for

increased yields will have to be coupled to the efficient use of

resources including fertilisers such as nitrogen to underpin the

sustainability of food production. Although optimally

performing crops with high yields require a balanced mineral

nutrition, nitrogen fundamentally drives growth and yield as well

as requirements for other nutrients. It is estimated that globally

only 33% of applied nitrogen fertiliser is recovered in the

harvested grain, indicative of a huge waste of resource and

potential major pollutant and is thus a major target for crop

improvement. Both agronomy and breeding will contribute to

improved nitrogen use efficiency (NUE) and an important

component of the latter is harnessing germplasm variation. This

review will consider the key traits involved in NUE, the potential

to exploit genetic variation for these specific traits, and the

approaches to be utilised.
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Introduction
Cereals including rice, wheat and maize are the most

important sources of calories and nutrition for the human

population, and in addition they are an essential animal

feedstuff. Food security depends on adequate production

and demands are predicted to rise in the coming decades

as the global population rises. The efficient use of

resources including fertilisers such as nitrogen underpins

sustainability. Although crops with high yields require a

balanced mineral nutrition, nitrogen fundamentally

drives growth and yield and requirements for other

nutrients. One estimate [1�] suggests that globally only

33% of applied nitrogen fertiliser is recovered in the

harvested grain. This represents a huge waste of resource

and a potential major pollutant through both leaching to

water courses and from greenhouse gas emissions, and is

thus a major target for crop improvement. More optimis-

tically, as yields are a major target for crop breeding

programmes, nitrogen use efficiency (NUE) will also

increase in parallel by definition. Indeed in the United

Kingdom in recent years, wheat yields have continued to

rise modestly, whilst N-inputs have remained constant at

the national level, demonstrating improved nitrogen use

efficiency [2].

What is nitrogen use efficiency?
The most fundamental and variable trait influencing

NUE is yield; however, the optimum use of nitrogen

for crop production may be considered in terms of not

only yield but also quality. NUE as a yield efficiency trait

is usually defined as yield per unit of available N and is

the product of the terms defining uptake efficiency

(NUpE) and utilisation efficiency (NUtE), the latter

being the effective grain yield produced for the amount

of N taken up (see Box 1 and Moll et al. [3]). One

consequence of this is that high NUE crops will have a

high yield but potentially a low N content in the biomass

and in the grain. However, additionally NUE for quality

must be considered, which requires optimum production

of protein the grain and relies both on efficient crop N-

uptake and subsequent effective partitioning of nitrogen

from vegetative tissues to the grain. High grain protein is

often achieved through agronomic intervention of high or

additional N applications, often late in the growing sea-

son, resulting in a lower grain yield NUE.

A key measure of nitrogen use efficiency is fertiliser recov-

ery efficiency (FRE) which indicates directly how well

applied fertiliser is used and removed by the harvested

component of the crop. It is this measure which has been

calculated to be as low as 33% in global terms [1�].

An alternative metric is how well a crop responds to

applied nitrogen. An efficient crop may be one that per-

forms well at low inputs, or alternatively one that per-

forms well at higher inputs producing very high yield at

high inputs. The differential yields achieved between

low and high inputs may also be a measure of effective

fertiliser use and efficient production. Breeding programs

have utilised both low and high input systems and even

alternated successive generations between the two [4,5].
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A summary of traits is given in Box 1 and an overview of

the interactions between the component traits and key

physiological processes contributing to NUE is shown in

Figure 1.

Key traits
A key trait for crop nitrogen use efficiency is the ability of

the crop to take up nitrogen: this is a function of the root

structure, architecture and function. Subsequent to cap-

ture, nitrogen is first utilised to produce an effective

canopy. Parameters relating to light capture and

photosynthesis will determine yield potential and con-

siderable variation exists and between within any crop

species, for example wheat [6]. Secondly the canopy is an

essential resource reserve, including of nitrogen which

maybe subsequently utilised for grain filling and the

importance of individual canopy fractions have been

quantified [7]. Canopy height and flowering time affect

nitrogen use efficiency [8,9]. This is likely to be due to the

above ground biomass affecting the achievable grain yield

given favourable harvest index (HI) but may include

impacts on root proliferation mediated by rht genes and

hence effectiveness of the roots in nitrogen acquisition

[10].

Yield and quality parameters are usually negatively cor-

related; however, a trait termed grain protein deviation

(GPD) refers to a grain protein content (GPC) greater

than expected for any particular yield and is a particularly

desirable trait which may be linked to anthesis date and

post anthesis N-uptake [11,12] or to grain-specific pro-

cesses reflected by intrinsic grain gene expression profiles

[13]. GPD may be affected by partitioning, as a large

fraction of grain N comes from remobilisation from vege-

tative tissues and is quantified the nitrogen harvest index

(NHI; proportion of N in grain as a fraction of the total

plant N). Factors influencing nitrogen remobilisation

including rates of senescence and transcription factors

such as NAM-B1, which influence rates of nutrient remo-

bilisation [14,15,16��,17]. Whilst most modern hexaploid

wheats lack this functional allele, it is present in some

Scandinavian populations [18]. Early senescence may

enhance N re-use but will have a negative impact of

canopy photosynthesis and potential yield. Whilst canopy

reserves of resources including N are important for grain

filling and show considerable genetic variation [7,19], the

senescence of the canopy limits further photosynthesis

and reserve accumulation, and ultimately yield. Hence

the kinetics of canopy maturation, a highly controlled and

regulated process [20], impacts on both final yield and

remobilisation efficiency.

36 Physiology and metabolism

Box 1 Definitions of selected NUE parameters referred to in this article for cereal crops

Abbreviation Trait Definition Unit

NUE Nitrogen use efficiency Yield (grain) per unit total available nitrogen (fertiliser and mineral N); it is

the product of NUpE � NUtE [3]

kg yield/kg N

NUpE Nitrogen uptake efficiency Nitrogen taken up by entire above ground biomass as a fraction of total

nitrogen available to the crop

kg/kg

NUtE Nitrogen utilisation efficiency Yields as a function of the amount of nitrogen taken up kg/kg

GPC Grain protein content The grain protein (content); often the N content (% concentration) � a

standard factor to convert to protein (e.g. 5.7)

%

GPD Grain protein deviation Actual grain N concentration compared to that expected for a given yield,

assuming a linear negative relationship, the residual of an individual point

from a regression of grain protein concentration on grain yield [58�]

%

NHI Nitrogen harvest index The fraction of N in the grain compared to total N taken up, usually at

harvest.

Fraction

FRE Fertiliser recovery efficiency Grain N from fertiliser as a fraction of that applied as fertiliser: ((N removed

in grain) – (N from soil + rain))/fertiliser N applied [1�]
%

Figure 1

NUpE

YIELD

Photosynthesis

Grain N

NUtE

Remobilisation

NHI

NUE = NUpE x NUtE
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Critical aspects and definitions of NUE as applied to wheat as a model

grain crop. The most commonly used definitions as applied to cereal

crops are shown in blue. Critical biochemical processes are shown in

yellow. The green boxes indicate the final breeding goals of high yield

and high grain N (protein) content.
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Other indicators of nitrogen use efficiency include high

yield at low N, particularly important in some subsistence

situations where fertilisers may not be readily available.

Alternatively, a measure may be responsiveness to

applied N, with a desirable trait being a proportionally

greater increase with a defined application of N. All of

these indicators of efficient use of nitrogen are complex

traits involving biochemistry, phenology, architecture and

responses to the environment.

How much genetic variation is there?
There is variation in key NUE traits amongst modern

varieties [19,21�,22,23]. However, it is clear that a much

greater potential for variation must exist in a wider

germplasm base [24�]. The key issue with landraces

and relatives is that whilst biomass may be high, yields

and HI in particular are often very low and the traditional

measures of NUE are less useful. However, traits such as

total N uptake, N uptake at low availability and biomass

potential are all good pointers for useful NUE traits.

The most important architectural influence is stature

(height) as influenced by dwarfing genes [8]. The intro-

duction of dwarfing genes not only improves HI and NHI

but also decreases susceptibility to lodging at higher

nitrogen applications. A potential negative consequence

of rht genes which whilst decreasing height may also have

other pleiotropic consequences such as decreased root

proliferation [8,10,25].

Variation in root architecture andfunction will contribute to

the efficiency of uptake. Root proliferation is very depen-

dent upon canopy formation and nitrogen status [26].

A number of studies have dissected root traits as Quanti-

tative Trait Loci (QTL) [10,27], identifying the variation

in root proliferation, length, lateral profusion and spread

or angle of roots. Many of these studies are laboratory-

based due to the difficulties of measurements in the field;

this, however, is begging to be resolved with field studies

utilising shovelomics [28�], root cores or electrophysio-

logical or penetrometer methods for assessing root activity

using the proxy of soil drying [29,30].

Mechanisms of nitrate uptake by roots also contribute to

uptake efficiency. Large families of genes for nitrate

transporters exist in wheat, involved in initial uptake

and in internal translocation processes [31] Variation in

expression or functioning will impact on nitrate uptake.

Specific individual transporter genes have major effects

on NUE in rice, for example, indica and japonica rice may

be differentiated by alleles of a low affinity nitrate trans-

porter, NRT1.1.B (OsNPF6.5) [32��]. Higher N-uptake

and yields and hence NUE in indica seem to be specifi-

cally dependent on this single allele. In addition, another

nitrate transporter, OsNRT2.3, involved in pH sensing in

the phloem and which is involved in the regulation of

nitrate uptake, shows natural variation within the indica
subspecies [33].

Strategies for the identification of genes
controlling NUE
Figure 2 shows a proposed scheme for the identification of

genes controlling NUE and their deployment in breeding.

As already discussed, NUE is a highly complex polygenic

trait. Consequently, the identification of individual genetic

effects requires quantitative genetics approaches and the

initial description of such effects is usually as QTL. The past

twenty years has seen a widening of the repertoire in

statistical methods and population types for the identifica-

tion of QTL. The optimal approach very much depends on

the specific NUE related question being asked. Is the aim to

describe genetic mechanisms and trait variation that is

already being used in breeding programmes or is the aim

to identify new genes/alleles and mechanisms in more

diverse germplasm? All the approaches described carry

unique strengths and weaknesses.

Association genetics

Association genetics can be based on panels of genotypes

very well adapted to the researchers target environment,

sample multiple alleles, and provide very high genetic

resolution based on historical recombination events and

have been applied in many studies of NUE, for example,

in wheat [34]. However, statistical power is relatively low

in these materials, a particular problem with NUE traits

which tend to be relatively subtle genetic effects display-

ing low heritability. This problem can be tackled by

increasing panel size but this leads to very large and

expensive experiments with many NUE traits being

expensive to measure (e.g. grinding tissues, CHN analy-

sis). Moreover, association genetics relies on a reasonable

balance of alleles at each locus studied, low frequency

alleles (typically less than 10%) are eliminated from the

analysis. This is a particular problem if rare alleles are the

target as would typically be the case when searching for

variation in landrace collections and so on. An essential

element of successful association studies is the proper

consideration of genetic structure. For example, groups of

germplasm within a panel may be genetically distinct due

to similar pedigree history within each. A NUE trait

might be more highly expressed in one group. In this

case loci with allele frequency differences between

groups will result in false trait marker associations

(TMAs) and, equally possible, false negatives.

QTL mapping using biparental populations

The best-established method of QTL identification is in

the use of segregating populations derived from two

parents. Fixed homozygous lines are produced by single

seed descent (SSD) to produce recombinant inbred lines

(RILs) or by the production of doubled haploids. These

populations deliver the highest statistical power because

only the two parental alleles are segregating at anyone

Genetic variation in NUE Hawkesford and Griffiths 37
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locus and (except in the case of segregation distortion) the

population is comprised 50% of each allelic class. Numer-

ous NUE QTL have been identified using this approach

for example in rice [35].

Multiparent populations

Over the last decade attempts have been made to combine

the benefits of association and biparental mapping through

the use of multiparent populations, most notably nested

association mapping (NAM) popularised in maize [36] and

multi parent advanced generation intercross (MAGIC)

developed in wheat [37]. These allow the simultaneous

analysis of multiple alleles and the mapping resolution

afforded by recombination captured during the formation

of the population as well as historical recombination. The

problem of artefactual QTL caused by structure is also

removed because the alleles underlying putative TMAs are

segregating in the multi parent population. The benefits of

these new population types coupled with game changing

advances in applied genomics mean that molecular marker

data point cost and ability to align to a reference genome is

now possible in maize rice and wheat. Work exemplifying

this change in the latest of our studies species to achieve

post genomic status includes high density marker arrays

developed by Winfield et al. [38] and, at last, a whole

genome sequence assembly [39]. This has led to a step

change in thescale of population development with theaim

of identifying new and useful genetic variation for complex

traits such as NUE, and for example, Wingen et al. [40]

produced a publicly available NAM population which now

represents more than 90 landrace parents and over

10 000 recombinant inbred lines.

Backcross populations

Backcrossing usually involves a donor parent which car-

ries characteristics of interest and a recurrent parent

which is backcrossed with the progeny of the initial cross

so that the genomes of the progeny become increasingly

(50%) like that of the recurrent parent. After the requisite

number of backcrosses, the progeny is then brought to

genetic fixation either by single seed descent or doubled

haploidy. So each individual of a BC3 (3rd generation of

38 Physiology and metabolism

Figure 2

2.NUE/component QTL

Beneficial allele
validation using
NILs  

3. Desirable increasing
allele/haplotype 

5. Marker validation in pre-
breeding

6.  Variety development by marker assisted selection

Introgression into elite genepool

1. Genetic dissection of NUE
• Association panels 
• NAM
• Biparental
• Backcross pop
• NIL library

4. Marker development and
trait introgression for pre-
breeding  

D
ecreasing phenology

variation 

+

Current Opinion in Plant Biology

A pipeline for deployment of NUE QTL in breeding is shown. Step 1 shows options for gene discovery and takes account of the potentially

confounding effects of variation for phenology in finding useful variation for a given target environment. Step 2 is simple: Were any QTL found?!; in

step 3, a judgement is made concerning the use of the increasing allele. This is best done in consultation with end users. In the UK’s current

wheat programme (Designing Future Wheat) a committee of academics, genebank managers, pre-breeders, and commercial breeders debate and

vote, see http://wisplandracepillar.jic.ac.uk/toolkit.htm. In step 4, the pieces are put in place to move the allele in breeding materials so markers

based on the same platform used by breeders are developed (e.g. for wheat single nucleotide-based KASP markers are developed and using

highly discriminative alleles across the haplotype derived from high density genotyping or re-sequencing). In the transition from step 4 to 5 the

NILs developed are tested in multiple environments to determine if there is an advantage for the NIL compared to the recurrent parent. If the

target alleles are already present in elite genepools, the markers can be tested on association panels and within breeding programmes to

determine whether they associated with the NUE trait of interest. If the answer to either of these questions is positive, the work moves (in wheat at

least) from academic-commercial precompetitive partnership to commercial prebreeding and trait introgression into proprietary germplasm and/or

marker are used in established pedigrees.

Current Opinion in Plant Biology 2019, 49:35–42 www.sciencedirect.com

http://wisplandracepillar.jic.ac.uk/toolkit.htm


backcrossing) population will be on average 87.5% recur-

rent parent with 12.5% random segments of the donor

parent. After fixation for example by SSD, the donor

genome contribution will then be a mere 4.25%. These

progenies can be genotyped in each generation and seg-

ments selected to tile the entire genome and for a

chromosome segment substitution library (CSSL). The

populations produced display restricted phenotypic vari-

ance, with most individuals almost identical to the recur-

rent parent. However, lines carrying donor segments that

carry QTL influencing NUE only need be compared with

the phenotype of the recurrent parent to achieve a highly

accurate and precise estimation of the genetic effect from

that QTL. Soleimani et al. [41] used this approach to

dissect phosphorus use in barley.

Near isogenic lines (NILs)

Empirical selection for agronomic performance, including

grain yield has been a good proxy for NUE in wheat [42],

rice [43], and maize [44] suggesting that many traits under

selection are constitutive and confer benefit at a range of

nitrogen availabilities. In these cases, precise genetic

stocks developed to study-specific QTL influencing yield

and yield components such as those developed by Sim-

monds et al. [45] in wheat, represent a powerful resource

for the study of NUE. Chief amongst these are Near

Isogenic Lines (NILs) which are produced using the

backcrossing approach described above but a single frag-

ment of donor chromosome (genetic foreground) is main-

tained in the face of backcrossing by active selection of

heterozygotes at that locus in each generation either by

phenotypic selection where the trait is controlled by a

major gene at that locus or, more typically, by marker

assisted selection (MAS) using mapped markers that flank

the gene of interest or are even within it. NILs are a

classic output of advanced QTL studies in which a QTL

is validated when the NIL is shown to differ from the

recurrent parent in a similar way to the QTL in the

original discovery population, that is same direction of

effect and similar magnitude. These materials provide an

immensely valuable resource for NUE studies. The QTL

for the original trait of interest is proven to be robust. Only

two lines need to be studies, the NIL and the recurrent

parent. This means that multi-level factorial interven-

tions are feasible and deep physiological analysis can be

conducted. An increasing pool of NIL resources are now

available and their specific use in NUE studies has been

carried out in wheat for example by Kowalski et al. [46]

and whole libraries of NILs representing all major agro-

nomic QTL identified so far from well studies reference

populations such as Avalon � Cadenza [47] surely present

a rich seam of discovery for future NUE research.

The impact of phenology on meaningful gene
discovery
The word phenology was coined by 19th century English

naturalists recording the timing of key natural history

events within each season such as the appearance of

blossom on trees or frog spawn in the local pond [48].

In reference to crops it describes the timing of develop-

mental transitions such as the transition from vegetative

to reproductive growth, the onset of stem extension, the

emergence of the inflorescence, anthesis, senescence, and

maturity. Phenology is genetically determined with a

number of environmental cues modifying the crop

response. Optimisation of the crop phenological profile

is the major driver of crop adaptation. So, it comes as little

surprise that phenology is shown to correlate with NUE is

almost every study in which it is measured and QTL for

phenology traits often collocate with NUE and it is

components, most likely through pleiotropy. This raises

a very important question for NUE gene discovery stud-

ies. For example, if a major phenology QTL such as Ppd-1
controlling photoperiod sensitivity in wheat, or Hd1 in

rice, and so on is segregating and the allele which is

associated with poor adaptation to that environment is

also the low allele for NUE in that population has

anything useful been learnt about NUE in that scenario?

The same can be said about major genes controlling crop

height. In most cases the answer is no, and researchers do

not pursue these effects. The segregation of the effect

still causes a problem though, because it itself it increases

the noise to signal ratio for other NUE loci (often of

smaller effect) segregating in the same population which

are of greater interest but might not be detected at all in

this scenario.

The populations described above were described in order

of decreasing phenology variance. In wheat for example

many association panels might exhibit a range of flower-

ing times up to one month whereas a NIL will usually

have the same phenological profile as the recurrent parent

(unless the foreground selection was for a phenology

QTL). All the better if the recurrent parent is well

adapted to the growing environment. This means that

any effect detected can be attributed to NUE per se, and

not as a relatively simple and low value secondary conse-

quence of improved adaptation. This is not to say that the

fine tuning of phenology does not play an important role

in the maximisation of NUE. Within genotypes that are

equally well adapted improvements in NUE can be

achieved by fine tuning phenological patterns such as

the rate of floret abortion [49].

Using NILs does not fully answer the phenology problem

as de novo NUE QTL needs to be conducted. Backcross

and CSSL populations are a powerful way to achieve this

but a large number of lines need to be studied in order to

scan a single genome. Multiparent populations provide an

exciting alternative. Although they often comprise 100 s

or even 1000 s of individuals, subsamples of these

populations still provides an efficient strategy for QTL

discovery. If phenology data are available for the whole

population these selections can be made on the basis of a

Genetic variation in NUE Hawkesford and Griffiths 39
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narrow phenological window for any given environment,

thus minimising these confounding effects in the primary

phase of NUE QTL detection.

Prospects for crop improvement
The major target for breeders and growers is high yield.

Specifically, in the case of wheat, a high final protein

content is desirable for bread-making quality. For all

cereal crops and agronomic systems, the key priority is

efficient capture of N by the root systems, to improve on

the low worldwide efficiency [1�]. Appropriate agronomy

will contribute greatly to this; however, genetic

approaches have not fully targeted root traits and there

is likely scope for improvement. An efficient canopy,

targeting both structural and photosynthetic traits will

improve yield and NUE as defined as nitrogen require-

ment; however, this may be at the expense of quality.

Possibly the most important target will be to improve the

N use efficiency at higher N inputs, particularly by

ensuring efficiency of use of the higher N inputs in the

grain.

A hugely useful resource is the wide genetic variation

available to cereal breeders and researchers. Significant

but limited variation exists in modern germplasm pools;

however, a huge opportunity exists to exploit more

diverse germplasm collections such as the Watkins col-

lection [50] and identify efficiency alleles which may have

been lost to the modern germplasm pool. Screening and

exploiting such material require a major commitment to

large scale trials at contrasting locations and in multiple

40 Physiology and metabolism

Figure 3

Current Opinion in Plant Biology

A field trial of diverse wheat accessions growing at two nitrogen fertiliser input rates (the right-hand blocks have the highest N-inputs, a

consequence of which is the delayed senescence and observed lodging. The trial was located at Rothamsted in the UK in 2017. Germplasm

comprises crosses of Watkins accessions with Paragon as a common parent. Huge differences in form and phenology contribute to differing NUE

parameters.

Current Opinion in Plant Biology 2019, 49:35–42 www.sciencedirect.com



years, as well as the expertise to phenotype for phenology,

architecture and nutrient use efficiency parameters. A

typical trial of bi-parental wheat populations illustrates

the diversity of form and the impact of nitrogen inputs

(Figure 3). The critical challenge is having the right

phenotypic screening strategies which can be applied

with high throughput at the appropriate scale. The use

of optical sensors [51] and crop indices such NDVI

(normalised difference vegetation index) [52] to measure

canopy development and canopy nutritional status have

been widely employed, both with ground-based observa-

tions using spectrometers and hand-held contact devices

such as SPAD meters [53] or using aerial imagery [54,55].

The most recent developments include automated

mobile [56] and fixed [57] platforms for high temporal

and spatial analysis of such parameters.
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