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Abstract 9 

Crop yield is an essential measure for breeders, researchers and farmers and is comprised of and may 10 

be calculated by the number of ears/m2, grains per ear and thousand grain weight. Manual wheat ear 11 

counting, required in breeding programmes to evaluate crop yield potential, is labour intensive and 12 

expensive; thus, the development of a real-time wheat head counting system would be a significant 13 

advancement. 14 

In this paper, we propose a computationally efficient system called DeepCount to automatically 15 

identify and count the number of wheat spikes in digital images taken under the natural fields 16 

conditions. The proposed method tackles wheat spike quantification by segmenting an image into 17 

superpixels using Simple Linear Iterative Clustering (SLIC), deriving canopy relevant features, and 18 

then constructing a rational feature model fed into the deep Convolutional Neural Network (CNN) 19 

classification for semantic segmentation of wheat spikes. As the method is based on a deep learning 20 

model, it replaces hand-engineered features required for traditional machine learning methods with 21 

more efficient algorithms. 22 

The method is tested on digital images taken directly in the field at different stages of ear 23 

emergence/maturity (using visually different wheat varieties), with different canopy complexities 24 

(achieved through varying nitrogen inputs), and different heights above the canopy under varying 25 

environmental conditions. In addition, the proposed technique is compared with a wheat ear counting 26 

method based on a previously developed edge detection technique and morphological analysis. The 27 

proposed approach is validated with image-based ear counting and ground-based measurements. The 28 

results demonstrate that the DeepCount technique has a high level of robustness regardless of variables 29 

such as growth stage and weather conditions, hence demonstrating the feasibility of the approach in 30 

real scenarios. 31 

The system is a leap towards a portable and smartphone assisted wheat ear counting systems, results 32 

in reducing the labour involved and is suitable for high-throughput analysis. It may also be adapted to 33 

work on RGB images acquired from UAVs. 34 
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1 Introduction 35 

Yield is composed of three components: number of ears per unit area, number of grains per ear, and 36 

grain weight, some which may be estimated during the growing season. The early estimatation of pre-37 

harvest yield allows breeders more rapid germplasm assessment and enables farmers to adjust 38 

cultivation practices to optimise production. Manual counting protocols have been the only way of 39 

calculating the number of ears per square metre (ears/m2). Breeders can identify and count wheat spikes 40 

visually, however, manual counting of wheat spikes is labour intensive and time-consuming. In 41 

addition, these tasks may need to be performed on many thousands of cultivars, which is likely to 42 

introduce human-error into the obtained data. An ideal alternative would be the development of 43 

automated systems operating under field conditions. Recent advances on automated data acquisition 44 

systems (Busemeyer et al., 2013; Kirchgessner et al., 2017; Virlet et al., 2016), allow a high spatial 45 

sampling due to the rapidity of the image acquisition process which enables all possible measurements 46 

of crop growing status. Even though the ability to acquire data is relatively fast and easy, challenges 47 

remain in terms of the data mining of images. Computer vision offers an effective choice for analysing 48 

high-throughput image-based phenotyping due to low-cost (relative to man-hours invested into manual 49 

observations) and the requirement for minimal human intervention. Although current computer vision 50 

systems are increasingly powerful and capable, they still need to overcome the difficulties associated 51 

with images acquired under field conditions. Environmental noise causes major challenges for 52 

computer vision-based techniques in identifying features objects of interest such as wheat spikes under 53 

natural field conditions. For exampleSome challenges include, (i) plant movements and/or stability of 54 

handheld cameras may cause blurred images (ii) dark shadows or sharp brightness may appear in 55 

images due to natural condition and light variations in the field even though a camera is set to auto 56 

exposure (iii) overlaps between ears due to a floppy attitude of the ears may also cause additional 57 

difficulties, especially with the presence of awns in some cultivars, and (iv) Moreover, spikes in 58 

different varieties change significantly through the development stages, as the spikes show the only 59 

little resemblance similarity between the early and later growth stages.  60 

Several studies have utilised image-based automatic wheat ear counting for early evaluation of yields 61 

(Cointault et al., 2008; Cointault and Gouton, 2007; Fernandez-Gallego et al., 2018). These methods, 62 

have mainly usedrelied on image data extraction techniques that were related to characteristics of 63 

colour, texture, and morphological operations. Cointault et. al (2008) proposed a mobile platform to 64 

acquire data where visible images were taken by a digital camera located vertically above the field of 65 

view using a tripod. The field of view is a closed system delimited by a black matte frame to control 66 

variabilities in illumination and weather conditions. The proposed framework creates a homogeneous 67 

environment and blocks unwanted image effects. Subsequently, the authors improved their platform 68 

by collecting images in different lighting conditions without any structure blocks (Cointault et al., 69 

2008). The main drawback is the restricted data acquisition pipeline required for the system to operate. 70 

For instance, prior knowledge of the environment is required to achieve an optimum result; moreover, 71 

even with the current restrictions only a small number of images were selected based on which the 72 

authors felt presented "good illumination". In a similar approach (Cointault et al., 2008a; Cointault and 73 

Gouton, 2007; Fernandez-Gallego et al., 2018), a supervised classification method was proposed to 74 

distinguish three classes of leaves, soil and ears. In the end, morphological operations were applied for 75 

counting the number of blobs (potentially ears) from the binary image with the pre-assumptions of the 76 

shapes of the ears. Each pixel is represented by colour and texture properties. As suggested, a hybrid 77 

space is constructed to address a sensitivity of colour properties to the intensity variations in an image. 78 

The method has been tested on a limited number of wheat varieties without awns with a low level of 79 

wheat ear density; moreovernonetheless, no evaluation was carried out to validate the accuracy of the 80 

proposed method with the manual measurements. In another study, Fernandez et. al. (2018) applied a 81 
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Fourier filtering and two-dimensional discrete Fast Fourier transform (FFT) (Cooley and Tukey, 1965) 82 

to distinguish wheat ears from the background. The approach performs, in three main steps of high-83 

pass filtering, thresholding and mathematical morphology, operations to eliminate "non-wheat" pixel 84 

groups which are small and scattered. The threshold is pre-defined by a user to determine if pixels 85 

should be identified as foregrounds (ears) or background (leaf, soil, etc.). The drawback is that a wrong 86 

choice of the threshold value may result in distortion and low performance of the whole system in 87 

different environments. Finally, Zhou et. al 2018 proposed a twin-support-vector machine 88 

segmentation method to segment wheat ears from visible images. The method relies on the hand-89 

engineered features including colour, texture, and edge histogram descriptor. The images were 90 

collected from the side at 45o above the horizontal because colour and texture were suggested being 91 

typically more substantial from this perspective. 92 

At the core, the success of any of the current state-of-the-art methods crucially depends on the feature 93 

representation of the images. While the aforementioned methods use hand-crafted features to represent 94 

images by encoding of various features including corners, edges, texture and colour schemes, the 95 

features are tailored to a specific condition and their effectiveness are inherently limited as these 96 

approaches mainly operate at the primitive level. Unlike conventional feature extraction techniques, 97 

which often use shallow architecture and solely rely on human-crafted features, relatively new 98 

learning-based methods based on Convolutional Neural Networks (CNNs) show promising results for 99 

visual analysis. CNN models attempt to model high-level abstractions in images by employing deep 100 

architectures composed of multiple non-linear transformations (Lomonaco, 2015; Schmidhuber, 2015). 101 

In CNN, features are extracted at multiple levels and allow the system to learn complex functions that 102 

directly map raw sensory input data to the output, without relying on hand-engineered features using 103 

domain knowledge. The convolution is an operation of applying the filter on a single colour image to 104 

enhance some of its features. One-to-one convolutions take a single image as an input and return a 105 

single image as an output. However, in CNN different kinds of convolutions exist. For instance, in one-106 

to-many convolutions, a single input image is passed to k filters; then each filter is used to generate a 107 

new output image. Alternatively, in many-to-many convolutions, there are n inputs and m outputs 108 

where each output image is connected to one or more input image characterised by k filters (Lomonaco, 109 

2015). Potentially, this capability makes the deep neural network more robust to different types of 110 

variations in digital images. As a result, the model can adapt to such differences and has the capacity 111 

to learn complex models.  112 

In recent years, CNNs have shown usefulness in a large variety of natural language processing and 113 

computer vision applications, including segmentation and image classification, and often surpassed 114 

the-state-of-the-art techniques (Krizhevsky et al., 2012; Lomonaco, 2015; Mikolov et al., 2013). 115 

Despite the promising outcomes of deep learning in computer vision, there are some limitations in 116 

implementing a deep neural network. Deep learning approaches are usually computationally intensive, 117 

and their performance relies on the quantity and quality of training datasets. In most cases, in order for 118 

deep learning to show great advantages, training datasets of tens of thousands to millions are required 119 

(Deng et al., n.d.; Ubbens et al., 2018). Having a large training dataset provides deep learning models 120 

with extensive variety, which leads to an effective learned representation as a result. Deep Neural 121 

Networks (DNN) is an area of active research and applications to plant research are still in the early 122 

stages. There are few deep learning applications successfully applied in the field of image-based plant 123 

phenotyping (Madec et al., 2019; Pound et al., 2017). The small body of existing applications includes 124 

plant disease detection on leaf images (Mohanty et al., 2016), rice panicle segmentation (Xiong et al., 125 

2017), leaf counting in rosette plants (Ubbens et al., 2018), wheat ear counting (Madec et al., 2019), 126 

and localising root and shoot tips (Pound et al., 2017).  127 
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This study utilises a novel visual-based approach based on linear iterative clustering and deep 128 

convolutional neural networks to identify and count the number of wheat spikes. The proposed method 129 

can also calculate the number of wheat ears/m2 when a ground standard is present within the image. 130 

The proposed method, called DeepCount, alleviates the limitations and lack of separability inherent in 131 

existing wheat ear counting methods and minimise the constraints of capturing digital images taken 132 

under natural outdoor environments. The approach presented will pave the way for computationally 133 

efficient and significantly faster approaches compared to the manual techniques, leading to reducing 134 

the labour involved and enabling high-throughput analysis. 135 

2 Materials and Methodology 136 

In this study, we explore the feasibility of automatically identifying wheat spikes under natural in field 137 

conditions based on a completely data-driven framework. The main contributions of the work can be 138 

summarised as follows: 139 

• Building high-quality dataset of annotated spikes and utilising them to train our convolutional 140 

neural network model  141 

• Developing a deep learning model called DeepCount that can learn from the training dataset 142 

and then identify and segment spikes from different wheat cultivars (awns and no awns).  143 

• Demonstrating that the constructed model can automatically quantify the number of spikes in 144 

within visible images in under natural field environments; also, calculate the number of ears/m2 145 

when a ground standard is present. 146 

Quantification of spikes may be achieved in two ways. One approach is localisation/detection of spikes, 147 

which provides not only the prediction for the whole image but also additional information regarding 148 

the spatial location of the spikes. Another technique is semantic segmentation (pixel-wise 149 

segmentation) which understands an image at pixel level. It enables dense predictions inferring labels 150 

of every pixel in the image, so that each pixel is labelled as an ear or background. Inspired by the 151 

success of the recent deep learning algorithms in computer vision applications, we propose a CNN 152 

approach combined with a superpixels technique known as simple linear iterative clustering (SLIC) 153 

(Achanta et al., 2010). The core idea is to overcome the computational complexity by using SLIC to 154 

generate homogeneous regions instead of processing at a pixel level. The homogeneous regions 155 

generated by SLIC will contain more information about the colour and texture and are less sensitive to 156 

noise as opposed to pixel-level analysis. It also reduces the complexity of subsequent ear detection and 157 

localisation tasks. The generated regions are later used as input data for the convolutional neural 158 

networks. The network is not only capable to recognise spikes but also delineate the boundaries of each 159 

spike with the canopy based on dense pixel level predictions. Figure 1 illustrates an end-to-end 160 

wheatear quantification including the offline training and online ear segmentation and counting. In the 161 

following section, we will describe the data collection/annotation process and the model architecture 162 

developed to localise wheat spikes within images and quantify them. 163 

2.1 Experimental materials 164 

The experiments were carried out at Rothamsted Research, UK (51°48′34.56′′N, 0°21′22.68′′W) in two 165 

fields, Great Field (Field Scanalyzer area) and Black Horse. Two experiments were conducted underon 166 

the Field Scanalyzer platform (Virlet et al., 2016) during the growing season in 2014-2015 (hereafter 167 

referred to as 2015-FS data set) and 2015-2016 (hereafter referred to as 2016-FS data set). Six wheat 168 

cultivars (Triticum aestivum L. cv. Avalon, Cadenza, Crusoe, Gatsby, Soissons and Maris Widgeon) 169 

were sown on 6th November 2014 and 20th October 2015 at a planting density of 350 seeds/m2. Nitrogen 170 
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(N) treatments were applied as ammonium nitrate in the spring, at rates of 0 kgN.ha−1 (residual soil N; 171 

N1) 100 kgN.ha−1 (N2) and 200 kgN.ha−1 (N3) for both years and 350 kgN.ha−1 (N4, 2015-FS only). 172 

The plot sizes were 3m × 1m in 2015-FS and 2m × 1m in 2016-FS.  173 

The third experiment has been funded by DEFRA since 2008, known as WGIN (Wheat Genetic 174 

Improvement Network), to provide genetic and molecular resources for research in other DEFRA 175 

projects and for a wide range of wheat research projects in the UK. In this study, we collected images 176 

from the 2015-2016 experiment (hereafter referred to as 2016-WGIN data set) at Black Horse field. 30 177 

wheat cultivars were grown at four nitrogen fertiliser treatments (N1, N2, N3 and N4), sown on 12th 178 

October 2015. Each repetition consists of a 9m × 3m “main plot”, and a 2.5m × 3m “sampling plot”, 179 

used for non-destructive measurement and destructive sampling respectively. The three experiments in 180 

this study use a split plot design (with three blocks) and were managed by local agronomic practices. 181 

2.2 Image acquisition 182 

The images were taken acquired under conditions of natural illumination conditions at different 183 

multiple stages of ear maturation with different canopy complexities achieved through different varied 184 

nitrogen inputs. The tests were carried out in extreme lightning conditions with typical environmental 185 

challenges faced in the field for images taken by different cameras and optics with no direct scaling 186 

relationships. Table 1 summaries the characteristics of three trials carried out in this study. The camera 187 

models include different types of commercially available visible cameras with various spatial 188 

resolutions and configurations (Table 1). 189 

The images for 2015-FS and 2016-FS were collected using by the Scanalyzer onboard visible camera 190 

(colour 12-bit Prosilica GT3300) at a resolution of 3,296×2,472 pixels. The camera is positioned 191 

perpendicular to the ground and was set up at a fixed distance to the ground (3.5m) for the 2015-FS 192 

experiment and at a fixed distance to the top of the canopy (2.5m) for the 2016-FS.  The camera is set 193 

up in auto-exposure mode, to compensate for outdoor lighting changes.  194 

In the 2016-WGIN experiment, two hand-held cameras, Canon G12 and Sony Nex-7, were used to 195 

acquire visible images with the resolution of 3,648×2,736, and 6,000×3,376 pixels, respectively (Table 196 

1). Similarly, to the Field Scanalyzer, the cameras were set up in an auto-exposure mode and held 197 

vertically over the canopy. In addition, a rapid and easy ground standard system was implemented by 198 

placing an A4 sheet over the canopy in the field of view of the camera lens (Figure 2.B). The ground 199 

system was used to transform the total number of wheat ears in within an image into the number of 200 

ears/m2. 201 

2.3 Ground truthingEvaluation 202 

Two different ground-truthingevaluation methods were implemented used and compared with the 203 

automatic ear counting techniques. The first method is based on manual image-based annotation in 204 

which ears are manually marked counted on the images acquired by the Field Scanalyzer platform 205 

(2015-FS and 2016-FS data sets). Wheat ears were interactively marked using the VIA image annotator 206 

(Dutta et al., n.d.), which enabled the automatic printing of the incremental number on each individual 207 

ear.  208 

The second ground-truthing method is based on field manual measurements carried out for all three 209 

experiments. In the 2015-FS and 2016-FS experiments, ears were manually counted on six rows of 1 210 

m length, corresponding to 1 m2 area, for each plot. In the 2016-WGIN trial, the number of ears/m2 211 

were estimated based on the method presented in Pask et. al (2012a). Samples of 4 rows of 1 metre 212 
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length was done carried outwere cut at anthesis, then and the ears/m2 were derived from the above-213 

ground biomass (ABG) and the dry weight (DW) of the fertile culm: 214 

Ears/m2 = AGB (g/m2) / DW_fertile culm (g) 215 

Figure 2 shows the representation of digital images of different wheat traits taken under the Field 216 

Scanalyzer platform (Figure 2.C) and a handheld DSLR camera (Figure 2 A&B). As depicted in the 217 

sample images, the data was collected in different weather conditions, with illumination changes, anf 218 

fromor cultivars with differences in ear shapes and sizes. 219 

2.4 Annotation and generating training dataset 220 

The fundamental part of any supervised decision-making system such as CNN is how to specify the 221 

output based on a given set of inputs or training dataset. In practice, hundreds or even thousands of 222 

annotated training datasets are required to make a good training of CNN. Even though high-throughput 223 

image-based plant phenotyping systems like Field Scanalyzer (Virlet et al., 2016) exist and generate a 224 

huge amount of image data daily, a large set of annotated images with ground-truth are not widely 225 

accessible yet within the plant phenotyping community.  226 

To expose our CNN model to a wider variety of images, the data were collected by a hand-held DSLR 227 

Canon Camera with a resolution of 5760×3840 pixels from diverse Limagrain field trials at different 228 

stages from heading to maturation under different ambient illumination condition. The broad range of 229 

images enabled the constitution of “strong” training data set covering the ears development from 230 

multiple wheat varieties making the detection model more robust and thereby increasing the precision 231 

of the wheat spikes quantification. The graphical image annotation tool, VGG image annotator (VIA)  232 

(Dutta et al., n.d.), was used to draw boxes around the background, such as leaf, soil and soil (Figure 233 

3.C) and draw strokes using the polygon tool around ears (Figure 3 A&B). Here, 330 representative 234 

wheat images are selected to build the annotated training dataset, in which the illumination variations, 235 

weather conditions, wheat ears shapes, and reproductive stages are all considered. As a result, 24,938 236 

ears and 30,639 backgrounds are manually annotated. 237 

The next step is to combat the high expense of creating a training source with their corresponding 238 

labels. The augmentation model is constructed to simulate the illumination change by adjusting the 239 

HSV colour space and applying various transformations such as random rotation, cropping, flipping, 240 

zooming, scaling, and brightness to the images that are already in the training dataset (Figure 4). In 241 

addition, a non-linear operation known as Gamma correction (also referred to as gamma encoding or 242 

gamma compression) (Rahman et al., 2016) was applied to encode and decode luminance in the images. 243 

The augmented images are appended to the existing training samples, from which 20% of the sample 244 

set is randomly selected as the validation set (145,000 patches), and the remaining 80% is selected as 245 

the training set (580,000 patches; 300,000 ears and 280,000 backgrounds). 246 

2.5 Superpixels segmentation 247 

Most computer vision algorithms use pixel-grid as the underlying representation of an image. However, 248 

grids of pixels do not hold a semantic meaning of an image, nor represent a natural representation of a 249 

visual scene. It would be more efficient, to work with perceptually meaningful entities obtained from 250 

a low-level grouping process. Superpixel algorithms aim to group pixels into perceptually meaningful 251 

regions based on their similarity characteristics, such as colour and texture distributions. Superpixel 252 

techniques will reduce the complexity of images from thousands to millions of pixels to only a few 253 
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hundred superpixels; thereby, it will diminish the influence of noise and potentially improves the 254 

computational efficiency of vision algorithms.  255 

In light of the fundamental importance of superpixel algorithms in computer vision, many algorithms 256 

have been proposed in the literature (Achanta et al., 2012, 2010; Li and Chen, 2015; Tu et al., 2018). 257 

The superpixel segmentation algorithms can be broadly categorised as graph-based segmentation and 258 

clustering-based segmentation. In graph-based techniques, an image is considered as a planar graph, 259 

where pixel vertices and pixel affinities are computed for connected pixels (Felzenszwalb and 260 

Huttenlocher, 2004; Ren and Malik, 2003). Alternatively, the clustering-based method starts with a 261 

rough initial clustering of pixels, then the clusters are refined iteratively until some convergence 262 

criterion is met to form superpixels (Achanta et al., 2010; Achanta and Süsstrunk, 2017; den Bergh et 263 

al., 2015).  264 

In this study, we use simple linear iterative clustering (SLIC) (Achanta et al., 2012, 2010), which is 265 

fast and memory efficient for generating superpixels (Achanta et al., 2012). As opposed to other 266 

superpixels algorithms with many difficult-to-tune parameters, SLIC is simple to use in which the 267 

number of desired superpixels is its sole parameter. The spectral-spatial distance is measured between 268 

each pixel to its cluster centre and then the cluster centres are updated using K-means clustering 269 

technique. For N pre-specified superpixels, clustering pixels are represented based on their colour 270 

similarity (CIELAB colour space) and pixel proximity in the 5-D space Ci = [li, ai, bi, xi, yi] where i = 271 

[1, N]. In this study, based on our experience, the number of superpixels is set to N = 3000 to avoid 272 

over segmentation and to produce roughly equally sized superpixels. We can also control the trade-off 273 

between the compactness of the superpixels and boundary adherence (Achanta et al., 2012). It means 274 

SLIC can prevent small or disconnected areas or islands within a larger region (Figure 5). The candidate 275 

regions are then used as inputs for the CNN model to perform pixel-wise segmentation. Feeding the 276 

network with image descriptors extracted from the candidate regions enables the model to learn local 277 

information such as texture and shape rather than using the pixel-grids. 278 

2.6 Architecture of the convolutional neural network model 279 

As previously mentioned, SLIC reduces the computational complexity by partitioning an image into 280 

homogeneous regions instead of extracting features at the pixel level (Figure 5). However, the SLIC 281 

method, like many other superpixel techniques (Felzenszwalb and Huttenlocher, 2004; Li and Chen, 282 

2015; Ren and Malik, 2003; Wang et al., 2017), relies on handcrafted features; thus, often fails to 283 

separate objects within an image in appropriate regions (Figure 5.C & Figure 6.A.1). To address the 284 

limitation, the proposed CNN model classifies each superpixel at a pixel-level as opposed to 285 

characterising the content of the entire candidate region and predict a single label. The network takes 286 

each candidate region as input data and outputs a pixel-level segmented of the region (Figure 6.A.2 & 287 

B.2).  288 

In general, semantic segmentation architecture in CNN can be broadly categorised as an encoder 289 

network followed by a decoder network. The encoder network gradually reduces the spatial dimension 290 

of the input by down-sampling and developing lower-resolution feature mappings which are learned 291 

to be highly efficient at discriminating between classes. To get the dense pixel-wise classification, the 292 

decoder network semantically projects the discriminative features learnt by the encoder onto the pixel 293 

space by up-sampling the feature representations into a full-resolution segmentation map. There are 294 

usually shortcut connections from encoder to decoder to help the decoder recover the object details 295 

better. 296 
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In this work, we leverage an existing model known as U-Net which was originally designed for 297 

biomedical image segmentation for identifying lung nodules in a CT scan (Ronneberger et al., 2015). 298 

The U-Net architecture consists of a contracting path to capture context and an asymmetric expanding 299 

path that enables precise localisation. The model concatenates the encoder feature maps to up-sampled 300 

feature maps from the decoder at every stage. The concatenation allows the decoder at each stage to 301 

learn back relevant features that are lost when pooled in the encoder. Normally, U-Net is trained from 302 

scratch starting with randomly initialised weights (optimisation variables). Since up-sampling in the 303 

decoder is a sparse operation we need a good prior from earlier stages to better represent the 304 

localization.  305 

Since transfer learning proved to be a powerful technique for semantic segmentation models such as 306 

U-Net like architectures (Iglovikov and Shvets, 2018), we used a pre-trained VGG model (Simonyan 307 

and Zisserman, 2014) without fully connected layers as its encoder mechanism followed by a decoder 308 

network as the original U-Net to further improve the performance of pixel level dense classification. 309 

The VGG family of CNN can be characterised by two components. 1) all convolutional layers in the 310 

network use 3×3 filters. 2) multiple convolutional layer sets are stacking together before applying a 311 

pooling operation. Normally the number of consecutive convolutional layers increases the deeper the 312 

network goes (Simonyan and Zisserman, 2014). The VGG-16 used in this work, was proposed by a 313 

group of researchers in Oxford and the winner of the ImageNet competition (Deng et al., n.d.) in 2013. 314 

It uses a stack of convolution layers with small receptive fields in the first layers instead of few layers 315 

with big receptive fields.  316 

By using an existing architecture in which the weights are initialised on big data sets such as ImageNet, 317 

the network can converge faster and learn more general filters. To construct the encoder, the fully 318 

connected layers were removed and replaced with a single convolutional layer of 512 channels that 319 

serves as a bottleneck part of the network to separate the encoder from the decoder. The network 320 

contains a total of four max-pooling layers. For each of the pooling layers, the spatial size of the feature 321 

map is reduced by a factor of two vertically and horizontally.  322 

The decoder part of the network consists of up-sample and concatenation with an output of the 323 

corresponding part of the decoder followed by regular convolution operations (Figure 8). Since the 324 

pre-trained VGG model takes an input of 224×224 pixels with 3 channels, the irregular superpixels 325 

need to be resized to achieve a proper input into the model. The network takes superpixels as inputs 326 

and outputs a segmented version of the inputs. Each pixel is labelled as 1 (wheat spikes) or 0 327 

(background), which generated a binary image (Figure 7). After the semantic segmentation, the median 328 

filter is applied to minimise the noise and remove the result of misclassification over the binary image. 329 

In this process, a window size of seven pixels slides over the entire image, pixel by pixel. Then, the 330 

pixel values from the window are sorted numerically and replaced with a median value of neighbouring 331 

pixels. In the end, for contour quantification, a classical image processing algorithm known as the 332 

watershed technique is used for post-processing to further segmentation of individual contour. 333 

2.6.1 Loss Function 334 

The role of loss function in our parameterised learning was investigated. The parameterised learning 335 

will allow us to take sets of input data (ears and background) and their class labels and learn a function 336 

that maps the input to the output predictions by defining a set of parameters and optimising over them. 337 

At a basic level, a loss function quantifies how good or bad a given predictor is at classifying the input 338 

data in our dataset (Harrington, 2012; Marsland, 2009). 339 

In review



  Running Title 

 

9 

The binary cross-entropy loss function is used to quantify how accurate the CNN method is at 340 

classifying the input data in our dataset (a brief overview of the cross-entropy loss function and the 341 

calculations is provided in the supplementary data). A visualisation of the loss function plotted over 342 

time for our model is shown in Figure 9. A visualisation of training accuracy, training loss, validation 343 

accuracy, and validation loss plotted over time for the model is plotted after 15 epochs1. The smaller 344 

the loss, the better a job the model/classifier is at modelling the relationship between the input data and 345 

output class labels. As shown in Figure 9, loss starts slightly high but then decrease rapidly and 346 

continues to stay low when trained on our dataset.  As expected the usage of the pre-trained VGG 347 

model helps the network to converge faster, as a result, we obtained 98% accuracy after only 15 epochs. 348 

Furthermore, the training and validation curves match each other very closely, indicating there is no 349 

issue of overfitting with the training process.  350 

2.7 Hand-crafted features extraction techniques for wheat ear quantification 351 

A hand-crafted image-based method presented in (Jansen et al., n.d.) was compared with the proposed 352 

DeepCount model. The technique is based on an edge detection technique and several morphological 353 

image processing operations. Firstly, the image is converted from a 3-D RGB image into 2-D greyscale 354 

representation of the image (Figure 10.B), then the edge detection based on Sobel kernel (Kaufman et 355 

al., 1994) performs a 2-D spatial gradient measurement on the grey image to emphasise regions of high 356 

spatial frequency that correspond to edges which returns a binary image (Figure 10.C). Edges may 357 

correspond to boundaries of an object, boundaries of shadowing or lighting conditions and/or 358 

boundaries of parts within an object in an image. The next steps are morphological operations including 359 

dilation to increase the size of foreground pixels (Figure 10.D), which is useful for joining broken parts 360 

of the image. Filling the holes (Figure 10.E), removing small objects (Figure 10.F) are the fifth and 361 

sixth steps. The final step is erosion where pixels near the boundary of an object in the image will be 362 

discarded. A foreground pixel in the input image will be kept only if all pixels inside the structuring 363 

element are bigger than zero; otherwise, the pixels are set to zero (Figure 10.G). In the end, a list of all 364 

contours is returned, and their numbers are printed out on the RGB image (Figure 10.H). The hand-365 

crafted method will be referred hereafter as the edge method. 366 

3 Results and discussions 367 

The performance of the proposed DeepCount model was evaluated against the hand-engineered edge 368 

detection method as well as two ground-truthingmanual evaluation techniques. The first technique was 369 

based on manual counting of ears within visible images while the second ground-truthingevaluation 370 

method was the field-based measurements. In addition, the ears counting performances were quantified 371 

based on the coefficient of determination (R2), the root means squared error (RMSE), the relative 372 

RMSE (rRMSE), and the bias: 373 

RMSE = √
1

𝑁
∑ (𝑟𝑖 − 𝑒𝑖)

2𝑛
𝑖=1   (1) 374 

rRMSE = √
1

𝑁
∑ (

𝑟𝑖−𝑒𝑖

𝑟𝑖
)
2

𝑛
𝑖=1   (2) 375 

                                                 

1 Epoch is a hyperparameter which is defined before training a neural network learning model. It means the learning 

algorithm has seen each of the training data points N times.  
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Bias = 
1

𝑁
∑ (𝑟𝑖 − 𝑒𝑖)
𝑛
𝑖=1    (3) 376 

where N denotes the number of images, ri and ei are the reference and estimated counts for image i, 377 

respectively. 378 

 379 

The algorithm was tested on a workstation PC running a Centos7 operating system with 10-core Intel 380 

Xeon CPU, 3.6 GHz per CPU, 64 GB of memory and Nvidia Quadro M5000 video card. The CNN 381 

framework was developed in python using OpenCV library and the Keras framework. While there is 382 

no restriction in the spatial resolution of the test images, the segmentation and quantification of wheat 383 

spikes will take approximately 90-100 seconds on a single image with the resolution of 6,000×3,376 384 

pixels. The CUDA parallel acceleration was also used to improve the processing efficiency especially 385 

for training the model. CUDA is a parallel computing platform created by NVIDIA, and the cuDNN 386 

library was developed for deep learning with GPU acceleration. The current method also has the 387 

potential to be faster in the future by CPU multithreading utilisation. It should be highlighted that there 388 

is no restriction in the spatial resolution of the tested images. 389 

3.1 DeepCount vs. hand-crafted edge method   390 

First, the performance of the two automatic image-based methods (DeepCount and the hand-crafted 391 

technique presented in section 2.7) was compared against manual image-based counting. In the image-392 

based ground-truthingevaluation, 33,011 ears were manually counted/annotated from 126 images. The 393 

2015-FS and 2016-FS trials include 72 and 54 images in which 22,284 and 10,727 ears were manually 394 

counted on the images, respectively. 395 

Figure 12 A&B illustrates the linear regression between the automatic methods and the first ground-396 

truthingevaluation method for tested on the 126 images. The results showed a high correlation between 397 

the automatic methods and the manual image-based counting. The DeepCount model has a higher 398 

coefficient of determination and lower RMSE and rRMSE (R2 = 0.94, RMSE = 25.1, rRMSE = 11%) 399 

than the edge detection method (R2 = 0.75, RMSE = 45.5, rRMSE = 21%) indicated that the DeepCount 400 

technique was closer to the visual observation. In addition, the bias values of -13.1 and -13.2 for both 401 

methods show a slight overestimation of the number of ears compared to the visual assessment (Figure 402 

12 A&B).  403 

The visual inspection of the results suggested that the edge method had more false positives than the 404 

DeepCount model. It was observed that, in some cases, where leaves or objects have clearer contrast 405 

than their surroundings, they were misidentified as ears. In some cases, leaves or objects with clear 406 

contrast than their surrounding were wrongly identified as ears. This was expected since the edge 407 

detection is defined as discontinuities in pixel intensity, in other words, a sharp difference and change 408 

in pixel values; thus, the edge detection methodit is more prone to noise. This may also pose more 409 

difficulties for the edge method to identify ears with awns (e.g. Soissons cv). The DeepCount model, 410 

on the other hand, had less false positive, regardless of the cultivars or level of nitrogen. Further, visual 411 

inspection showed that the fraction of false negatives, in both automatic methods, appeared to be the 412 

failure of the watershed method to separate ears exposed to a severe degree of overlap. 413 

While Fernandez-Gallego et al (2018) argued that the Edge method is unlikely to be reliable due to 414 

loss of RGB information during its colour transformation to grayscale, our results indicated otherwise. 415 

The edge method showed similar performances compared to the method presented by the authors. The 416 
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success rate metric (μ) used by the authors to evaluate the performance of their method showed 31.96 417 

to 92.39% on RGB images and 65.36 to 93.01% on greyscale images, whereas we achieved a similar 418 

range of values with 86% and 81% in the 2015-FS and 2016-FS experiments, respectively. Moreover, 419 

the R2 values between the edge method and the two ground-truthingevaluation techniques (image-420 

based counting and ground-based measurements) are high with R2 = 0.75 and 0.60, respectively (Figure 421 

12 A&C). Nevertheless, the DeepCount model outperformed the edge method in every experiment 422 

carried out in this study. Our results are also in agreement with the method presented by Madec et al 423 

(2019). The authors obtained R2 = 0.91 and rRMSE = 5.3% from their manual image-based ear 424 

counting which is also very similar to the 2016-FS data set where the results showed R2 = 0.97 and 425 

rRMSE = 7% (Figure S1). We also found similar outcomes between our methods and the technique 426 

presented by Zhou et al (2019); however, as the performance metrics differs a quantitative comparison 427 

is not possible. 428 

Furthermore, tThe performances of the Edge and DeepCount methods were compared tovalidated 429 

against the ground-based measurements after converting the numbers of ears/image were converted 430 

into ears/m2. As shown in Figure 12 C&D, the performance degraded slightly compared to the manual 431 

image-based ground-truthingmeasurements (Figure 12 A&B). R2 Iin the edge method, R2 reduced from 432 

0.75 to 0.60, whereas the performance in the DeepCount model dropped only from R2 = 0.94 to 0.86. 433 

The edge and DeepCount methods had a similar bias (36 and 35.3, respectively), which indicated that 434 

both methods underestimated the number of ears/m2 compared to the field data. In addition, the RMSE 435 

increased from 45.5 to 104.9 ears/m2 and 25.1 to 71.4 in both approaches, respectively.  436 

A similar decrease in performance also observed in (Madec et al., 2019). This is partly attributed to the 437 

relatively different observation area used for the ground measurements and the visible images. The 438 

spatial representativeness was therefore limited to get an accurate comparison between the automatic 439 

counting and field-based measurements that were not measured at the same place over plots. For 440 

instance, in the 2015-FS trial, the ground-based measurementsd wereas obtained from six rows 441 

including the edge rows; however, the same area was not taken by the Field Scanalyzer. The number 442 

of rows captured in the images varies between 3.5 to 5 rows (Figure 2.C). An additional factor may 443 

also due to the fact that some ears are hidden deep down inside canopies or partially visible on the 444 

borders of images which pose more difficulties for the automatic models to identify them. Further 445 

improvement can be achieved between the automatic counting and direct counting in the field if the 446 

same protocol is followed by both methods during data acquisition. For example, in the 2016-FS trial, 447 

the results showed an improvement in performance in the 2016-FS trial when images were precisely 448 

consistently taken from four middle rows in every plot (Table 2). 449 

3.2 DeepCount model vs. field-based measurements 450 

The performance of the DeepCount model was further evaluated against the ground-based 451 

measurements in each individual trial and all together. As shown in Figure 13, the coefficient of 452 

determination was higher in the 2016-FS experiment (R2 = 0.89) compared to the 2015-FS (R2 = 0.70) 453 

and 2016-WGIN (R2 = 0.57) trials. Also, the lowest bias was obtained in the 2016-FS (bias = 3.6) 454 

followed by 2016-WGIN and 2015-FS with 37.4 and 59.14, respectively. As mentioned in the previous 455 

section, the notable difference in bias between the 2016-FS and the other two trials may reside in the 456 

fact that first, the measurements on the field and the visible images were obtained from the same area; 457 

also, in the 2016-FS, the camera was set up at fixed distance to the top of a canopy (2.5m) regardless 458 

of the height of the plots. As opposed to the 2015-FS trial where the camera was set up at a fixed 459 

distance to the ground (3.5m) or in the 2016-WGIN trial, where the distance between the hand-held 460 

cameras and top of canopies varies from one plot to another.  461 
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Furthermore, the lower performance in the 2016-WGIN trial may be associated with several factors. 462 

(i)First, improper placement of an A4 sheet used as a ground standard to transform the total number of 463 

wheat ears in an image into the number of ears/m2. In order to have an accurate ear density estimation, 464 

the sheet should be placed perpendicular to the handheld camera’s viewing angle which was not the 465 

case in many images taken from the WGIN-2016 trial. In addition, in some images, the ground standard 466 

was partially obstructed by leaves and wheat ears. (ii)Second, the perspective of the images may also 467 

account for the slight lack of correlation between the proposed model and the field measurements. 468 

While focal length does not change perspective per se, it does change how the ears are represented; 469 

thus, it is important to capture the scene optimally. The ultra-wide angle focal length used to capture 470 

images from 2016-WGIN (6 and 18 mm) provided a bigger field of coverage but caused a perspective 471 

distortion particularly on the image borders. Last but not least, the(iii) manual field measurements may 472 

likely tohave introduced human-error into obtained data. 473 

Despite the above uncertainties, the DeepCount algorithm showed the same accuracy in every 474 

experiment (rRMSE = 15%+/-1) regardless of the number of ears identified in the images (2015-FS: 475 

309 to 655, 2016-FS: 183 to 634, 2016-WGIN: 238 to 821), types of cameras with different spatial 476 

resolutions. The same accuracy also obtained when all three experiments were combined together (R2 477 

= 0.72 and rRMSE = 15%). As shown in Table 1, two cameras (Canon and Sony) with different spatial 478 

resolutions and lens focal lengths were used to acquire images. In the Canon camera, we observed 479 

lower R2 but higher bias compared to the Sony camera the images in 2016-WGIN were collected from 480 

two hand-held cameras with different spatial resolutions and focal length. While the R2 is lower and 481 

the bias is higher with the Canon camera than the Sony camera (R2 = 0.48 and 0.60, respectively; Bias 482 

= 43.2 and 33.7, respectively; Figure 13.C); nevertheless, both show similar rRMSE (15% and 16%, 483 

respectively; Figure 13.C). Figure 13C depicted outliers for both cameras but it is not possible to 484 

attribute them to one of the cameras or a human error.  485 

Overall, the DeepCount algorithm showed a solid performance in identifying wheat spikes at early or 486 

later growth stages. Visual inspection of results also showed that the proposed CNN model was able 487 

to discriminate ears and background (soil, leaves, etc.) and classified them on a pixel level. The 488 

proposed model was capable of minimising effects related to brightness, shadow, ear size and shape, 489 

awn or awnless cultivars and even overlap ears in most scenarios. It should be highlighted that the 490 

strength of the algorithm also resides in its training data set, where images were collected by a third 491 

party on completely independent trials, different spatial resolutions, and different varieties than the 492 

wheat materials in this study. An improvement in the performance would be expected via the 493 

optimisation of data acquisition process both in the field and through within images. We believe that 494 

the optimum configuration is to take images at 2.0-2.5 m above canopies using the focal length between 495 

35-60 mm which is similar to what human eyes see. Moreover, we noticed that the textural information 496 

will fade away when spatial resolution is below 0.2-0.3 mm, which will degrade the identification 497 

performances. It should be highlighted that the strength of the algorithm also resides in its training data 498 

set where images were collected by a third party on completely independent trials, different spatial 499 

resolutions, and different varieties than the wheat materials in this study.  500 

3.3 The effect of nitrogen rate on the performance of the DeepCount model 501 

We also investigated the effect of nitrogen on the performance of the DeepCount method. It was 502 

expected that the performance of the algorithm declines with the increase of nitrogen use since the 503 

canopies with a higher level of nitrogen have higher ear density which ears are more overlapped and 504 

clustered; however, the results showed otherwise. As depicted in Table 2, the overall N3 and N4 data 505 

had a lower R2 (0.53 and 0.60, respectively) compared to the overall N1 and N2 data (0.81 and 0.69, 506 
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respectively). HoweverOn the other hand, the 2016-FS and 2016-WGIN trials do not follow the same 507 

pattern. For instance, in the 2016-FS trial, N3 had the highest R2 value (R2 = 0.89), followed by N2 and 508 

N1 (R2 = 0.75 and 0.59, respectively), whereas in the 2016-WGIN, the N4 treatment had the highest 509 

R2 (0.63). Furthermore, on closer inspection, of the N3 and N4 treatments in the 2015-FS, 2016-WGIN, 510 

and combined datasets showed the highest bias values and underestimation of the ear density in the 511 

2015-FS, 2016-WGIN, and combined datasets. in the automatic method as opposed to the ground 512 

measurements.  513 

Despite that, the accuracy of the overall experiments for each nitrogen treatment did not change too 514 

much as the rRMSE value for N1, N2, N3 and N4 were 18, 13, 16 and 15%, respectively. In the end, 515 

the results did not suggest that the performance of the DeepCount model degrades due to the complex 516 

canopies with a high level of ear density.  517 

4 Conclusion 518 

In this study, the main objective was to present an automatic model that quantifies the number of wheat 519 

ears in an image or image series. Regardless, of the challenges posed by the acquisition protocol or 520 

environmental variations in the field, the model was able to deliver the total number of wheat ears 521 

within an image and/or estimated the number of ears/m2 if a ground standard was present in the image. 522 

We demonstrated the feasibility of the proposed technique in which the model was validated on 523 

numerous images taken from a broad range of spatial resolution images and various data acquisition 524 

systems. It has been shown that the model can be an essential tool for high throughput analysis and has 525 

the potential to reduce labour involvement considerably. To minimise the uncertainties between the 526 

automatic methods and the ground-based measurements, we recommend to 1) have the same sample 527 

areas 2) have a more reliable ground standard rather than a A4 sheet used in this study 3) take sampling 528 

from larger area for both image sampling and field measurements 4) increase the spatial resolution of 529 

visible image to avoid losing the textural information 5) use the focal length of lens between 35– 60 530 

mm. The code can be found at https://github.com/pouriast 531 

In the end, the aim is to increase the adoption of the approach by farmers and breeders by lowering the 532 

expense of camera equipment. The proposed model can be used as a high-throughput post- processing 533 

method to quantify the number of spikes for large-scale breeding programs. Furthermore, the automatic 534 

technique can facilitate farmers to make improved yield estimates, which can be used to plan 535 

requirements for grain harvest, transport and storage. Subsequently, iImproved estimates could reduce 536 

post-farm gate costs.  537 

The DeepCount model benefitted from the CNN architecture and even though the model was trained 538 

to distinguish two classes, nothing prevents modifying the network to classify and segment more plants 539 

or species. Given an adequate training model, the proposed semantic segmentation technique offers the 540 

advantages of versatility and may be applied to other types of applications such as segmenting different 541 

part of plants organs, vegetation and even detect diseases. In future work, we aim to envisage the use 542 

of thermal and hyperspectral images which will offer additional information to RGB visible images.   543 

5 Abbreviations 544 

FS  Field Scanalyzer 545 

CNN  Convolutional Neural Network 546 

DNN  Deep Neural Network 547 
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NN  Neural Network 548 

SLIC  Simple Linear Iterative Clustering 549 

WGIN  Wheat Genetic Improvement Network 550 
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Figures 

Figure 1 Schematic representation of the DeepCount method  695 

 696 

Figure 2 Over-head view digital images of wheat cultivars with different canopy complexity 697 

taken in the field using the handheld DSLR camera (A and B) and the Field Scanalyzer platform 698 

(C). An A4 sheet is placed over the canopy for each image as a ground standard system to 699 

transform the total number of wheat ears in the image into number of ears/m2 700 

 701 

Figure 3 Training patches. Examples of expert annotation of spikes for different wheat cultivars 702 

without awns (A), with awns (B), and backgrounds (e.g. soil, leaves) 703 

 704 

Figure 4 Augmented samples of the same spike with various transformations such as random 705 

zoom, rotation, flipping, brightness and gamma correction. For example, 1) the original image; 706 

5 & 10) adjusted HSV colour image; 6, 8 & 10) gamma colour correction. Cropping, flipping, 707 

zooming and scaling was applied to all image randomly with the probability of 0.5. 708 

 709 

Figure 5 Examples of superpixel segmentation using the SLIC technique.  710 

 711 

Figure 6 A.1 & B.1 show the SLIC superpixel outputs. A.2 & B.2 are the results of pixel-wise 712 

semantic segmentations. The red circle illustrates the imperfection in the SLIC method. 713 

 714 
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Figure 7 A.1 & B.1 show the SLIC superpixel outputs. A.2 & B.2 are the output of the 715 

Deepcount model. The red circle illustrates the imperfection in the SLIC method 716 

 717 

Figure 8 Encoder-decoder neural network architecture also known as U-Net where VGG-16 718 

neural network without fully connected layers as its encoder. The number of channels increase 719 

stage by stage on the left part while decrease stage by stage on the right decoding part. The 720 

arrows show transfer of information from each encoding layer and concatenating it to a 721 

corresponding decoding part 722 

 723 

Figure 9 A plot of loss and accuracy over the course of 15 epochs with a 1e-4 learning rate. Using 724 

of pre-trained VGG model on ImageNet dataset helped the model to converge quicker 725 

 726 

Figure 10 The hand-crafted ear-counting method. A) original image B) greyscale image C) 727 

result after applying edge detection technique D) dilate the image E) fill the holes F) filtering by 728 

removing small objects (noises) G) erode and smooth the image H) counting the contours/ears 729 

 730 

Figure 11 Examples of result images A) WGIN experiment with an A4 sheet used as a ground 731 

standard B) Field Scanalyzer experiment in 2015 732 

 733 

Figure 12 Comparison of  the number of ears visually annotated on the images (Annotation – A, 734 

B) and the number of ears/m2 (C, D) with the number of ears estimated by the Edge (A, C) and 735 

DeepCount (B,D) methods for the 2 dataset collected with the Field Scanalyzer in 2015 (blue dots) 736 

and 2016 (red triangles) 737 

 738 

Figure 13 Comparison between the number of ears/m2 counting form the field and the number 739 

of ears estimated by the neural networkDeepCount model (NN) method for the datasets collected 740 

with the Field Scanalyzer in 2015 (A – open circle) and in 2016 (B - open triangles), for the WGIN 741 

trial in 2016 (C – cross) separated by camera (D), for all datasets together (E) and for all dataset 742 

together separated by nitrogen level (f - N1: blue, N2: green, N3: red and N4: purple) 743 

 744 
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Tables 

Table 1 Characteristics of the three experiments considered in this study  745 

Dataset Plot Nitrogen 

(kg/ha) 

Image Camera Image size Focal length Resolution 

(mm) 

Date 

2015 - FS 72 0, 100, 200, 350 72 Prosilica GT 3300  

Allied Vision 

3296×2474 50 mm 0.22-0.29 13/07/2015 

2016 - FS 54 0, 100, 200 54 Prosilica GT 3300  

Allied Vision 

3296×2474 50 mm 0.26 29/06/2016 

2016-WGIN 199360 0, 100, 200, 350 

78 Canon G12 3648×2736 6 mm 0.21-0.31 13/06/2016 

121 SONY - NEX-7 6000×3376 18 mm 0.14-0.25 13/06/2016 

 746 

Table 2 Comparison between the number of ears/m2 counting form the field and the number of 747 

ears estimated by the DeepCount model for the  3 datasets collected, separately and combined 748 

for each of the nitrogen levels.Performance of the DeepCount model in regard to the nitrogen rate 749 
across the different experiments  a and b are the slope are the offset of the regression line, respectively. 750 

    N1 N2 N3 N4 

2015 - FS 

a 1.16 0.96 0.64 0.68 

b -18.40 55.22 263.06 282.56 

R2 0.58 0.46 0.15 0.22 

RMSE 61.50 60.30 92.20 122.90 

rRMSE 13% 10% 14% 17% 

Bias 42.30 35.20 58.90 100.10 

2016 - FS 

a 0.75 1.10 0.93   

b 45.23 -16.13 39.29   

R2 0.59 0.75 0.89   

RMSE 41.00 43.80 32.40   

rRMSE 22% 10% 7%   

Bias -19.60 20.20 9.70   

2016 - WGIN 

a   0.95 0.71 0.88 

b   33.87 189.27 89.62 

R2   0.42 0.41 0.63 

RMSE   67.10 98.30 72.00 

rRMSE   15% 17% 14% 

Bias   15.60 57.90 30.80 

All dataset a 1.28 1.06 0.83 0.96 
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b -76.43 -4.10 131.26 66.39 

R2 0.81 0.69 0.53 0.60 

RMSE 52.20 61.40 90.00 84.40 

rRMSE 18% 13% 16% 15% 

Bias 11.30 20.70 50.30 44.30 

 751 
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